Parallel Algorithm for Crystallizations

Vladimir Dimitrov, Vladimir Vladislavov

Faculty of Mathematics and Informatics, University of Sofia, Bulgaria

e-mail: cht@fmi.uni-sofia.bg, vladimir_slavov@yahoo.com

Abstract

An algorithm for crystallization is presented. Its parallelism is investigated in multiprocessor, distributed and Grid environments. Different possibilities to achieve effective parallelism are discussed and implemented. The prototype is developed in Java and then C++ is used. Corresponding timings are presented. For this investigation Grid computing farm at CERN is used.

Introduction

Free dendritic growth is a frequently observed growth mode in casting and welding processes. The understanding and control of its structures are of great importance to metallurgy, because the formatted microstructure determines the quality of the solidified material. As a highly nonlinear phase transformation process, the dendritic growth is interesting from mathematical and computational viewpoints as well.

The solidification of a pure material belongs to the class of first order phase transitions where the energy of self-organization is liberated during the process. The classical Stefan problem for melting or freezing is obtained by evaluating the heat balance of the system and models the process only on a macroscale. For equal and constant in both phase material parameters it is given by:

[image: image1.wmf],

|

,

|

),

|

|

(

,

0

0

u

u

u

u

u

u

D

v

u

D

t

u

t

m

n

n

n

=

=

-¶

¶

=

D

=

¶

¶

=

G

-

+

where:

·
[image: image2.wmf]u

and
[image: image3.wmf]m

u

 are the dimensionless temperature and the melting (freezing) temperature respectively;

·
[image: image4.wmf]D

 is the thermal diffusivity;

·
[image: image5.wmf]n

r

 and
[image: image6.wmf]n

v

 are the outer normal to the solid subdomain and the normal velocity of the interface respectively;

·
[image: image7.wmf]-

+

¶

¶

|

,

|

u

u

n

n

 are the normal derivatives of the temperature at the interface for the solid (+) and the liquid (-) phases.

Formation of microstructure in the system is a result of changes in another kind of energy, linked to the structural organization (free energy or entropy). The heat and the free energy interact during the solidification process and can lead to development of unstable complex shapes in the solid subdomain (cells, dendrites). To take into account the surface effects (surface tension, undercooling), the classical Stefan problem has been modified and the following Gibbs-Thomson relation has been included

[image: image8.wmf]n

I

v

n

n

d

u

)

(

)

(

r

r

b

k

-

=

,

where:

·
[image: image9.wmf]I

u

 is the temperature at the interface;

·
[image: image10.wmf]k

 is the local curvature;

·
[image: image11.wmf])

(

n

d

r

 is the capillary length;

·
[image: image12.wmf])

(

n

r

b

 is kinetic coefficient.

Dendritic growth has been the subject of many theoretical, numerical and experimental investigations [1-7]. The isothermal dendritic growth experiment of Glicksman, Koss and Winsa [1], conducted under microgravity conditions, have clearly demonstrated that naturally growing dendrites are characterized by steady-state propagation of the primary tips and nonlinear time-dependant evolution of secondary and tertiary side-branches on a microscopic scale (from
[image: image13.wmf]6

10

-

 to
[image: image14.wmf]m

5

10

-

). Accurate modeling of dendritic processes on the mesoscopic scale, defined from
[image: image15.wmf]4

10

-

 to
[image: image16.wmf]m

3

10

-

, is not only important for the prediction of the final structure of a solidified material, but also for feeding local information back to macroscopic model (
[image: image17.wmf]m

1

10

-

).

Phase-Field Method

The phase-field formulation of solidification problems is a computational tool for modeling of complicated solid-liquid interfaces. The interface between phases is considered as thin diffuse region where all the thermodynamical parameters vary continuously. The advantage of this approach is that the interface between phases is not explicitly tracked. It is given implicitly by the so-called phase-field, i.e., the level-set of a scalar function
[image: image18.wmf]F

of space and time, called phase-field function. It varies smoothly from -1 in the liquid to +1 in the solid phase. An evolution equation for the phase-field function is solved instead and the solid-liquid interface is defined by the level set
[image: image19.wmf]0

=

F

. Another advantage of this approach is that the accurate computation of interface normals and curvatures is completely avoided. Since there are many ways to prescribe a smoothing and dynamics of the sharp interface model, there is no unique phase-field model. We construct the numerical method on the basis of the phase-field model used in [1, 2].

[image: image20.wmf]222

1

,

2

()[||][||](,),

xy

xy

u

Du

tt

WWWWWFu

t

tl

FFF

¶¶F

=D+

¶¶

¶F

=ÑÑF+¶ÑF¶+¶ÑF¶-¶F

¶

where:

·
[image: image21.wmf]l

 is a dimensionless parameter that controls the coupling between
[image: image22.wmf]u

 and
[image: image23.wmf]F

;

·
[image: image24.wmf])

(

)

(

)

,

(

F

+

F

=

F

ug

f

u

F

l

l

 is the free energy and
[image: image25.wmf]2

/

4

/

)

(

2

4

F

-

F

=

F

f

,
[image: image26.wmf]5

/

3

/

2

)

(

5

3

F

+

F

-

F

=

F

g

;

·
[image: image27.wmf]s

A

W

d

=

 ,
[image: image28.wmf]4

4

4

|

|

4

)

3

1

(

F

Ñ

F

+

F

+

-

=

y

x

s

A

e

e

 and
[image: image29.wmf]e

 is the anisotropy strength;

·
[image: image30.wmf]d

 is the characteristic length;

·
[image: image31.wmf]2

0

s

A

t

t

=

 and
[image: image32.wmf]0

t

 is the characteristic time.

To obtain secondary side-branches numerical noise should be incorporated in the model. Karma [3] shows that it can be done by including thermal noise term in the equation for the temperature

[image: image33.wmf]
[image: image34.wmf]q

t

u

D

t

u

r

.

2

1

Ñ

-

¶

F

¶

+

D

=

¶

¶

,

where
[image: image35.wmf]q

r

 stands for the thermal noise vector, obeying a Gaussian distribution.

Numerical Method

To solve the system we use method of lines approach – we make finite difference discretization in space and solve the resulting ODE system in time.

Space discretization is done in standard manner – we use regular mesh in both directions and we make second order approximation of space derivatives.

To solve the ODE system we use a second order explicit modification of the Runge-Kutta method [8] with extended region of stability. The time step is chosen automatically so as to guarantee stability and a given desired accuracy at the end of the time interval. Applied to the system:

[image: image36.wmf]'

0

()

(0),

yfy

yy

=

=

it reads:

[image: image37.wmf],

3

3

2

2

1

1

1

j

j

j

j

j

k

p

k

p

k

p

y

y

+

+

+

=

+

where

[image: image38.wmf]).

3

/

3

/

(

,

32

9

),

3

/

2

(

,

32

15

),

(

,

4

1

2

1

3

3

1

2

2

1

1

j

j

j

j

j

j

j

j

j

j

j

j

k

k

y

f

k

p

k

y

f

k

p

y

f

k

p

+

+

=

=

+

=

=

=

=

t

t

t

The time step
[image: image39.wmf]j

t

 satisfies the criteria for accuracy and stability respectively:

[image: image40.wmf].

|

)

(

|

max

5

|

)

2

3

(

|

max

,

2

.

6

|)

)

(

/(|

|

)

(

|

max

1

2

1

2

3

1

2

i

j

j

i

j

j

j

i

j

i

j

j

k

k

k

k

k

E

y

k

k

-

£

-

-

£

+

-

a

Here
[image: image41.wmf]a

 is the desired accuracy,
[image: image42.wmf]E

 is a positive parameter that prevents division by zero.

Increasing Efficiency of Modified Runge-Kutta Method

The common strategy of using modified Runge-Kutta method is to find optimal time step – to decrease or increase the previous one by a factor of
[image: image43.wmf]p

, usually
[image: image44.wmf]1

.

1

=

p

, while the conditions for accuracy and stability are fulfilled. It is good, when it is applied to one equation, but for the systems it must be changed. The new strategy must be consistent with the specific peculiarities of the mathematical model and of the evolution process. They are: the very different nature and structure of the equations for temperature and for phase-field variable; the discontinuity of the initial conditions; the imposed steady-state profile of the phase-field function along the axes of the primary tip growth. Regarding this peculiarities it is predictable that in the beginning of the process the time step varies significantly, but it becomes and remains constant when the steady-state profile of phase-field variable is attained. That’s why we begin with small initial time step and keep it small by permitting only one increase of it per iteration, in order to avoid the big variation of it. When the time step becomes constant we do not examine the conditions for accuracy and stability at every time step. This strategy increases significantly the efficiency of the method.

Algorithm – Outline

Since incorporation of numerical noise makes the equation for the temperature more unstable, we first solve it and with obtained time step and with new values for temperature we solve phase-field equation.

1) We make discretization of the right hand side of phase-field equation.

2) We solve equation for the temperature and for the term
[image: image45.wmf]t

¶

F

¶

2

1

 we use already computed at step 1) right hand side of phase-field equation.

3) With obtained values for the temperature we solve phase-field equation.

4) Repeat step 1)-3) until the end of the time interval.

Program Implementation

Our target was to run algorithm in gLite environment to test it suitability for data intensive parallel programs. Starting was Java implementation on single computer. There are several implementation of the algorithm in Java and C++. The basic implementation is object-oriented and consists of the following classes:

· Cryst2D – common shared data structure on which all other classes work;

· MainWindow – main class coordinating all main processes: it is responsible to collect data from the user input, to create common data structure, to create instances of main calculation classes and to start calculations;

· InputPanel – dialog for collecting initial data through interaction with the user;

· Solver – class coordinating all main calculations;

· TimeSolver – class containing implementations of Runge-Kutta method;

· SpaceDiscretization – class containing approximation functions.

In this implementation Cryst2D is created by MainWindow , initialized by InputPanel and then a pointer to that structure is derived to Solver, TimeSolver and SpaceDiscertization classes, i.e. they share this common data structure through pointers. This means that if we put these three instances on different nodes they have to exchange this data structure every time one the corresponding process (instance) is invoked.

We have exact approximations of this common data structure. Eight two dimensional n x n arrays of doubles are used, where n defines number of point in x(y)-direction. These arrays prevail in storage requirements of the algorithm, for n = 600 it is 2,880,000 doubles, which is equal to 23,040,000 bytes. This huge memory requirement do not permit (and it is not sensible on a single computer) to have a local data copy in every class instance.

It is difficult to estimate algorithms time performance, because there are many parameters influencing it, but when a process is invoked it run long enough and it is not simply involved in communications.

The main idea for parallel implementation of the algorithm is concurrently to execute rungeKuttaU and rungeKuttaPhi calculations from one control point in Solver main calculation loop. These methods perform main huge calculations controlling following overall execution path.

As a starting point Java implementation was used and reimplemented with JCSP classes [9]. In JCSP all processes interchange information only through channels. This JCSP implementation redefines the system in 3 communicating sequential processes with really very huge communication between them - 2,880,000 doubles. On single computer implementation benchmark computations slow down from about 15 minutes to about 12 hours. This slow down is a result of huge communications and environment switches between processes.

Motivation to do JCSP implementation is based on the idea that these 3 processes can be located on 3 different working nodes. Communications between processes are enough intensive to be used as a test for DataGrid environment. JCSP implementation can be used as a benchmark for communication facilities in advanced networked environment in comparison to single node implementation. Very challenging idea is to reach higher performance than that of the base implementation (non JCSP). Why it can be possible? It is because current communications between nodes tend to be at higher rates than data interchange rates between main and secondary memory. If a program runs on single computer and has huge memory requirements, then the operating system uses many swappings between main memory and disks. When locating processes on different nodes swappings can be eliminated and instead of them will be used communications between nodes. Data synchronization between local copies of the shared data can be overlapped in the height speed network.

The next step was an attempt to implement this algorithm in gLite [10]. This step was planned to be done in the next substeps:

· to submit JSCP implementation as a single job in gLite environment;

· to reimplement JSCP channels in gLite ones;

· to optimize the implementation.

Even at the first step we found enormous difficulties to run JCSP implementation. The main confusion was that Java (how was used in gLite) was not compatible at all levels: compiled classes, sources and even standard libraries!

First, the compiled classes were sent as a jar library for execution. The system aborted the job with a message for incompatibility with java run-time system.

Then a job with compilation of sources codes directly on nodes was sent for execution. This time, job was aborted on execution of compiled code because in the standard library was not found a standard class.

Next try was an attempt with simple ‘Hello world!’ program. It was successful. Then we send for execution the base non-JCSP implementation, but just a same problem with standard library happened.

Conclusion

Our experiment shows that gLite is a system for job distribution and execution, but not an environment for parallel programs. And something more - these jobs have to be written in C/C++ for CERN Linux. This means that gLite is still far way from real distributed environment and that used nodes implementations needs of general reengineering.

Next step will be to implement algorithm in C++ with a hope for success. But the problem with this approach will be to overcome basic gLite utilization, because C/C++ and Java APIs in gLite have functionality simply to deploy jobs to gLite.

All these experiments were done at CERN during the visit of Vladimir Dimitrov to IT division.

References

[1]
M.E. Glicksman, M.B. Koss, E.A. Winsa, Dendritic growth velocities in microgravity. Phys. Rev. Lett., 73 (1994), 536 - 576.

[2]
V. Slavov, St. Dimova, O. Iliev, Phase-field method for 2D dendritic growth. Lect. Notes in Comp. Sci. 2902 (2004), 404 - 411.

[3]
C. Beckermann, H. Diepers, I. Steinbach, A. Karma, X.Tong, Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys., 154 (1999), 468 - 496.

 [4]
A. Karma, W.-J. Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev., E 53 (1996), 3017 - 3020.

[5]
A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev., E 57 (1998), 4323 - 4349.

[6]
X. Tong, C. Beckermann, A. Karma, Q.Li, Phase-field simulations of dendritic crystal growth in a forced flow. Phys.Rev., E 63 (2001), 061601-1--061601-15.

[7]
Q. Li and C. Bckermann, Scaling behaviour of three dimensional dendrites. Phys. Rev., E 57 (1998), 3176 - 3188.

[8]
V. Novikov, E. Novikov, Stability control of explicit one-step methods for integration of ordinary differential equations. Dokl. Akad. Nauk SSSR, 272 (1984), 1058 - 1062.

[9]
Communicating Sequential Processes for Java (JCSP), http://www.cs.kent.ac.uk/projects/ofa/jcsp

[10]
gLite Lightweight Middleware for Grid Computing, http://glite.web.cern.ch/glite

PAGE
96

_1187684158.unknown

_1187686686.unknown

_1187686913.unknown

_1187689039.unknown

_1204552698.unknown

_1204628801.unknown

_1187689059.unknown

_1187690739.unknown

_1187687450.unknown

_1187687514.unknown

_1187687406.unknown

_1187686843.unknown

_1187686875.unknown

_1187686797.unknown

_1187686293.unknown

_1187686605.unknown

_1187686645.unknown

_1187686331.unknown

_1187686551.unknown

_1187686235.unknown

_1187686278.unknown

_1187685445.unknown

_1187680128.unknown

_1187682991.unknown

_1187683998.unknown

_1187684079.unknown

_1187684107.unknown

_1187683921.unknown

_1187682411.unknown

_1187682587.unknown

_1187682707.unknown

_1187682563.unknown

_1187680554.unknown

_1187682316.unknown

_1187680581.unknown

_1187680271.unknown

_1187679225.unknown

_1187679751.unknown

_1187680112.unknown

_1187679262.unknown

_1187679179.unknown

_1187679196.unknown

_1187678961.unknown

_1187679150.unknown

_1187678878.unknown

