Grid Data Integration in the CMS Experiment

Saima Iqbal 2,3, Tony Solomonides 1,2, Ian Willers 1
1 - CERN, Geneva, Switzerland

2 - University of the West of England, Bristol, UK

3- California Institute of Technology, Pasadena, USA

Abstract

Particle physics experiments with grid-based data distribution and storage require seamless homogeneous database access to data, ideally through a virtual data access system which can take care of tracking data across geographically distributed, multilevel, heterogeneous relational databases. This must provide an integrated view of data stored in different repositories by using a virtual data access mechanism which can hide the heterogeneity of the back end databases from the client applications. We report on work based on the concept of web services to exploit analytical reporting in data warehouses and data marts. We propose a middleware which enables a client application to access data stored in geographically distributed relational databases without being aware of their physical locations or underlying schema. A grid based interface is provided to enable applications to access this middleware in a language and platform independent way. A prototype implementation was created and intensive tests were carried out against the proposed features of the middleware. This ability to access data stored in distributed heterogeneous relational databases transparently will be a very powerful one for grid users, especially for the scientific community wishing to collate and analyse data distributed over the grid.

Keywords: grid Computing, data warehouse, Factless Fact Table, Dimension Table, Data Marts, Heterogeneous Relational Databases, Database Access Across grid
1. Introduction

With time the scientific, engineering, medical and decision-support applications are becoming involved in accessing heterogeneous collections of structured data distributed globally, especially for the purpose of data analysis. For example: An LHC Computing grid project called LCG [1] at CERN [2] is trying to provide a mechanism to its different sub-detectors including CMS (Compact Muon Solenoid detector) [2] to access the globally distributed heterogeneous databases, which contain physics data, to their physics researchers’ community. The term “structured data” is used here to represent any data whose structure is explicitly defined so that operations like SQL queries can extract data or a subset of data based on that structure. Furthermore, grid computing projects like eDiaMoND [3] and MammoGrid [4] are trying to pool and provide the information about breast cancer treatments to medical professionals for early screening and diagnosis process of the disease, which is available in a globally distributed environment.

Most grid-based tools provide extensive support for data which is stored in a file-based format using EDG-based [5] and Globus-based [6] tools, rather than data which is stored in databases, especially in heterogeneous relational databases. However, some tools like POOL [7], an LCG-based tool, provide access to heterogeneous relational databases. Nevertheless by using this tool a client’s application is required to send queries separately to individual databases which contain the requested data because no integrated view of the data is available. Furthermore, it is the responsibility of the application to integrate the accessed data at the client side according to its requirements. This aspect makes the client application heavy and fails to provide complete transparent access to the backend databases, whereas, transparent access of data in a grid environment and light weight client applications are always considered to be one of the main requirements of any grid project.

To address this issue of access to data which is stored in distributed heterogeneous relational databases across a grid, this paper presents a software prototype that has been developed to demonstrate how an ETL (Extraction, Transformation, Loading) process and the denormalized database schema characteristics of a data warehouse can be used in a grid environment to resolve this issue. Moreover, the concept of data marts is used in this prototype to replicate the data from a data warehouse to the local databases. This replication provides the data to the applications locally from distributed heterogeneous databases through a single database technology and database schema via the data warehouse. A POOL (grid based tool) based interface prototype was developed to make these data marts and source databases accessible in a grid environment. This software prototype was tested to verify the proposed use of the data warehouse to access the distributed heterogeneous relational databases in a grid environment. The prototype was validated in the context of the CMS requirement for access to the integrated data which is stored in globally distributed heterogeneous relational databases available at the different computing centres.

2. Data Warehouse And Data Marts Used To Integrate Data From Distributed Heterogeneous Relational Databases For A Grid Environment

In many applications, grid implies a data-intensive activity. Its pressing requirement to store and communicate efficiently large datasets, of the order of petabytes, is evident. However, the currently available file based description of the data and its transport mechanism alone will not be sufficient to deal with the massive dataset stores of heterogeneous databases [10] across the grid. This intermediate area of the grid still needs the researcher’s attention.

Data resources across the grid are available in diverse technologies either in file based structures or in database management systems [8]. These data resources can reside on-line in mass storage devices and off-line on magnetic media. They can store the same type of data under different database schemas and technologies in geographically distributed databases. Thus, the applications which need to access these datasets in heterogeneous distributed databases with varying database schema and technologies need to know the schema information and location of the databases from which to access the data. This challenge of accessing integrated data transparently from databases having different schemas and technologies in the grid environment could be resolved by providing a single database schema with data integrated from heterogeneous relational databases to the client applications. This target could be achieved by transforming the multiple databases schemas into a single schema under a single database technology. In this case, this would be the only schema the database access applications would need to know.

This work has borrowed ideas from the commercial environment and proposes the use of data warehouse technology as a means of delivering a single schema in a single database technology. In the developed software prototype an ETL (Extraction, Trans​portation, Transformation and Loading) process is used to achieve this target. C++ based classes were developed to perform the proposed ETL process. These classes extract data from the following distributed heterogeneous relational databases: ORACLE and MySQL; then this extracted data is transformed according to the schema supported by the data warehouse which was developed in ORACLE. After the transformation the data is loaded into the data warehouse.

Thus a data warehouse architecture is proposed as the means to integrate and to access data transparently across the grid environment. However, the grid is itself an environment which is accessed by thousands of users, so that a centralised warehouse architecture could not in itself be a sufficient solution for this environment, despite of the provision of the single database schema. This issue of the centralized data warehouse is addressed by replicating and partitioning the read-only data of the warehouse across relational databases called data marts which are available locally to the client application. The data is replicated from the data warehouse to data marts at each site like subsets of data replicated to Tier-2 and Tier-3 from Tier-0 or Tier-1 CMS centres. By using these features of data warehouse and data marts, this work has shown that the single schema and integrated data approach could provide grid applications with transparent and efficient access to the required databases without their knowing about each of the separate schemas and technology of the source databases.

3. Research Context

The Large Hadron Collider (LHC) [9] being constructed at CERN, the European Laboratory for Particle Physics, is scheduled to go online in 2007. This experiment will produce about 40 million bunch crossings per second in the CMS detector, which corresponds to a data rate of about 1000 TB/sec. This data rate is reduced to 100 MB/sec by the detector’s online system. This detector is foreseen to produce data in the range of petabytes annually. Moreover, this data must be made available to different research institutes that are geographically distributed throughout the world. Most of this data will be stored at a Tier-0 site i.e. CERN, and at seven different Tier-1 sites. Subsets of this data will be replicated to Tier-2 and Tier-3 sites respectively on the basis of the data requested for analysis by the community of physicists at these sites.

While the large relatively unstructured data will be stored in files, all other information will be stored in relational databases. In choosing this means to store this data in relational databases at different sites, Oracle has proved the most popular RDBMS (Relational Database Management System) at Tier-0 and Tier-1 sites. On the other hand, MySQL and Microsoft-SQL databases are the more common technologies used at Tier-2 and Tier-3 sites. Furthermore, SQLite is a database favoured by users who wish to do analysis while remaining off line over long periods of time, such as laptop users. Thus there is a wide range of relational database management systems in use at different tiers.

Thus, in order to replicate this data from source databases to different CMS tier centres to be made available locally to each client’s analysis application, this solution is a software prototype which keeps track of the location of distributed heterogeneous source databases and provides a transparent and integrated view of the data to the client applications. These access the data in a grid environment through data warehouse and data mart technologies.

4. Software Prototype Architectural Design

The architecture for the proposed prototype, shown in Figure 1, was developed in such a way that it hides all the complexities concerning the accessibility of distributed heterogeneous relational databases across a grid from the client application. The design of this architecture also addresses the requirement to provide fast access to the required data which is stored in relational databases by providing the requested data locally to the client applications.

Fig. 1. Software Prototype Architectural Design

In this design, relational database schemas were developed exploiting strong features of normalized and denormalized schemas for data transactions, i.e. insert, update, delete and select operations. To receive some meaningful performance results from this prototype for CMS data integration, real physics data, HBOOK [10] Ntuples, were used. The following example can help to explain the meaning of Ntuple data. Suppose that a dataset contains 10000 events and each event consists of many variables (say NVAR=200), then an Ntuple may be viewed as a table where these 200 variables are the columns and each event is a row. Also, the schemas of the databases used in this prototype were built after consulting with the end users of the databases, the physicists.

In the developed prototype two relational database products, Oracle 9i and MySQL, were used as source databases. Here, the term “source database” is used to represent the databases from which data will be extracted and loaded into the data warehouse. In order to locate these heterogeneous databases in a distributed environment, one source database server is provided at Tier-0, i.e. an Oracle9i database server at CERN, and the other database server is assigned at Tier-2, i.e. MySQL database server at Caltech, as shown in Figure 1. A normalised database schema was designed for these databases to store the Ntuple data, as shown in Figure 2.

The ETL process of the data warehouse i.e. loading of data from source databases into the data warehouse was accomplished in the following two steps. First, move data from a source database into a text file according to the schema requirements of the data warehouse. Next, data from the generated text file is loaded into the data warehouse. Here schema requirements refer to the attributes of the ‘factless fact’ and dimension tables of the data warehouse. The data warehouse for this prototype was developed in the Oracle 9i database server, as shown in Figure 1, to utilise the data warehouse features that are provided by the Oracle 9i. A denormalized database schema was designed for the data warehouse, as shown in Figure 3, below.

[image: image1.png]Microsoft Dras

:Page-

=181]

D) e £ Mew Dok Window b Type o uestion for heb [[SRAR

DR S e 2w BRI OB QA [de |7,
i L Bt bt Bonanonn Bnadaed B Bt B oo
Niuple_Id_Table
PK | NTuple_Id
Chain_No
= Event_No_Table o File_No |« Block_No_Table
PK |Ntup Event Id PK | Ntuple Block_Id
[
FK1 | Ntuple_Id FK1 | Ntuple_ld
Enevt_No Block_No
General_Table
Ntuple_Event_Id
= FK2 | Ntuple_Block_Id
OrcaVersion Genpart_Table
FK1 | Ntup_Event_Id =
Ntuple_Event_Id
= FK2 | Niuple_Block_Id
PIDgenpart
FK1 | Ntup_Event_Id
1€« > i\ Page-1 1
Tile =1 Tile Row = 1 Tile Column = 1 Page 1{1
start| (5 Datalacation | ©ois e USBMEMORY (0) | ') Datalacationimpl- .. | &]pls | Bpisashianatizs |[[E]Microsoft visio-[.. (& @& 5 [« o @Fek 113em

Fig. 2. Normalised relational database schema for Row-Wise-Ntuple data

[image: image2.png]Microsoft Drawing1:Page-

=181]

D) e £ Mew Dok Window b Type o uestion for heb [[SRAR

DR S e 2w BRI OB QA [de |7,
i i AR RN AN A AN NN TR NN NI XN AN RN RANA AN ARTANN ANRR AN
General_Dimension_Table Genvert_Dimension_Table

10]

Event_No_ld FK1 |Event_No

Block No Block_No

Row_No Row_No

hitrun Xgenvert

hitevent Ygenvert
FK1 | Event_No

Ntuple_Factless_Fact table
PK |Event No
g Ntuple_Id
E Genpart_Dimension_Table
Hitbin_Dimension_Table
FK1 |Event_No
Block_No
= Row_No FK1 |Event_No
Etgenpart Block No
Phigenpart Row_No
eventinHLtbin
W 4 b N\ Page-1 Ll
Tile =1 Tile Row = 1 Tile Column = 1 Page 1{1
1 start| B8 Tomeat | Sopatalocation | LS | 3 patalocationim. .. | 8] pata Location_... | &]pLs |) pis ashiavatiz |[E] Microsoft visio. (@ @& 5 [« o @Fad 124apm

Fig. 3. Denormalized schema for data warehouse

For the proposed software prototype, views were created on the data stored in the data warehouse, i.e. database objects which contain the result of complex join queries. These views are then materialised into a data mart. The term “data mart” here is used to represent the database which is available at the same tier from where the client is using a POOL interface to retrieve the required data. This data mart is also developed in the Oracle9i database server, as shown in Figure 1, and contains the materialized data of the views created on the data warehouse’s data.

Furthermore, to implement this prototype in a grid environment, a POOL based interface was developed by using the POOL’s relational abstraction layer (RAL) [9]. In order to show the significance of the data warehouse approach in the presence of tools like POOL which are providing access to the distributed heterogeneous relational databases by directly connecting the client application with the databases and later making these client applications responsible for the integration of their requested data, for this prototype two POOL interfaces were developed, one to access data from the data mart which contains materialised views, i.e. results of complex join queries run over the data integrated from distributed heterogeneous relational databases, and the other to access data from a remote database which contains data in its normalised database schema. Here the term “remote database” refers to a database which is located at Tier-2 and is accessible by the POOL interface running at Tier-0. This remote database is the same as that of a source database which contains the Ntuple data, as shown in Figure 1, in its normalised database schema, i.e. non-integrated data. Thus, the POOL interface which was designed to access data from the remote database is required to run complex join queries on the source database. These join queries must be executed in order to extract the same data as that of the interface which is developed to access data from the data mart by running simple select statements.

Moreover, in the developed software prototype POOL’s RelationalFileCatalog [9], as shown in Figure 1, was used to register the local and remote databases. This RelationalFileCatalog is initially queried by the POOL interfaces because these interfaces are required to know the location of the databases which are available across the grid and have the requested data. After retrieving the location of the database which has the requested data, the respective POOL interface provides a connection with that database, retrieves the requested data, and sends the data back to the client. Throughout, in this prototype including ETL process, the concept of data streaming was used for the transfer of data between the databases.

[image: image3.png]Community E n - usecase

Help

File Edt View CreateDisgam Apange Citigue Generation

Bensi scipamBdE

B3 Package cantiic Class Diagra UseCase diagram_1 |
N BzO [te-cedda T Oy cOoccg

Paskage Centic [~ (3

odel 1
Clase Diagea

2 vatabase Opeative
%

Database Opeative

2 ooz

% Po0L RelatioantFisCatalog <cincude>s
Generate Tet Fie Tnset Data
é oo morsr (Source Database))77 77 (OataWarenouse)
Datatse Cperatice

(O Accass Ramats RattonaiData
(O crese vinue
(O Generate TextFile (sourse Data O

(O Generste Text File(Data Warshe =

<o
(O nset Dataoste Warehous Create vievs
(O Mataiatised viewsata Mat)

(O Register Databases WAL
(O se_case s

(O use_case 5
(O use_case s
(O se_case 7

Generate Text File
A @atawarehouse)

1 <cincludes>

O

pooL +
RelatoaniFieCatdog <sincludess |

<cincludes> |

Access Data arts
ccess Remote
[e [Relational Databases
POOL Itetace
B

Froperies | styie | To 0o tems | bocumentation | dava sauwee
Disgram e =X
) a0

momeon [zemren][z oz [zemien |[wineew

NEC2005

Fig. 4. System level use-case diagram

5. System Level Use-Case Diagram

A system level use-case diagram, as shown in Figure 4 below, was developed in order to clearly identify the individual and related use-cases of the system to facilitate and control the development of the proposed software prototype. Here the term “system” refers to the architectural design of the software prototype, shown in Figure 1.

This use-case diagram was used to facilitate and control the development of code in C++ for the prototype by generating the respective class and sequence diagrams for it.

6. Performance Results

In order to show the significance of the proposed use of the data warehouse in a grid environment in the presence of the existing tool which also provides access to the same distributed heterogeneous relational databases, this software prototype was tested in the following two phases:

Phase 1: In the first phase, data which is provided locally to the applications in data marts from the source databases through the integrated and single database schema of the data warehouse approach is extracted by the POOL RAL-based application. In this phase the application is required to run simple SQL statements to access data that was already integrated before replicating it to the client site.

Phase 2: In the second phase, the POOL RAL-based application accesses the same data as in phase 1, but directly from the source databases. In this phase the application runs complex SQL-join statements on each source database where the required data is stored, and later integrates this data on the client side.

[image: image4.png]B Microsoft Excel - comparisionResultsPrsen

Type a question for help v/ & x

—=— Remote Data Access Time in Seconds

1

2

3

4

2 —+— Local Data Access Time in Seconds
7

8

83|
ime in sec
N

b

Data Acces T

0 5 10 15 20
Size of File in KB

K« » W[\ ResutsTable % Graph Sheet3 1< i | 3

D reportVersu... | @ NEC2005pa.

Fig. 5. Remote and Local data access performance results

The graph shown in Figure 5 presents the average data access time of observations taken on different days at different times to measure the data transfer rate with different network traffic and database loads. This time includes the time taken by a class to connect with the respective databases and, to open and close the stream for the respective SQL statements. The graph shows the comparison of the data access time when the client application accesses the data from data marts and when client application accesses the data directly from the source databases.

It is evident from Figure 5 that it takes longer to extract data from remote databases and later integrate it on the client side through the POOL interface than it does to access data from data marts which contain the replicated integrated data in materialised views from the data warehouse.

7. Future Work

A generic ETL mechanism is now planned to allow the prototype to integrate data from databases other than relational databases, thus extending the scope of heterogeneity to different technologies such as object-relational databases, object databases, XML databases and plain text files. If data from these heterogeneous databases has to be loaded into the data warehouse through this prototype, it is necessary to provide an ETL process for each database technology. Moreover, future work involves the improvement of the data rate transfer efficiency and performance of the prototype.

8. Conclusion

We have presented a software prototype which has been evaluated and tested in the CMS computing environment and enables the efficient integrated access of data stored in a heterogeneous relational databases across a distributed environment such as the grid. This prototype provides a single simplified view of distributed data to the user and successfully makes the number of source relational databases distributed over the N-tiered architecture of CMS transparent to the user while continuing to give them satisfactory performance.

Acknowledgement

We are grateful to Prof. Harvey Newman at Caltech for financial and moral support of this project and to Prof. Richard McClatchey for his support at the University of the West of England, Bristol. Last but not least, we wish to thank the many people in CMS who have helped to test this prototype in the CMS computing environment.

References

[1]

LCG, 2002, The LHC Computing grid Project,

http://lcg.web.cern.ch/LCG/overview.htm

[2]

CMS, The Compact Muon Solenoid Detector, http://www.phys.ufl.edu/hee/cms/

[3]

eDiaMoND, http://www.ediamond.ox.ac.uk/

[4]

MammoGrid, http://www.mammogrid.com

[5]

Datagrid Project, http://eu-datagrid.web.cern.ch/eu-datagrid/ss

[6]

Globus Replica Location Service, http://www.globus.org/rls

[7]
D. Dullman et al., The POOL data storage, cache and conversion mechanism. Computing in High Energy and Nuclear Physics, 2003, San Diego.

[8]
M.P. Atikinson et al., Grid database access and integration: requirements and functionalities, http://www.cs.man.ac.uk/grid-db/papers/DAIS_GGF7RF.pdf

[9]
LHC, Large Hadron Collider,

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage

[10]
R. Burn, M. Goossens, HBOOK Statistical Analysis and Histogramming, CERN Program Library Long Write-Ups Y250, CERN Geneva, Switzerland.

Access time in sec from Source database

Access time in sec from data marts

Data extracted, transformed, transport

 and loaded in the data warehouse

Stream views from warehouse and

materialised into the data marts.

Access data from data marts (data marts contains data from the distributed heterogeneous relational databases via data warehouse) through the POOL interface.

Access data remotely from source database without data warehouse and data marts

POOL’s RelationalFileCatalog

Data mart (ORACLE)@Tier-1

Data warehouse (ORACLE)

ORACLE

@CERN i.e. Tier-0

MySQL

@CALTECH i.e.

Tier-2

POOL Interface

C++ class/Data Access via POOL RAL

PAGE
148

