Using PVSS for the Control of the LHCb TELL1 Detector Emulator (OPG)

P. Petrova, M. Laverne, M. Muecke, G. Haefeli, J. Christiansen

CERN, Geneva, Switzerland

E-mail: Petia.Petrova@cern.ch

Abstract

The TELL1 (Trigger Electronics Level 1) module is part of the readout electronics in the data acquisition (DAQ) system of the LHCb experiment, which is one of the four large experiments currently under construction at the LHC (Large Hadron Collider) accelerator at CERN. This experiment is designed to study the CP violation and other rare decay phenomena in the b quark sector, using the extensive production of hadrons with b quarks (B mesons in particular) at LHC. TELL1 is used in all sub-detectors of LHCb for providing the interface from the subdetectors to the DAQ network and performing signal preprocessing. The board output is sent to a Gigabit Ethernet based event builder network and further on to the combined Level 1 and High Level Trigger (HLT) CPU farm.

For the development and calibration of the signal processing algorithms of the TELL1 a special Optical Pattern Generator (OPG) is used, which emulates the data stream, usually received from the different subdetectors. A custom-made control panels, based on PVSS, supervise the OPG parameters and controls. This graphical user interface (GUI) allows changes in the pattern of the data stream for the TELL1 module, corresponding to the real output signals of the different types of detectors used in the experiment. The result of the implementation of the custom PVSS control tool is a user-friendly, intuitive graphical user interface, suitable for both control and monitoring of the operation of the OPG.

We will discuss in this article the advantages and the possible problems of the use of PVSS for the development of a GUI-based control for the OPG board.

1. Introduction

All TELL1 and OPG boards are connected to the Internet, which provides the communication link for control to each one of them. What is necessary for the actual use of these existing links is their logical representation. This is managed by the so-called DIM (Distributed Information Management) system. It provides all the necessary information for distinguishing each one of the boards, defining its status on the network and its available capabilities (services).

The best way of presenting the provided control information to the user is through a graphical-visualization tool. This gives the easiest and fastest way of communication with the hardware. Via GUI-based control all devices in the network can be displayed at the same time, as well as their features.

With this approach, having a graphical interface as a mediator, the user-to-hardware communication can be highly simplified. Otherwise complex tasks, like the parallel monitoring of the performance of several devices, can be accomplished with a few “clicks”. This is particularly important for distributed systems, when the number of the controlled devices may potentially grow to be very large. In such cases it might be impossible to maintain the system consistency manually. With the help of graphical control software several devices or subsystems could be accessed and reconfigured, or restarted, at the same time. In this way making cross-references becomes possible.

An important advantage in the use of GUI-based control, not only for the TELL1 and OPG network, but for any network of hardware devices is the possibility to represent even a rather complex architecture in an intuitive and “obvious” way. This speeds up and makes easier the process of setting up the necessary input values. The developer can simultaneously “explain” how the controlled system works, and can also immediately display a feedback from it, which highly reduces the time of getting used to the new hardware and increases its usability.

Another important feature of the implementation of graphical interface control is that it “hides” the real system that stands behind it and doesn’t require any detailed knowledge of the hardware (system architecture and functions) on the user side for the communication to be carried out. It provides an abstraction layer between the users’ needs and the available system functionalities.

2. SCADA – the PVSS solution

SCADA (Supervisory Control and Data Acquisition) systems are used in industrial and engineering applications to monitor and control distributed systems from a master location. A SCADA system is not just a control system, but rather focuses on the supervisory level. As such, it is purely software package that is positioned on top of hardware to which it interfaces.

SCADA systems are widely used usually in industry for control and monitoring of large-scale processes and also in experimental physics laboratories mainly for the controls of auxiliary systems such as cooling, ventilation, power distribution, etc. They are also implemented in most of the experiments at CERN. For the LHCb experiment a SCADA system provides access to the detectors and their DAQ hardware slow controls.

The commercial SCADA systems have made substantial progress over the recent years in terms of functionality, scalability, performance and openness, such that they are an alternative to “in-house” developed packages, even for very demanding and complex control systems as those of physics experiments [1].

PVSS II is one of the existing industrial SCADA applications, produced by the Austrian company ETM.
PVSS can be used to connect to hardware (or software) devices, acquire the data they produce and use it for their supervision, i.e. to monitor their behaviour and to initialize, configure and operate them.

PVSS provides a development environment with a Human Machine Interface (HMI) and scripting/API (Application Programming Interface) capabilities. It also supplies standard SCADA mechanisms for alarm handling, access control, archiving and trending as well as various interfaces and drivers (OPC, ProfiBus, CanBus, Modbus TCP/IP and Applicom) to external hardware and software. Some additional interfaces (like DIM extended for CCPC/SPECS) are developed at CERN by different workgroups and are incorporated in the so-called Framework [2] for PVSS.

PVSS can run in a distributed manner (either as one single system or as various interconnected systems) and it has multi-platform support (Linux and Windows).

A key SCADA/PVSS concept is the data point. In PVSS every object is modeled using data point types, which are a collection of data point elements. Each element can be configured to be archived, to trigger alarms, etc. Data points are particular instances of a data point type. A data point type is somewhat of an analogue to an object oriented class in the sense of a collection of attributes that provides inheritance [3, 4, 5].

3. Hardware overview

TELL1

TELL1 is an FPGA based readout board, which is part of the off-detector acquisition electronics used in the LHCb experiment. It is used as a receiver card for the analogue or optical data transmitted by the detector front-end electronics. This board provides basic signal processing and filtering of the subdetector signals.

In order to have maximum flexibility, TELL1 has been designed to accept input “mezzanine” cards for both copper and optical link configurations, requested by the different subsystems. For all of them, TELL1 will perform the Level 1 (L1) buffering during the L1 trigger decision latency and the interfacing to the Level 1/High Level Trigger (L1/HLT), where the data is processed for the complete reconstruction of the detected events. The HLT are software triggers based on a 2000 CPUs farm, where the most complex part of the signal processing is carried out. For the connection to the HLT a Gigabit Ethernet network is used.

TELL1 is controlled by ECS (Experiment Control System) via a “Credit–Card PC” (CCPC) running a Linux kernel, connected to the LHCb ECS 10/100 Ethernet LAN. The PC is interfacing to the so-called “GlueCard” via PCI. On the Glue Card a PCI bridge is employed to convert PCI to three different types of buses. Through it a 32-bit parallel microprocessor bus (Local Bus), 3 JTAG chains and 4 I2C buses are made available for use on the board [6].

OPG

For development purposes, instead of real data, the input signals to the TELL1 board need to be predefined and artificially generated. In order to generate such signals, a special custom-made pattern generator board was built. The OPG board is needed to simulate for the TELL1 signals similar to those at the output of the subdetectors. OPG boards exist for use with optical links only [7].

The TELL1 board is planned to perform intensive processing of the input dataflow from the seven different LHCb detectors. This implies the need for the OPG to emulate the subdetector signals of the six subdetectors using optical links with their specific format.

This can be realized in two possible ways: either the signal parameters can be reset manually every time the OPG is started or they can be loaded from a set of files with pattern signals, or from a configuration database [8]. The second option gives many advantages to the signal generation process: shorter configuration time, unification of the test patterns and possible reuse of the same parameterization.

4. Control needs

The control part of the TELL1 board and of the OPG is the same. They both use the CCPC and GlueCard. This allows the reuse of available software components for both boards, if needed.

The OPG parameterization process includes several internal hardware procedures whose execution would require a certain degree of knowledge of the board design, which might not be necessary for the achievement of the overall goal of a common user – to obtain detector output signal emulation. For this reason the communication with the OPG board is conveyed through a custom made GUI. The graphical environment masks all hardware processes and the user interacts with the system via simple commands.

The graphical interface consists of a set of control and monitoring panels, created in the PVSS environment.

5. OPG control

The OPG control panel set consists of five panels aimed to facilitate the OPG configuration and control.

[image: image1.png]ackageConfigurat

Package Configuration Tool

Fagren efrion Package Visusizaion | 0o Conral| Ssqening | HepFeadback

C/PVSS-Projects/ConfigurationFiles/configuration txt

Hexadecimal

Package Visualisation

Binary

00000000
11111111
22222222
33333333
00000000
11111111
22222222
33333333
14242222
55555555

66666666
177777717
88888888
99999999
ARARARAR
BBEBEBED
ceccccce
DDDDDDDD
EEEEEEEE

FFFFFFFF

000000000BBBBBBBEBEBE00000000000 41
EEEEREREEEEEEEEEEEEEEEEEEEERERER
00100010001000100010001000100010
00110011001100110011001100110011
00000000000000000000000000000000
00010001000100010001000100010001
00100010001000100010001000100010
00110011001100110011001100110011
01000100010001000100010001000100
01010101010101010101010101010101
01100110011001100110011001100110
01110111011101110111011101110111
10001000100010001000100010001000
10011001100110011001100110011001
10101010101010101010101010101010
10111011101110111011101110111011
11001100110011001100110011001100
11011101110111011101110111011101
11101110111011101110111011101110
11111111111111111111111111111111 3

SaveSettings

Close

n =loix]

Two of the panels are for OPG parameterization and visualization of the entered values (Fragment Definition, Package Visualization), presented on Fig.1 to Fig.3.

In these panels have been added dynamically updated graphics, representing the feedback of the entered dataflow configuration.

[image: image2.png]{Fraginer Befiitior

PackageConfiguration

Package Configuration Tool

Peckage Visuaization | 0P Cortrol | Sequencing | HepFesdback

Event Fragment Definition

Register Set Configuration

- 32 bit words
[32 4 32 bit words

Counter Confiuration

[Bunch Counter
(12 bit counter)

Staring bit 37

Ward number [1..4]

rEvent caunter
@2 bit counter)

Ward number [1..4]

-Data package
Nurmber

otfragments '

Save Settings

Import

Package created successfullyl

There is another panel providing help information, explanations and guidelines for the use of the GUI, as well as giving a support and feedback information (Help/Feedback).

The other two panels (OPG Control, Sequencing) carry out the communication with the OPG via DIM server and monitor the status of the TELL1 and OPG devices connected to the network (Fig.4 and Fig.5).

[image: image3.png]Wieaden =10l x|

3130292827 262524232221 2019 1817 161514 13121110 9 8 7 6 5 4 3 2 1 0

Header word 1
Header word 2

Header word 3

Heaer word 4

Bunch Counter (12 bits) Event Counter (32 bits) Ciose

The role of the DIM is very important for the communication between the PVSS part of the control system and the hardware. There is an add-on software, the so called PVSS-DIM toolkit, which allows the interface of PVSS to devices which do not provide any of the PVSS supported protocols. DIM is a communication mechanism running on several platforms. It’s based on the client/server paradigm [9].

The basic concept in the DIM approach is the concept of "service". Servers provide services to clients. A service is normally a set of data (of any type or size) and it is recognized by a name - "named services".

Usually all CCPCs, no matter whether they are mounted on a TELL1 or on an OPG board, register as services to one of the provided DIM servers. This makes available the information about their status and functionalities to the possible clients, interested in them. The role of the client in our case is the PVSS based GUI.

Through the control panel “OPG Control” the user can connect to any DIM server (DIM DNS node), thus automatically getting the available OPG and TELL1 board names. Then by choosing one of the listed devices one can use the services it provides.

A procedure has been developed, for the presented control application, which gives the user the ability to identify the type of the board, if it’s OPG or TELL1. The mechanism of the routine is based on a JTAG chain scan of the selected board and comparison of the received with the expected response, which is unique for each type of board.

Once a device is selected, several functionalities provided by the panel become active can be executed: the configuration information from the panel can be uploaded to the FPGAs on the board; some parts of the whole configuration might be changed manually “online”, without reloading the whole register set; both FPGAs can be enabled, or disabled manually; the state of the FPGAs, as well as several parameters of the dataflow can be monitored.

6. PVSS challenges

Main parts of the created GUI-based control rely on the display of information – either entered by the user, or received as feedback from the hardware. In both cases the constant, immediate update of the information is essential. In order to make the display more intuitive and easy to perceive, the use of dynamically updated graphics was preferred, especially for the visualization of the data structure.

The realization of this idea turned out to be not so easy to achieve with the functionalities provided in the PVSS environment.

One of the possible ways to create dynamical graphics is with the implementation of ActiveX functions for calling external graphics. This approach is not quite useful for constantly changing display that needs to be fast-updated.

Another drawback of using ActiveX is the fact that it's a Microsoft proprietary technology and this limits the portability of PVSS projects to Linux. Therefore, as for CERN projects the Linux compatibility is very important, developers are bound to design their own graphical objects in script.

And this is the second possibility - rendering the visualization with control scripts. This is quite challenging with the provided in the PVSS toolkit capabilities, since one has to find a way around the various limitations.

PVSS has developed its own programming language called CTRL. It is quite similar to the C languages but has more limited set of functions, operating with each of the data types. Many of the standard for programming languages data types are omitted and new ones have been introduced. In this way the normal flexibility of the language is lost and a simple routine, otherwise coded in C, for example, with a single function, might become a complex of subfunctions. And this is even further complicated due to the fact that although generally the CTRL language has adopted most of its functions from C languages, it has only a small part of them, and not the full set. Apart from that the CTRL language has also many additional functions that do not exist in any of the C languages but with very specific implementation, which makes them rarely used in common scripts.

Another general problem with the PVSS script language is its datapoint (DP) orientation. Major part of its functional set supports operations with DPs, and not with “normal” variables. In some cases this leads to the use of growing number of DPs. Although the use of DPs is very convenient for control systems, especially for database archiving, their overuse causes big loses of memory and growing execution time.

A part of the same problem is the fact that it is not possible to define global variables in the script code. The panel architecture used in PVSS restricts the use of the so-called global variables within the code of each panel. This means that it might be necessary to define the same variable several times, once for each panel in which it’s used. A way around this predefinition is the use of a DP (it acts as a project global variable), but this gets us to the problem of DP overuse, and the resulting cyclical conundrum.

It puts many constrains to the achievable functionality and programming freedom, especially in terms of graphics and suitable data representation. Many of the needed control functions have to be made by the developer, which results in lengthy code, whose execution inflicts unwanted additional time delay in the control process. Although the created GUI might have “nice”, or rather acceptable appearance, its creation is more or less tedious. The development process might require making a lot of design compromises so that the panel functionality might be kept closely responding to the needs of the user. And even then the result as visualization, compared to what might be done with the latest LabView version, which is unquestionably better, looks unsophisticated enough. One can see what nice really means for a SCADA software, making the parallel between the two.

In general PVSS is a good tool for control and simple parameterization, but still not fully elaborated in terms of visualization and variable functionality. One thing should be admitted; the hierarchical organization of the project and the script management is much better and easier to use, than the equivalent features in other SCADA tools.

7. Conclusions

The presented GUI for configuration and monitoring of the OPG boards has shown to be a good approach for implementing the needed supervisory tools.

Although in the process of realization in the PVSS environment the initial idea went through several major transformations, due to many toolkit constraints – mainly on the visual part, the result is satisfying and meets the predefined goals.

Most of the graphics have been elaborated with custom made scripts. Although this is slowing down the development process, it makes the GUI executable under both Windows and Linux environment. This is essential requirement for all CERN control systems.

8. References

[1]

A. Daneels, W. Salter, “What is SCADA?”, ICALEPCS’99, Trieste, Italy.

[2]
JCOP Framework Project, http://itcobe.web.cern.ch/itcobe/Projects/Framework/welcome.html

[3]
L. Del Cano et al., Extending the capabilities of SCADA - device modelling for the LHC experiments, ICALEPCS2003, Gyeongju, Korea.
[4]
C. Gaspar et al, PVSS Introduction for Newcomers, CERN, http://itcobe.web.cern.ch/itcobe/Services/Pvss/Documents/PvssIntro.pdf

[5]

PVSS II – Getting Started Basics, ETM, http://www.etm.at/

[6]
G. Haefeli, Contribution to the development of the acquisition electronics for the LHCb experiment, CERN-THESIS-2004-036, http://doc.cern.ch/archive/electronic/cern/preprints/thesis/thesis-2004-036.pdf

[7]
LHCb Optical Pattern Generator (OPG) project homepage, http://cern.ch/lhcb-project-opg

[8]
L. Abadie, C. Gaspar, E. van Herwijnen, R. Jacobsson, B. Jost, N. Neufeld, The LHCb configuration database, CERN, Geneva, Switzerland, LHCb 2004-087, http://doc.cern.ch//archive/electronic/cern/others/LHB/public/lhcb-2004-087.pdf

[9]
C. Gaspar, M. Dönszelmann, Ph. Charpentier, DIM, a Portable, LightWeight Package for Information Publishing, Data Transfer and Inter-process Communication, CERN, Switzerland, http://dim.web.cern.ch/dim/papers/chep/dim.pdf

9. Acknowledgements

The authors would like to thank to their colleague Alexandre Moreau, for his work on the interface with the CCPCs.

Fig.2. Configuration visualization

Fig.1. Fragment definition panel

Fig.3. Header visualization

Fig.5. Sequencing panel

Fig.4. OPG configuration panel

PAGE
228

[image: image4.png]PackageConfiguration =loix|

Package Configuration Tool

FragmertDefon | Package Visuzaton | 0P Conrl [S5756563 | HelpFeecback |

Sequencing

Bunch Counter
(12 bit counter)

Initial value 0..4095]

Roll-over value 0..4095]

Values should be decimall

Send Values

Close

[image: image5.png]PackageConfiguration

=loix]

Package Configuration Tool

Fregment Defintion | Package Visusization [OPG Caril | Sequencing | HelpFesdback

OPG Control

[-CCPC Selection

DIM DNS Node
Status of the DIM DNS Node

Selected Credit Card PC (CCPC)

Type ofthe CCPC

PCPHEDOA. cor
Stop

I Automatc Restart

pelbecd3 <]

OPG board

ch

[-OPG Configura

Configure OPG

~OPG FPGA A and B
Status of the FPGAS

FPGAs are enabled!

Stop

-Monitoring-
FPGAA FPGAB
Bunch Counter [3533—— Bunch Counter (5555
(0.Rok-Over vauell 00 (0.Rok-Over vauell 2202
Event Counter [0 Event Counter [0

Close

