The CMS Java-based Web Information System

Zhechka Toteva1,2, Dirk Samyn2, Nick Sinanis2

1Sofia University/CERN

2CERN

Abstract

In this paper it is described an architectural model for a web-based information system that manages documents, personal information and it becomes a concentration point of the information related to a large collaboration.

To achieve this, the latest java standard technologies have been favored in order to build a 4-tier architecture: a presentation tier that interacts with the users, a business tier that implements the application logic, a data access tier that queries and processes the data tier.

The presentation tier is based on JSP (Java Server Pages) and tags that handle both the visualization at the client side and the communication with the business tier.

The business tier, implemented with java beans, covers the logic for the management of documents during their life cycle. A workflow engine, based on the standardized language BPEL4WS, is used to store and to describe the flow of the publication notes. RDF (or RSS) is the standard data format for the information exchanged between the business tier and data access tier.

The data access tier is done by Axis web services. For the database access web services, Hibernate provides the framework for object/relational persistence and query. Hibernate offers a flexible and capsulated interface to the data tier.

The technology choices have offered a very easy way to integrate the various tiers into a web portal that handles the publications, news, agendas and meetings for the CMS experiment. Minimal adaptation of existing tools, based on standard technologies has successfully demonstrated the ability to extend and scale the developed system to cover today’s but also future needs. The CMS web portal (iCMS) has entered the first production phase and the first experience with this, confirms its advantages.

Introduction

The CMS experiment at CERN requires management of a large extent of collaboration specific information. According to its content and application, the information is separated into several classes - Agendas, Documentation, Meetings, News, Notes, Dynamic Mailing Lists, People and Institutes, Sub-detector and Project Pages, Data samples, Software Distribution and Event Catalogues. The information processing in each class follows particular business rules and roles performed by the individual people in the collaboration.

The necessity for availability of the information for more than 2000 collaborative members has evoked the creation of the CMSDOC web system. For the last twelve years, CMSDOC has provided an integrated environment for all collaboration generated knowledge. Currently, CMSDOC handles file transfers of 90 GBytes/day and 18 kHits/hour.

Dating from the first days of WWW, CMSDOC manages mostly static content. The little dynamic content that is processed, often leads to unmanageable pages.

CMSDOC lacks facilities for dynamic modification of information content on web. As a result, classes of information whose business rules require user’s interactions can not be handled in the system.

iCMS

iCMS is a java-based web information system that is planned to replace the legacy CMSDOC. Built on the experience gained from running CMSDOC, it also handles the processing of different classes of CMS-specific information that implies complex business logic.

iCMS provides an integrated platform for processing different data sources using certain web services in a transparent way. From the user’s perspective, the information system offers federated content management and personalization of the web pages in correspondence to the personal interest, working fields and collaboration roles.

iCMS is based on industrial standards and technologies, as WSDL, BPEL4WS, EJB and Web services. This allows for a long lifetime of the service as well as easy integration of future additions. Together with the 4-tier architecture that iCMS has been built on, better performance is achieved due to the content separation.

Creating multi-tier architectures
The classic web architecture is a monolithic one, of which the same tier is used as data storage, implements the application logic and performs the data presentation. It is a simple solution, but it scales very poorly. Bottlenecks and synchronization difficulties are often experienced during the content access.

The client-server model is the very first step towards the creation of web multi-tier architectures. The model separates the persistent data storage from the facilities for presenting the data, forming two tiers - “data tier” and “presentation tier”. The data tier manages the storage structures and their content in a way to provide data consistency and fast retrieval of data. Relational database systems and file systems are the preferable implementations for the data tier. In the case of web architectures, a common realization of the presentation tier is an Apache web server that runs Java Server Pages (JSP) for the dynamic content and HTML for the static one. They handle the user’s requests, transform them into commands, e.g., SQL or file directives, which are sent to the data tier and present the retrieved data into a comprehensive way to the user.

4-tier iCMS architecture

The two-tier architecture is a good approach for a content management separation, but it does not provide sufficient extensibility and flexibility in the data processing as it is required for the CMS web system. Two more tiers are added to the classical client-server model: the “business tier” and the “data access tier”.

With this 4-tier architecture (fig 1) the presentation tier is only responsible for serving the user input and for presenting the information in a similar way for all the classes of information managed in the system. The user input is passed to the business tier through JSP web components, where the business rules are applied on the data. The business tier is implemented using a Tomcat web server, the Enterprise Java Bean (EJB) technology and a work flow engine.

Fig 1. The 4-tier iCMS architecture

If there is a need to handle persistent data, the business tier sends a request for these data to the data access tier. A tomcat server, running Axis java web services, provides the data access tier. SQL is the standard communication interface between Axis web services and relational databases. For the classes of information with complex data structures, the web services use an object-relational mapping tool, Hibernate, to achieve encapsulated data processing and data querying. Once retrieved from the data tier, the resulting data are formatted in a standard XML-based RDF or RSS and are returned back to the business tier.

Presentation tier

The presentation tier of the iCMS web information system is implemented using JSPs and reusable JSP web components. The description of the JSP technology for presenting dynamic web content is beyond the scope of the paper, which rather the advantages that different types of JSP web components are introducing for the creation of a coherent and modular web user interface.

The iCMS information system framework defines and uses several classes of jsp web components, the most important of which are:

· components for visualization of a web page object – form, form object, table, table row, etc,

· components for communication with the business tier – calls of specific tags defined in the business tier for querying or processing certain classes of information,

· components for implying conventional procedural logic – loops, conditional statements, assignments.

	
[image: image1.png]notesTypesList.jsp

<%@ page language="java" %>

<%@ taglib uri="http:/fiCMS.cem.ch/tomcat{iCMS-taglib" prefix="
<%@ taglib uri="http:/fiCMS.cem.ch/tomcat/iCMS-WS-taglib™ prefix
<%@ taglib uri="http:/fjakarta.apache.org/taglibs/taglibs-jstl" prefix="c" %>

rm bean="types">

o . . . Communicating with
tion="getNoteType" var="types"/> Business Tier

1Info title="Notes Types" show="true" hidable="false">
<ciforEach var="chitem" items="${types.items}">
nfoltem title="${chitem.id}" value="${chitem.typedescription}" />

<i

Procedural Logic
Info>

Form> | Visualization of Web Components

	[image: image2.png]oo o wen raons 1o] &

| aderess [] htp:jems.corn.chicm z] (£ Go

Notes Types

NOTE CMS Note
RN Rapid Note
CR Conference Report
IN Internal Note
TN Technical Note
AN Analysis Note

=
T

Fig. 2. A JSP source and visualization

The JSP components offer a high level of tags reuse. The addition of a new page can be accomplished by simply copying an existing page and making some changes. Usually the changes concern the business tag calls, the names and the type of the web page controls, the mapping between the web page controls values and the http parameters. The usage of visualization components of one and the same type guaranties the identical outlook of the new web page with the existing one. On the other hand, it’s enough to modify a tag at a single place in order to propagate everywhere.

From the designers’ perspective, a development based on JSP web components rather than on HTML tags will offer increased modularity. The standardized version of the JSP and EJB guarantees the portability of the pages.

Business tier

The business tier serves five main functions:

· processing the requests from the presentation tier,

· implementing the business logic of the information processing; the business tier embeds a workflow engine for documents submission/refereeing management,

· handling the web services client stubs calls to the data access tier,

· processing the RDF/RSS responses from the axis web services of the data access tier,

· java beans creation for the presentation tier.

· [image: image3.png]Presentation
tier

Business tier

Java
collsction

remote ws
sorvica cal

Data
access tier

Fig 3. iCMS business tier

A short review of the business tier functionality follows in an order that corresponds to the steps in the presentation tier request processing.

The presentation tier requests the business tier by JSP web components calls in the format:

“<iws:<class name> action=<action name> var=<return value> params=<param names list> paramvalues=<param values list>”,

where <class name> corresponds to a class of information managed in the iCMS, e.g., notes, mailing lists, news, etc.

For each <class name> a processing “JSP web component processing class” is defined in the presentation tier (fig 3.). Whenever a “JSP web component call” is received from the presentation tier, the appropriate java class parses the <action name> and the values for the <param names list> from the <param values list>. In correspondence with the implemented application logic for this class of information, one of two possible actions is taken:

· Send a request to the data access tier for data retrieval or data modification. Client stubs of web services realize the interface between the business tier and the data access tier. (fig. 3: “Web services connectivity class”),

· Send a request to the work flow engine for modification of a publication document or retrieval of certain publication documents (fig. 3: “WF engine client libraries”).

In the case of a request to the data access tier, the resulting data are returned in a standardized XML-based format, described in the data tier access section. The important issue for the business tier is that due to the standardization of the interface between the data tier and the business tier, the result data from different classes of information can be processed in a similar way.

BPEL4WS

The second possible action concerns the management of the CMS publications. The publications processing involves several different communication actors – submitters, subproject editors, a chief editor and referees. The business process execution language for web services (BPEL4WS) [1] is used to define the business rules for interactions between the actors and to establish communication protocol between them.

A BPEL4WS description of a process is implemented in a system that is able to manage instances of such a process. These systems are known as work flow engines for BPEL4WS. The work flow engine keeps track of the states of each processed instance and orchestrates communication messages exchanged between the actors. Whenever a message arrives from an actor the engine processes it according to the schema:

1. search the recipient instance of the message M – the recipient instance is implicitly coded in the message.

a submitter of a given publication uploads a new draft

2. if the instance is found, then check if it is blocked in a state “waiting for message M from actor P”.

Is the publication in a state when new drafts are still acceptable from the submitter?

3. if the instance is in the state in question, then apply the actions that are described in the process definition for the current state on the instance.

builds the appropriate message to the sub-project editor, that reflects the new draft submission

4. move the instance in the new state according to the process definition.

wait for the sub-editor’s decision

If any of the checks fails, the engine ignores the message. If the new state is the final one, the engine finalizes the instance.

Twister [2] is chosen as a work flow engine for the iCMS information system. This engine keeps the definition of the publication process and keeps of the history for the CMS publications management steps in a MySQL database. It also provides java client libraries that are easily integrated in the business tier.

The specification compliance of BPEL4WS and Twister guarantees the extendibility and the portability of the architectural choice for implementing the business rules of the CMS publication committee.

However, the resulting data are received, either from the data tier or from the Twister client libraries. A certain java bean is generated from these data and is returned to the presentation tier in the <return value> variable of the “JSP web component call”(fig. 3. “Java beans creation classes”).

Data access tier

The data access tier provides efficient means for handling persistent data stored in the data tier. The data access tier of iCMS system is implemented using a Tomcat web server and Axis java web services [3]. The Axis web services are based on the simple object application protocol (SOAP), which is a W3C standard for exchanging structured information in a decentralized, distributed environment.

For each class of information of CMS collaboration, a standalone web service is defined. The iCMS web services process, in an encapsulated way, the different data sources: relational databases and xml-based documents. The web services methods manipulate the relational databases using a java database connectivity library (JDBC) for MySQL. The returned result from the database is written in Resource Description Framework (RDF) or Really Simple Syndication (RSS) format.

RDF/RSS

Resource Description Framework (RDF) is a W3D standard [4] for description of documents using constraint definitions. There are several existing application program interfaces for parsing and processing RDF. iCMS information system uses the jenaRDF java API [5].

Really Simple Syndication (RSS) is a standardized format [6] for syndicating updates of frequently changing information. The iCMS information system uses the RSS format for the CMS news management.

The use of the RDF/RSS standardizes the communication interface with the business tier. Both formats have a XML-based syntax which allows processing by other tools. Using XSLT they can be transformed before presentation to the client browser.

Object-relational Mapping (ORM)

Sometimes manipulation of databases with complicated relational models provokes writing of long and incomprehensible SQL commands. Besides the SQL complexity, such databases require transactional interfacing that ensures the data consistency. To solve these potential problems iCMS information system uses the Hibernate tool [7] that provides a seamless framework for object/relational persistence and query.

Hibernate treats the data as objects. The foreign key concept, known form the relational model, is realized by a class property that contains a list of related objects of a given class. Depending on the implementation of the list in the terms of the java language, either a list, array, collection, or map, different features can be used in the objects processing. The referential integrity constraint can be enforced in the definition of the mapping between the classes and the tables. The possibility to pre-cache the children objects of a parent object speeds-up the processing of foreign key relationships. Besides the support of SQL and JDBC standards, Hibernate extends the SQL query features with object-based search criteria. UML can be used for advanced object-relational modeling.

Data tier

The data tier stores the content data. iCMS uses relational databases, file system storage and remote web services for this. The RDBMS used in iCMS is MySQL [8], which provides all the standard features of a RDBMS:

· persistent storage of data,

· data consistency by enforcing domain and referential integrity constraints and transactions,

· multi-session data processing,

· guaranteed fault recovery by database replication.

The file system storage is used in iCMS mainly to keep the publications in the experiment. Meta-data related to files are stored in a database.

CDS Agenda web services, provided by the CERN IT, are used for managing the iCMS agendas.

Conclusions
iCMS is the new generation information system of CMS. N-tier web architectures have been favored to base on the architecture of iCMS and a 4-tier one has been chosen. It is implemented using advanced industrial standard technologies in order to provide a scalable, portable and extendable solution for management of information for the CMS experiment. iCMS has been released in a production state and has served successfully the submission of the CMS documents demonstrating on the field the flexibility of its design.

In the future a content management system Magnolia[9] will be integrated for online processing of static pages and a prototype for the cosmic challenge in 2006 will be developed.

References

[1]
BPEL4WS - http://www-28.ibm.com/developerworks/library/specification/ws-bpel/
[2]
Twister - http://java-source.net/open-source/workflow-engines/twister
[3]
Axis - http://ws.apache.org/axis/
[4]
RDF - http://www.w3.org/RDF

[5]
jenaRDF API - http://jena.sourceforge.net/tutorial/RDF_API/
[6]
RSS 2.0 - http://www.microsoft.com/technet/
[7]
Hibernate - http://www.hibernate.org/
[8]
Magnolia - http://www.magnolia.info/en/magnolia.html
[9]
MySQL - http://www.mysql.com/
PAGE
274

_1194596466

