Using the NSF TeraGrid for Parametric Sweep CMS Applications

Edward Walker1, Vladimir Litvin2, Jeffrey P. Gardner3
1 The University of Texas at Austin, ewalker@tacc.utexas.edu

2 California Institute of Technology, litvin@hep.caltech.edu

3 Pittsburgh Supercomputing Center, gardnerj@psc.edu
Abstract

This paper describes our research in designing, developing and deploying a virtual computing environment to support the submission of up to a million compute intensive serial jobs to the network connected compute clusters on the NSF TeraGrid, one of the world’s largest distributed cyberinfrastructure for open scientific research. The system implements a scalable, persistent and robust distributed agent infrastructure that automatically submits and manages job proxies across a widely distributed system. These job proxies contribute resources to virtual clusters created for users on a per-experiment basis, or to physical departmental clusters to augment local scientific computation needs. The specific version of the system described in this paper allows users to build very large virtual Condor pools using the widely distributed resources on the TeraGrid. Up to 100,000 jobs have been submitted through the system to date, enabling approximately 900 teraflops of real scientific computation.

1. Introduction

The NSF TeraGrid (Fig. 1) is a multi-year, multi-million dollar National Science Foundation (NSF) project to build and deploy one of the world’s largest distributed cyberinfrastructure for open scientific research 0. The infrastructure currently links nine resource provider sites via a high speed 10-30 gigabits/second dedicated national network, providing in aggregate, 40 teraflops of computing power, 2 petabytes of storage capacity, and very high-end facilities for remote visualization and data analysis of computation results. In particular, the compute resources on the TeraGrid are composed of a heterogeneous mix of clusters with different instruction set architectures and run-time operating systems, where different job management systems may be installed with different local configuration, specifying different queue names and different submission limits, and subtly different user job submission semantics.

[image: image1.jpg]e -

NSF TeraGrid

Extensible Terascale Facility

Argonne
-

» % Purdue

NCSA &
i

ORNL
L J

Taco - ,‘3

® PSC

Fig. 1. A geographical view of the NSF TeraGrid

Some run-time uniformity exist across sites in the availability of a guaranteed software stack at each site, called the Common TeraGrid Software Stack (CTSS), and a common set of environment variables for locating well known file-system directories. However, the TeraGrid is essentially a large distributed system of resources with different capabilities and configuration.

Providing a completely homogenous run-time environment is not only technically challenging, but is also not necessarily a desirable goal in itself. Many sites do not have resources dedicated solely to the NSF TeraGrid project, and it is thus not possible to completely dictate what software should be installed and how it must be configured at each site. The preservation of resource ownership is central to the idea of Grid deployment and should be preserved to allow sites to leverage local and global partnerships. Also, the economics of nurturing and established computer vendor relationships, and the inherent support issues related to large cluster purchases, dictates to a large degree the job management software, and the scientific computing libraries and tools that are installed on it.

Many scientific applications on the TeraGrid require some form of ensemble job submission capability. A recent user survey 0 indicated that over half the respondents had the requirement to submit, manage, and monitor many thousands of jobs particularly for parameter space analysis. Specifically two application groups provided the initial motivation for this project: the Compact Muon Solenoid (CMS) and National Virtual Observatory (NVO) projects.

Scientists with the Caltech high-energy physics group will be seeking the Higgs boson using the Compact Muon Solenoid (CMS) detector in the Large Hadron Collidor (LHC) experiment at CERN 0

 REF _Ref95295723 \r \h
 * MERGEFORMAT 0. The researchers are expected to submit more than a million serial jobs with an average compute time of one to twenty-four hours per job.

The National Virtual Observatory (NVO) astronomy project 0 also has a number of applications (such as measuring star formation in galaxies or fitting model parameters to quasar spectra) with job submission requirements of between 50,000 and 500,000 jobs with compute times of between 10 minutes to one hour per job.

Section 2 will define our central challenge and the evaluation of approaches for submitting a large number of jobs to a distributed compute infrastructure like the TeraGrid. Section 3 describes our proposed solution, and the concept of a virtual login session. Finally section 4 concludes our paper.

2. Our Central Challenge

The central challenge of our work examines the question of how to efficiently submit, monitor and control up to a million serial jobs running across a distributed heterogeneous mix of compute clusters. Figure 2 examines some of the approaches we investigated before arriving at our proposed solution.

[image: image2.emf]Submit user jobs

through login

node

Throttle user jobs

with global queue

Throttle user jobs

as parallel jobs

Create virtual

clusters with

parallel job

proxies and

submit user jobs

this virtual

cluster

Not Scalable

Not optimal

Lost of job control

capabilities

Fig. 2. Evaluation of approaches to submitting jobs across a distributed infrastructure

A common approach to submitting jobs across a Grid is to do so through a gateway node using a tool such as Globus 0. However this approach is intrinsically not scalable as the gateway node because the bottleneck and single point of failure in the system. Furthermore, other Grid deployments have also shown this approach to be a problem in practice 0.

We then investigated the approach of using a central “metascheduler”, where jobs were submitted to a global queue, with the metascheduler throttling jobs to the gateway node at the distributed sites, resubmitting jobs when they failed. Tools which exist to do this include Condor-G 0, Nimrod/G 0, and APST 0. However, this approach has a number of problems. Firstly, it is often the case that a metascheduler at a client workstation controlling jobs, across a wide-area-network (WAN), at a gateway node introduces a frequent point of failure. This is because the gateway node, which is also often the login node, and the WAN, are prone to relatively frequent transient outages 0. Hence any system submitting jobs to a gateway node must be tolerant of these transient outages. Secondly this approach results in non-optimal use of cluster resources on the TeraGrid. TeraGrid clusters often have a limit on the number of jobs a user can submit into a sites local queue. Furthermore, some sites have local schedulers that prefer larger parallel job submissions over serial job submissions. Therefore submitting N serial jobs to a TeraGrid site is not optimal compared to submitting N “parallel” jobs.

We finally investigated repackaging the serial jobs into parallel job submission, throttled through the global metascheduler. This turned out to be undesirable as the user now loses the ability to monitor and control individual jobs in their experiments. This is important especially in case of job failures. Users often need to be notified of a single job failure, requiring the ability to diagnose the problem by examining the error output of that single job failure, and the ability to resubmit individual jobs, manually or automatically, on problem resolution.

3. Our Proposed Solution

The solution we propose automatically submits and manages parallel job proxies across cluster sites, creating virtual clusters from resources contributed by these proxies, and providing a single job submission, monitor and control interface for users on the TeraGrid. These virtual clusters can be created on a per-user, per-experiment, basis, or it can be used to contribute to an existing departmental cluster.
Fig. 3
 conceptually shows what our proposed solution does.

[image: image3.emf]Job Queue

“Pull” and

configure compute

resources

Virtual Cluster

(Condor, SGE, etc.)

Agent Infrastructure

Job Proxy

Configuration

Virtual

Node

Virtual

Node

Virtual

Node

TeraGrid Compute Clusters

Fig. 3. Distributed agents “pull” resources into a virtual cluster

In the system that is currently deployed on the TeraGrid, called GridShell/Condor 0, we build Condor pools 0

 REF _Ref111655663 \r \h
 * MERGEFORMAT 0 using a virtual login session metaphor, and allow uses to submit, monitor and manage jobs to TeraGrid directly through these Condor pools. The job proxies, which are transparently submitted and managed by the system, are Condor starter daemons which call back to either a pre-existing departmental Condor pool or to a dynamically created pool at the user’s workstation. The GridShell framework 0

 REF _Ref111655690 \r \h
 * MERGEFORMAT 0 is leveraged to provide a transparent environment to execute agents developed for this system.

Our system delegates the responsibility of submitting these job proxies to a single semi-autonomous agent spawned at each TeraGrid cluster in a virtual login session. This agent translates the job proxy submission to the local batch submission syntax, and maintains some number of job proxies throughout the lifetime of a virtual login session.

Our approach has the following advantages. Scalability: the actual user job goes directly to the compute nodes in the virtual cluster and not through the gateway node. Only a single agent is started at a gateway node to submit job proxies to the local cluster. Fault-tolerance: each semi-autonomous agent at a gateway node maintains the job proxy submission locally, allowing transient network outages to be tolerated, and reboots to be handled in isolation from the rest of the system. The virtual cluster only control user jobs at the cluster compute nodes, which are more stable. Technology-inheritances: the entire Condor submission, monitor, and control infrastructure is leveraged as a common job management environment for the user. Future versions of the system will allow user selectable cluster workload management systems to be created as the user interface to the TeraGrid.

3.1 The Virtual Login Session

A sample virtual login session is shown in Fig. 4, where a number of items are highlighted.

First, a single login command, vo-login, is issued by the user with the –H flag specifying a configuration file containing a list of participating clusters. Second, the command prompts the user for a Grid Security Infrastructure (GSI) password. This is required to spawn an agent at the gateway nodes of the remote cluster sites. Third, a command prompt is returned to the user, who is then able to issue Condor commands. Fourth, the system automatically cleans up the environment and shuts down all remote agents when the user exits the shell. Fifth, the user can detach from the login shell and reattach to it at some future time.

[image: image4.emf][ewalker@blanco ~/gridshell]$./vo-login -H ~/vo.conf

Enter GRID pass phrase:

Spawning on tg-login.ncsa.teragrid.org

Spawning on tg-login.sdsc.teragrid.org

Setting up VO participantsDone

Welcome to your GridShell/Condor environment

To shutdown environment, type "exit“

To detach from environment, type “detach”.

blanco(grid)% condor_status

Name OpSys Arch State Activity LoadAv Mem

ActvtyTime

…

Machines Owner Claimed Unclaimed Matched Preempting

IA64/LINUX 16 0 0 16 0 0

 Total 16 0 0 16 0 0

blanco(grid)% condor_submit sub.cmd

Submitting job(s)..

1000 job(s) submitted to cluster 1.

blanco(grid)%

Fig. 4. A sample virtual login session from a client workstation incorporating compute nodes at NCSA and SDSC (formatted for space)

Fig. 5
 shows the agent process architecture of the system. When a user types vo-login on a client workstation, a master agent is started on the local machine. The master agent remotely executes an event agent, using the GridShell framework, on the remote cluster. It also creates a new local shell session, starting the Condor central manager daemons, in user space, to create the new virtual Condor pool.

The event agent sends periodic heart-beats, in the order of every two hours, to the master agent. The master and remote agent can then be configured to react to a configurable number of missed heart-beats. Valid actions include reallocating job proxies to other event agents by the master, or the remote agent shutting down and deleting all job proxy submissions.

For job proxy submission, the remote event agent sets up the local job proxy configuration (in this case Condor), wraps the job proxy in a GridShell script, and submits this script to the local workload management system. The agent then listens for a TCP callback connection from a starter task created by GridShell for each job proxy when the script is run on the compute node. Each of these starter task forks and executes a job proxy which in this case is the condor_startd daemon. The condor_startd daemon reads its configuration and connects to the configured Condor central manager, allowing the job proxy to appear as an available compute resource in an expanding virtual Condor pool. Future versions of this system will substitute the Condor starter daemon executable with other cluster job starter daemons from Portable Batch System (PBS) 0 and Sun Grid Engine (SGE) 0.

[image: image5.emf]CLIENT HOST FRONT-END NODE

#! /bin/gtcsh

setup condor configuration

setenv _GRID_WATCH_HOST X

setenv _GRID_WATCH_PORT Y

setenv _GRID_THROTTLE K

condor_startd on N procs in -1 instances

MASTER

AGENT

SUBMISSION

AGENT

STARTER

CONDOR_STARTD

STARTER

CONDOR_STARTD

USER SITE

CHECKER

CONDOR

CENTRAL

MANAGER

EVENT

AGENT

User

GRAM

COMM

AGENT

COMPUTE NODES

GRIDSHELL

SESSION

SCREEN

Fig. 5. Agent Process Architecture

3.2. Event Agent Failure and Recovery Modes

The event agents keep track of the job proxy submissions. When the gateway node reboots, the event agent is expected to recover the state of the submitted job proxy as accurately as possible.

Fig. 6
 shows the complete job proxy states during recovery and normal fault-free runs. Due to space constraints, we discuss the state transitions only for the case of recovery.

When an event agent is restarted on recovery, it first checks a jobinfo_table file containing the last known state of job proxies submitted to the local batch system. If a job is logged in the RUN state, the event agent will attempt to connect to the host and port of its starter, which is also logged in the jobinfo_table. If it connects successfully, the job is transitioned to the RUN state; otherwise the job state is transitioned to EXIT.

If a job proxy is logged in the PEND state before recovery, the event agent will have to consider 4 cases:

1. PEND(RUN (EXIT

2. PEND (EXIT

3. PEND (no change)

4. PEND (RUN

[image: image6.emf]LOGGED AS RUN CONNECT TO STARTER

RUN

EXIT

NOT IN TAG DIRECTORY

IN BATCH SYSTEM

PEND RELEASE

RECOVERY

LOGGED AS PEND

IN TAG DIRECTORY

NOT IN BATCH SYSTEM

Fig. 6. Job proxy recovery state diagram

Job proxies submitted by the event agent have a unique job-tag logged in a cache directory. This job-tag is removed from the cache directory by the starter process when the job completes. Cases 1-3 use the absence (“NOT_IN_TAG_DIRECTORY” state) or the presence (“IN_TAG_DIRECTORY” state) of it’s job tag to transition the job proxy to either the EXIT state, or to keep it in it’s PEND state.

For case 4, a PEND state will transition to a RUN state when the starter process for the job proxy reconnects to the event agent.

3.4. Master Agent Failure and Recovery Mode

The master agent holds minimal state; information about remote event agents is not persisted because we assume the remote agents will eventually reconnect back when the client recovers. Thus, the master agent currently only persist its listening port for recovery.

Also, the virtual login session on the master node is started with the GNU screen program 0, allowing users to detach from the login session, survive WAN outages, and reattach from another workstation at some future time.

3.5. Migrating Job Proxies across Sites

The current system requires the user to specify how many job proxies should be submitted at each site, and how large each job proxy is required to be. However, the system also provides a mechanism to dynamically adjust this initial allocation by migrating pending job proxies to sites with shorter queue wait times.

Fig. 7
 shows the number of total job proxies, of size 32 CPUs each, assigned to four large clusters on the TeraGrid: TACC, NCSA, SDSC and CACR. The graph shows the event agent at NCSA pulling job proxies over the course of the computation, reaching a peak of 14 job proxies. The event agent at SDSC and TACC also acquired additional jobs but gave them up as they decided the migrated jobs could not be run. The event agent at CACR is seen to give up most of its jobs proxies.

The utilization profile of the virtual Condor pool created in this experiment is shown in

Fig. 8
. The average Condor pool size was 981 processors during the experiment run.

[image: image7.emf]0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21

Time Steps (10 mins)

Number of Jobs

NCSA

CACR

SDSC

TACC

Fig. 7. Total job proxies assigned across clusters over time

[image: image8.png]rom Sun Jan 30 16:26117 CST 2005 to Sun Jan 30 18:02:13 CST 2005

1020

765.0 1
5100 Total
Idle
255.0 1
Total
owner

-—
0

Configure Zoomin Zoom Out

sren Omner sverage Condor Average Omner Peak Condor Peak
=) 212 0 %
Tout o &
LAGLINUX s

INTELLINUX

Fig. 8. The utilization graph of a large virtual Condor pool generated using TeraGrid resources

4. Using TeraGrid for CMS applications

To be able to use this system we should make a preparations.

First of all we are installing all CMS software on clusters and pileup at lonestar (we don’t have enough disk space to set up pileup everywhere).

We are defining the name of the clusters because now we have only one cluster where digitization with pileup and final analysis must be done – lonestar.

Copy both the condor_config.master.template and condor_config.glidein.template to our own private directory. Then in our login script (.cshrc or .bashrc), set the environment variable _GRID_TEMPLATE_DIR to point to this directory.

Add the unique definition of the cluster in condor_config.glidein.template.

Define specific variables in .cshrc which will be different from cluster to cluster:

· $WORKDIR - where temporary subdir will be created and everything will be run

· $WWORKDIR - where temporary subdir will be created and everything will be run, as it is originally defined in OS. Usually it is the same with $WORKDIR, but sometimes it is differ. It is needed for FCrenamePFN to get rid of the absolute paths before tarring files and moving them out.

· $OSCAR_SRC - main OSCAR source directory where "eval `scram runtime -csh ` must be done to set everything up.

· $ORCA_SRC - main ORCA source directory where "eval `scram runtime -csh ` must be done to set everything up.

· $TOPRELEASE - where all releases of CMS software were installed.

· $VCAL - place where VCAL shower library was placed

· $DETGEOMFILE - place where cms133.rz is placed

· $PILEUP - where are the pileup data and PoolFileCatalog_pileup.xml resided

Write a simple GridShell configuration script:

vo.conf:

A GridShell config script

tg-login.uc.teragrid.org

tg-login.purdue.teragrid.org
Start GridShell session. This submits PBS jobs at each site and starts local Condor daemons.

% vo-login –n 4:16 –H ~/vo.conf –G –W 600

Spawning on tg-login.uc.teragrid.org

Spawning on tg-login.purdue.teragrid.org

waiting for VO participants to callback...

One main preparation script which massaging the scripts and putting all run numbers etc in place (walltime is in secs):
./createCondorSubmit.csh <walltime_oscar_init> <walltime_oscar_job> <walltime_orca_init> <walltime_orca_job> <walltime_tt>

This script has all info hardcoded inside – number of events per run, dataset and owner names, condor submission parameters, etc. So, if you need to check this out and change the parameters – this is the place to look at.

It invokes ./createCondorJob.csh which is making preparations for single job with specified run number.

The main part of createCondorJob.csh:

./makeDAG.pl $titles $counter >>! $TOPDIR/work/${titles}.dag

 ./makeOscarInitCDR.pl $titles $counter $OSCAR_OWNER $OSCAR_DATASET $wall_time_oscar_init >! $TOPDIR/work/${titles}_oscar_init_$counter.cdr

 ./makeOscarJobCDR.pl $titles $counter $OSCAR_OWNER $OSCAR_DATASET $wall_time_oscar_job $PYTHIA_DATASET_NAME >! $TOPDIR/work/${titles}_oscar_job_$counter.cdr

 ./makeOrcaInitCDR.pl $titles $counter $OSCAR_OWNER $OSCAR_DATASET $ORCA_OWNER $ORCA_DATASET $wall_time_orca_init >! $TOPDIR/work/${titles}_orca_init_$counter.cdr

 ./makeOrcaJobCDR.pl $titles $counter $OSCAR_OWNER $OSCAR_DATASET $ORCA_OWNER $ORCA_DATASET $wall_time_orca_job >! $TOPDIR/work/${titles}_orca_job_$counter.cdr

 ./makeTTCDR.pl $titles $counter $ORCA_OWNER $ORCA_DATASET $wall_time_tt >! $TOPDIR/work/${titles}_tt_$counter.cdr

DAG template looks like:

 JOB OSCAR_INIT /home/tg456083/Prod2005/aajj/work/aajj_oscar_init.cdr

 JOB OSCAR_JOB /home/tg456083/Prod2005/aajj/work/aajj_oscar_job.cdr

 JOB ORCA_INIT /home/tg456083/Prod2005/aajj/work/aajj_orca_init.cdr

 JOB ORCA_JOB /home/tg456083/Prod2005/aajj/work/aajj_orca_job.cdr

 JOB TT /home/tg456083/Prod2005/aajj/work/aajj_tt.cdr

 PARENT OSCAR_INIT CHILD OSCAR_JOB

 PARENT OSCAR_JOB CHILD ORCA_INIT

 PARENT ORCA_INIT CHILD ORCA_JOB

 PARENT ORCA_JOB CHILD TT

 RETRY OSCAR_INIT 0

 RETRY OSCAR_JOB 0

 RETRY ORCA_INIT 0

 RETRY ORCA_JOB 0

CDR template

 # Common job definitions"

 Executable = /home/tg456083/Prod2005/aajj/startup/orca_job_wrapper

 Getenv = True

 Notification = Never

 universe = vanilla

 Error = /home/tg456083/Prod2005/aajj/work/err_orca_job.err

 Output = /home/tg456083/Prod2005/aajj/work/out_orca_job.out

 Log = /home/tg456083/Prod2005/aajj/logs/log_orca_job.log

 should_transfer_files = TRUE

 when_to_transfer_output = ON_EXIT

 arguments = $titles $counter $orca_owner $orca_dataset

 requirements = TARGET.TimeToLive > _WALLTIME_ORCA_JOB_

 Requirements = TARGET.Project == “TACC_RESOURCES"

 Queue

 Submit the whole DAG to condor

Filename: /home/tg456083/Prod2005/aajj/work/aajj.dag.condor.sub

Generated by condor_submit_dag /home/tg456083/Prod2005/aajj/work/aajj.dag

universe = scheduler

executable = /home/tg456083/condor2//bin/condor_dagman

getenv = True

output = /home/tg456083/Prod2005/aajj/work/aajj.dag.lib.out

error = /home/tg456083/Prod2005/aajj/work/aajj.dag.lib.out

log = /home/tg456083/Prod2005/aajj/work/aajj.dag.dagman.log

remove_kill_sig = SIGUSR1

arguments = -f -l . -Debug 3 -Lockfile /home/tg456083/Prod2005/aajj/work/aajj.dag.lock Condorlog /home/tg456083/Prod2005/aajj/logs/personal_aajj.log –Dag /home/tg456083/Prod2005/aajj/work/aajj.dag -Rescue /home/tg456083/Prod2005/aajj

/work/aajj.dag.rescue -MaxJobs 200 -MaxPre 200 -MaxPost 200 -NoPostFail

environment

=_CONDOR_DAGMAN_LOG=/home/tg456083/Prod2005/aajj/work/aajj.dag.dagman.out;_CONDOR_MAX_DAGMAN_LOG=0

queue

5. Conclusion

We have used GridShell to turn the TeraGrid into our own personal Condor pool. We can submit Condor jobs, and Condor will schedule these jobs across multiple TeraGrid site. TeraGrid sites do not need to share architecture or queuing systems.

GridShell also allows us to use TeraGrid protocols to transfer our input and output data.

All of this fits into existing Teragrid software.

We can run CMS production chain through this system.
Up to 100,000 jobs have been submitted through the system to date, mainly through the Caltech CMS group and the NVO project, enabling approximately 900 teraflops of scientific computation.

6. References

[1]
The NSF TeraGrid, http://www.teragrid.org

[2]

TeraGrid Scheduling Requirement Analysis Team Report, http://www.tacc.utexas.edu/~ewalker/sched-rat.pdf, April 2005.

[3]
The Compact Muon Solenoid, http://cmsinfo.cern.ch

[4]
The NSF National Virtual Observatory TeraGrid Utilization Proposal to NRAC, http://us-vo.org/pubs/files/teragrid-nvo-final.pdf

[5]
The Globus Alliance, http://www.globus.org
[6]

I. Foster et al., The Grid2003 Production Grid: Principles and Practice, Proc. of the 13th IEEE Intl. Sym. On High Performance Distributed Computing, Honolulu, Hawaii, June 2004, pp. 236-245.

[7]
J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G: A Computation Management Agent for Multi-Institutional Grids", in Proc. of the Tenth IEEE Symposium on High Performance Distributed Computing, San Francisco, California, August 7-9, 2001.

[8]
R. Buyya, D. Abramson and J. Giddy, “Nimrod/G: An architecture of a resource management and scheduling system in a global Computational Grid”, Proc. of HPC Asia, May 2000, pp. 283—289.

[9]
H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS Parameter Sweep Template: User-Level Middleware for the Grid”, in Proc. of SC00, Nov 2000, pp.75-76.

[10]
The TeraGrid GridShell/Condor System, http://www.teragrid.org/userinfo/guide_jobs_gridshell.html
[11]
The Condor High Throughput Computing Environment, http://www.cs.wisc.edu/Condor/

[12]
M. Litzkow, M. Livny, and M. Matka, “Condor – A Hunter of Idle Workstations”, Proc. of the Intl. Conf. of Distributed Computing Systems, June 1988, pp. 104-111.

[13]
The GridShell Project, http://www.gridshell.net

[14]
E. Walker and T. Minyard, “Orchestrating and Coordinating Scientific/Engineering Workflows using GridShell”, Proc. of the 13th IEEE Sym. On High Performance Distributed Computing, Honolulu, Hawaii, June 2004, pp. 270-271.

[15]
Portable Batch System, http://www.openpbs.org

[16]
Sun Grid Engine, http://gridengine.sunsource.net/

[17]
GNU Screen, http://www.gnu.org/software/screen/

PAGE
287

_1185367754.vsd
The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.

Submit user jobs through login node

Throttle user jobs with global queue

Throttle user jobs as parallel jobs

Create virtual clusters with parallel job proxies and submit user jobs this virtual cluster

Not Scalable

Not optimal

Lost of job control capabilities

_1185401595.vsd
Job Queue

“Pull” and configure compute resources

_1169829919.vsd
Cluster

Person 1

FRONT-END NODE

#! /bin/gtcsh
setup condor configuration
setenv _GRID_WATCH_HOST X
setenv _GRID_WATCH_PORT Y
setenv _GRID_THROTTLE K
condor_startd on N procs in -1 instances

MASTER AGENT

SUBMISSION AGENT

STARTER

CONDOR_STARTD

STARTER

CONDOR_STARTD

USER SITE CHECKER

CONDOR CENTRAL MANAGER

SCREEN

EVENT AGENT

User

GRAM

COMM AGENT

COMPUTE NODES

CLIENT HOST

GRIDSHELL
SESSION

_1169925662.vsd
[ewalker@blanco ~/gridshell]$./vo-login -H ~/vo.conf
Enter GRID pass phrase:
Spawning on tg-login.ncsa.teragrid.org
Spawning on tg-login.sdsc.teragrid.org
Setting up VO participantsDone
Welcome to your GridShell/Condor environment
To shutdown environment, type "exit“
To detach from environment, type “detach”.
blanco(grid)% condor_status

Name OpSys Arch State Activity LoadAv Mem ActvtyTime
…

Machines Owner Claimed Unclaimed Matched Preempting

IA64/LINUX 16 0 0 16 0 0

 Total 16 0 0 16 0 0
blanco(grid)% condor_submit sub.cmd
Submitting job(s)..
1000 job(s) submitted to cluster 1.
blanco(grid)%

_1168799158.vsd
LOGGED AS RUN

CONNECT TO STARTER

RUN

EXIT

NOT IN TAG DIRECTORY

IN BATCH SYSTEM

PEND

RELEASE

RECOVERY

LOGGED AS PEND

IN TAG DIRECTORY

NOT IN BATCH SYSTEM

