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Introduction

The filtration of the raw measured data is very often a necessary condition for a good performance of sophisticated methods for the analysis of this data. Very often the elements which need to be identified and enhanced or, on the contrary, suppressed can not be described in common formal terms such as frequencies (usual or those of wavelets), or metric characteristics, etc.
Typical problems of this type are recognition of an object in an irregular environment, or regularisation of these object or environment, etc., where both object and environment are defined as approximate sample patterns.
The following examples illustrate the said above.
· Let s(x) be a neutron - diffraction spectrum, analyzed by the Rietveld method. This spectrum is a sum of peak - like and a continuous (background) components. The background can have a very irregular form, which can not be approximated by polynomials in the total region of the spectrum definition. In order to be able to apply the Rietveld method we need somehow to transform the spectrum so that keeping intact the peak - like components we get a regularized (polynomial - like) background one.
· In different checking procedures (e.g. registrating irradiation from cargoes in vehicles passing through a detecting system) we get a data s(x) where a signal of interest can be hidden among large and sophisticated background details so that the problem of its detection is rather a problem of an exact background identification. Here we also transform the data s(x) so that the result will be the background and extracting it from the initial data we get an estimate of the signal, if the presence of the latter is statistically significant.
Problem formalization. Now we can start with the formalization of our problem. So suppose that a pattern f0(x) of an object of interest is given and data f(x), containing as its part a result of a transformation of f0(x), is analyzed. Here x( X. In the general case the pattern f0(x) belongs to F0 - a set of items each of which can be taken as a solution of our problem. So our next goal is to describe formally the set F0 and elaborate a procedure as to how to select an item f0(x), f0(F0, which is the closest to our data f(x) in the sense of an appropriately chosen metric. Let us consider the simplest representation of the data f(x):
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as linear combination of an interesting component f0(x) and that of background b(x). If we build such a metric ( that ((f1,f2) automatically ignores a possible presence of b(x) in functions f1(x) and f2(x) then to solve our problem we need find an element f0(F0 such that ((f(x),f0(x)) is minimal on the set F0. In this paper the following method is suggested. We choose the weighted quadratic metric and build a solution of our variational problem by minimizing the expression
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where fz(x) belongs to F0 - a set of admissible transformations of f0(x), and the weight function ( (x) is selected in an iterative adaptive way so that fz{x) is indeed a projection of f(x) onto F0.

Method for the problem solution is a further development of [1]. The choice of the 
weights ( (x) is subject to the following obvious considerations.
Let us write (2) so
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The variation (S of the functional S with respect to fz(x) is equal to
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Then we write the equation of the S minimum as
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From this we can get an implicit estimate of fz(x):
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To get an explicit estimate fz(x) let us assume that the weight function ( (x) is as follows
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Then on the set Xi, of re, where fb(x)=0, we can get the exact solution of the problem, at least, on the set Xb. On the set X —Xi the estimate fz(x) can be completed on the basis of additional requirements to it such as certain extent of the smothness, or frequency range, or closeness to a certain class of functions.
Real problems are, as a rule, much more complicated, and the weight function can't be built so simply; still, the idea preserves, and a good solution can be obtained, at least, for certain classes of functions. For example, using this approach, one can extract:
· localized components from their mixture with ones expanded over all the definition
range;
· periodic components from their mixture with aperiodic ones.
The best way to solve the problem is building an iterational process where the weight function changes so in iterations that it provides for the holding of (6), at least, approxi​mately, at the same time minimizing (5). Let us see how this method works for the solving the 2 problems mentioned at the beginning. 

Non-parametrical filtration. Let s(x) - a sum of n peak-like functions pi(x) and b(x) - a non-localized slowly varying one - be given, x = 1,2,3, ...,m. Then the both problems read: build an approximate estimate of function b(x) by non-parametrical methods and extract it from s(x). We exclude parametrical methods just because we want to apply them to the residue of s(x). Neither the linear optimum frequential filters seem to be appropriate, since strong frequential overlaps of components are admitted.
The above-mentioned method is realized as follows. We define formally our solution be(x) as an envelope from below, because it touches only minima of the peak-like functions in the sum s(x). Qualitatively, be(x) roughly contours s(x) at the points of its minima and slowly changes between these minima. Mathematically, we should build a metric, which provides for the closeness of be(x) to b(x), and a criterion, which provides for a slow vary​ing of be(x), and minimizing both the metric and the criterion we get our solution. The weighted quadratic deviation sum can be taken as the metric, and the sum of squared differences of be(x) as the criterion. So formally we can write our problem so: minimize
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(7)
under the boundary conditions be(1) = s(1),     be{m) = s(m).
Here b'e(x) is the first difference, being a discrete analog of the first derivative. The parameter ( regulates degrees of the influence of the 1st or 2nd members in (7): more smooth or more close to s(x); q is the normalization coefficient, q = 1/ (((x). The weights ((x), satisfying the above-numbered requirements, in the general case may fail to exist. Therefore, we build an iterational process, the steps of which include:
1. building the weights providing the closeness of the solution mainly to the low-valued
ordinates of s(x) - for getting an initial estimate of be(x);
2. building the weights providing the maximum distance of the solution from the high-
valued ordinates of s(x) - for getting the final estimate of be(x).
Method for solution. Euler's equation for finding minimum of (7) is
be(i+1)-2be(i)+ be(i-1)-((n(i)be(i)=-((n(i)s(i),

i = 1, ...,m - 1,
at be(0) = s(0),  be(m) = s(m) and (n(i) = ((i)q. 

This equation can be solved by the "chasing"method

be(i)=c(i)be(i +1) + h(i),   c(0)=0,  h(0) = s(0), i = 0,1,...,m-1.

If we put be(i) into the equation, we get
bе(i + 1)– 2bе(i) + c(i -1)be(i) + h(i - 1) - ((n(i)be(i)=-((n(i)s(i). 

From this we get the formula for coefficients с and h:
c(i) = 1/(2+ ((n(i)-c(i-1)),

h(i)=c(i)(((n(i)s(i)+h(i-1)),

using which, we find solutions at each iteration in succession.
Now we have to define the sequential values of ((i) in order to make the solution to touch only the minima of s(i) and be a smooth function between these minima.
Now about the choice of ((i). The first step is obtaining the initial estimate of be(i); let it be b0(i). The weights here should be inversely proportional either to some degree of s(i) or s"(i).
At the next steps the weights should be inversely proportional to some degree of the ((s(i) — bni(( where bn is the current estimate of be(i), and n is the number of the iteration. The convergence of the iteration process is rather stable if the region where the spectrum is low-valued is not strongly overlapped by the region of high-valued spectrum ordinates, and the number of iterations is not large.
References
[1]
V.B. Zlokazov, Comp.Phys.Comm, 1981, v.21, p.373-383.
PAGE  
305

_1198251901.unknown

_1198252101.unknown

_1198252142.unknown

_1198252211.unknown

_1198251948.unknown

_1198246008.unknown

_1198251824.unknown

_1198245371.unknown

