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Problem

Spectral and optical characteristics of models of bulk semiconductor and
low dimensional semiconductor nanostructures: quantum wells(QWs),
quantum wires(QWrs) and quantum dots(QDs)

from B.E.A. Saleh M.C. Teich,
Fundamentals of photonics (Wiley,
2007)
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Figure 1. AFM views of LPE grown InAsSbP unencapsulated QDs on InAs(1 0 0) substrate: (a) oblique S = 2 × 2 µm2, (b) oblique
S = 1 × 1 µm2, (c) oblique S = 500 × 500 nm2 and (d) plane.

heights from 0.7 to 25 nm and widths ranging from 20 to 80 nm.
Because the difference in lattice parameter is large enough the
growth process is consistent with the Stranski–Krastanov [7]
mechanism. However, we are unable to confirm the presence
of a wetting layer without a transmission electron microscopy
(TEM) study. The Gaussian distribution of the QDs amount
versus their average diameter calculated from the substrate
surface S = 4 µm2 is displayed in figure 2 showing the
optimum size of QDs to be at ∼50 nm.

Next, we use Fourier–transform infrared spectrometry
(FTIR–Nicolet/NEXUS) to investigate at room temperature
the transmission spectra of an unencapsulated InAsSbP QDs.
As a test sample, we use the same undoped InAs substrate
without QDs and islands. The results show the displacement
of absorption edge towards the long wavelength region from
λ = 3.44 µm (for InAs test sample) to λ = 3.85 µm (for InAs
with QDs).

We now perform SEM and energy dispersive x-rays anal-
ysis (SEM-EDXA–FEI Nova 600–Dual Beam) interconnected
with the focused ion beam (FIB) technique to study the
strain-induced InAsSbP-based islands, in particular their com-
position, elastic strength (lattice mismatch ratio) and shape
transformation. Interestingly enough, these islands primarily
grow into pyramids. Their shape is likely due to insufficient

Figure 2. Dependence of the InAsSbP QDs amount versus their
average diameter.

growth melt homogenization. In addition, the shapes of these
objects include not only pyramids but also truncated pyramids,
ellipsoidal and globe-shape objects (figures 3(a)–(e)).

First, we select three pyramids—‘large’, ‘middle’ and
‘small’ having bottoms length of 6 µm, 5 µm and 1 µm,
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from K.M. Gambaryan et al J. Phys. D
41, 162004 (2008)



Quantum Wells, Quantum Wires and Quantum Dots

Need for producing low dimensional structures => High performance
transistors and lasers

Application of Quantum dots:
One of the most promising physical realizations of qubits is singly
charged quantum dot pair:
Physical
support

Name Information
support

|0 > |1 >
Singly
charged
quantum
dot pair

Electron
localization

Charge Electron on
left dot

Electron on
right dot

Superposition of |0 > and |1 > qubit states is formed by external
fields.



Setting equations

investigations due to wide band gap and availability of

well elaborated growth techniques of various systems

incorporating such materials. As a result of natural

diffusion process during the growth of QDs, the corre-

spondently forming confinement potential is such that can

be easily approximated in most cases by a parabolic

potential. Also note, that for this approximation the Kohn

theorem is well generalized, this proves that such

approximation is correct, the experimental verification is

provided in Ref. [13]. However, the effective parabolic

potential may origin due to peculiarity of the QDs shape

[14]. Such realization is possible for strongly oblate

(or prolate) QDs shape. Besides, the rotational ellipsoids,

or spheroids, in contrary to spheres, are known to be

described by two parameters (short and large half-axes

instead of radius). In addition to that the external electric

and magnetic fields causing quantization are alternative

tools of control of the energy spectrum of QDs CC. The

strong external fields, at certain values of their intensities,

may have the same, or even stronger SQ effect on the

energy spectrum than the quantum dot’s shape variation.

Note, that the magnetic field affects the CC motion only

in transversal direction, in difference to the electrical

field. Therefore two fields directed in parallel open pos-

sibility for a broad manipulation of the CC characteristics

inside semiconductor SQ systems.

In particular in paper [15] the quantum effect of the

magnetic field inside the of the strongly prolate QD is

investigated. The effect of electrical field on the CC

energy spectrum inside the mentioned system has been

considered in paper [10]. However, the combined effect

of unidirectional electric and magnetic fields is not

considered yet.

Analysis of the optical absorption spectra of various

semiconductor structures represents a powerful tool for

obtaining numerous characteristics of these structures,

namely: forbidden gap widths, effective masses of elec-

trons and holes, their mobility, dielectric features, etc.

Many papers study these spectra by experiments and

analysis, both in massive and SQ semiconductor structures

(see e.g. [16–18]). SQ phenomenon strongly affects the

character of absorption. Indeed, presence of new SQ energy

levels makes possible to realize new inter-band transitions

widening the scope of applications of devices based on

such systems. Meanwhile existence of the external quan-

tizing fields often results in restructuring of the energy

levels, as well as creation of new selection rules during the

process of the light absorption. Therefore electronic states

and direct inter-band light absorption are considered below

for strongly oblate ellipsoidal quantum dots (SOEQD) and

strongly prolate ellipsoidal quantum dots (SPEQD) at

presence of unidirectional electric and magnetic fields; the

problem is considered for strong SQ regime.

Theory

SOEQD Case: Electronic States Inside the Strongly

Oblate Ellipsoidal Quantum Dot in the Presence

of Unidirectional Electric and Magnetic Fields

Let us to consider an impenetrable SOEQD located in

unidirectional electric and magnetic fields (see Fig. 1a).

The potential energy of a charged particle (electron, or

hole) in such structure has the following form:
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where a1 and c1 are the short and long semiaxes of SPEQD,

respectively.

As is known, in the strong SQ regime, the energy of

Coulomb interaction between electron and hole can be

considered much smaller than the energy created by the

SOEQD walls. In the framework of such approximation,

one can neglect the electron–hole interaction energy. Thus,

the problem is reduced to analytical determination of the

energy separate expressions for electron and hole (as for

non-interacting particles). The quantum dot shape indicates

that particle motion along the Z-axis takes place faster than

in the normal direction, this also allows to utilize adiabatic

approximation. The system Hamiltonian under these

conditions has the following form:

H ¼ 1

2l
P~þ e

s
A~

� �
� eF~r~þ UðX; Y; ZÞ; ð2Þ

in which P~ is the particle momentum operator, A~ is the

vector potential of the magnetic field, F~ is the electrical

field intensity, r~ is the radius-vector, s is the light velocity

in vacuum, and e is the magnitude of electron charge.

Assuming the calibration of vector potential in cylindrical

coordinates to have a form Aq ¼ 0;Au ¼ 1
2

Hq;Az ¼ 0 , one

can express the system Hamiltonian as

x

z

y

F H b)a)

Fig. 1 (a) Strongly oblate ellipsoidal quantum dot. (b) Strongly

prolate ellipsoidal quantum dot
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In the effective mass approximation of the ~k·~p
theory the Schrödinger equation for the slow
varying envelope function Ψ(~r) ≡ Ψe(h)(~r)
of an impurity electron (e) or hole (h)
under the influence of a uniform magnetic
field ~H with vector-potential ~A = 1

2
~H × ~r

and electric field ~F in QD, QW, or QWr reads
as

{
1

2µ

(
~̂p−

q1

c
~A
)2

+ (~F · ~r) + Uconf (~r)−
q

κ|~r|
− E

}
Ψ(~r) = 0,

Here ~r is the radius-vector, |~r| =
√
x2 + y2 + z2,

q = q1q2e, where q1 = ±e and q2e are the Coulomb charges of the electron (hole)
and the impurity center, κ is the dc permittivity,
Uconf (~r) is infinite or finite (Woods-Saxon) well confinement potential
µ = βme is the effective mass of the electron or hole and reduced atomic units
(for example, in GaAs q = 1, κ = 13.18, βe = 0, 067, βh = βe/0.12),
ae = (κ/βe)aB = 102Å, Ee = (βe/κ2)Ry = 5.2 meV, ah = 15Å,
Eh = (βh/κ

2)Ry = 49 meV, γ = H/H∗
0 , H

∗
0 = 6T).



Method

Reduction of elliptic boundary-value problems by:
1. exact solvable models
2. method of separation of variables
3. variational, Kantorovich and adiabatic methods
4. finite-element method
5. asymptotic method

Accuracy of calculation is 10 significant digits that corresponds to
standard accuracy of laser spectroscopy.



Solution
We developed symbolic-numerical algorithms (SNA) and elaborated a
problem-oriented complex of programs, now available via the Computer
Physics Communication Library:
• ODPEVP: A program for computing eigenvalues and eigenfunctions
and their first derivatives with respect to the parameter of the parametric
self-adjoined Sturm-Liouville problem1

• POTHMF: A program for computing potential curves and matrix
elements of the coupled adiabatic radial equations for a hydrogen-like
atom in a homogeneous magnetic field2

• KANTBP & KANTBP 2.0: A program for computing energy levels,
reaction matrix and radial wave functions in the coupled-channel
hyperspherical adiabatic approach3

Downloaded 685 times.
1O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky and A.G. Abrashkevich, CPC 181,

1358-1375 (2009).
2O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G.

Abrashkevich, M.S. Kaschiev and V.V. Serov, CPC 178, 301-330 (2008).
3O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S.

Kaschiev, S.Y. Larsen and S.I. Vinitsky, CPC 177, 649-675 (2007);
O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky and A.G. Abrashkevich, CPC 179,
685-693 (2008).



Models of QDs: Eigenfunctions
Oblate SQDs Prolate SQDs

Contour lines of eigenfunctions in xz-plane for even electronic (hole)
states of model spheroidal QDs versus the ratio c/a (or a/c) of minor c
(or a) to major a (or c) semiaxis of the oblate (or prolate) spheroid.



Models of QDs: Energy levels

Oblate SQDs Prolate SQDs

Energy levels (dotted lines) of even electronic (hole) states of model
spheroidal QDs versus the ratio c/a (or a/c) of minor c (or a) to major
a (or c) semiaxis of the oblate (or prolate) spheroid.



Models of QDs: Absorption coefficient

Oblate SQDs Prolate SQDs
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Fig. 9

The absorption coef-
ficient K/K0 for the
ensembles of QDs,
versus the energy
λ1 = (~ω − Eg)/Eg
of the optic interband
transitions for Lifshits-
Slezov distribution of
minor axis c̄ = 0.5 at
a = 2.5 (or ā = 0.5
at c = 2.5).

The corresponding
schematic diagrams of
interband transitions.



Spectral characteristics of the prolate dumbbell QDs

a)

b) c)
a. The profile in plane xz of closed surface generated by rotating of continuous curve

ρ0 (z; a, c, c1) = a
c

√
c2 − z2 z2c21+1−c21

c21c
2/4+1−c21

about z-axis for c = 2.5, a = 0.5 vs
c1 = 0, 0.25, 0.5, 0.75, 0.99.
b. The energy levels of the even and odd electronic (hole) states for model B at
c = 2.5, a = 0.5 vs c1 classified at c1 = 0 by cylindrical quantum numbers
nρp, nzp of PSQD.
c. Contour line of the first four even-parity wave functions in xz plane.



Models of QWrs: Axial changeling of similar charged ions
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Diagonal elements of the transmission |T |2 and reflection |R|2 matrices,
corresponding to the first nine open channels versus the energy 2E and
enhancement coefficient K = |Ψ(r = 0, γ)|2/|Ψ(r = 0, γ = 0)|2 for
the first component of the total wave function (solid line) and partial
contributions (dash-dotted lines) of the open channels io = 1÷ 10, and
wave function revealing resonance effects of total reflection and partial
transmission with increasing collision energy.



Models of QWrs: Axial changeling of oppositive charged ions

Transmission and reflection coefficients
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Fig. 2. Transmission |T̂|2 and reflection |R̂|2 coefficients, even δe and odd δo phase
shifts versus the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for γ = 0.1 and the final state
with σ = −1, Z = 1, m = 0. The arrow marks the first Landau threshold E1 = γ/2.

Transmission and reflection coefficients are explicitly shown in Fig. 2 together with
even δe and odd δo phase shifts versus the energy E (Fig. 2a) and (Ẽ2 − 2E)−1/2

(Fig.2b), where Ẽ2 = εth
m2(γ) is second threshold shift. The quasi-stationary states

imbedded in the continuum correspond to the short-range phase shifts
δo(e) = no(e)π + π/2 at (Ẽ2 − 2E)−1/2 = no(e)+Δno(e) . Nonmonotonic behavior of

|T̂| and |R̂| is seen to include the cases of resonance transmission and total reflection,
related to the existence of these quasistationary states.
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Fig. 1 Profiles |Ψ(−)

Em→| of the total wave functions of the continuous spectrum in the
zx plane with Z = 1, m = 0, γ = 0.1 and the energies E = 0.05885 a.u. (a) and
E = 0.11692 a.u. (b), demonstrating resonance transmission and total reflection,
respectively.

Profiles of the wave function (18) for Z = 1, m = 0, γ = 0.1 and jmax = 10 are
shown in Fig. 1 at two fixed values of energy E, corresponding to resonance
transmission |T̂|2 = sin2(δe − δo) = 1 and total reflection |R̂|2 = cos2(δe − δo) = 1.

●  ●  

Transmission |T |2 and reflection |R|2 coefficients versus the energy E for
continuum states of ion with charge q = 1 at γ = 0.1 and m = 0
between first and second thresholds and profiles of the continuum wave
functions in xz-plane revealing resonance effects of the resonance
transmission |T |2 = 1 and total reflection |R|2 = 1.



Photoionization of hydrogen atom, exciton and impurity
states of QWr in a uniform magnetic field

σd(ω) = 4π2Cω
×∑No

i=1 |〈Ψc
i(r)|z|Ψd(r)〉|2,

ω = E − Ed,
C ∼= 0.20434× 10−22m2
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Photoionization cross-section σdmσσ′(ω) and σpmm′σ(ω) vs energy E:
(a) from the 1s0 state at γ = 1× 10−1 (H = 0.6T for GaAs) into the
final state σ′ = −1, m = 0; (b) from the state 1p−1 at γ = 5× 10−2

(H = 0.3T for GaAs) into the final state of continuous spectrum
m′ = 0. Arrows mark Landau thresholds Ej = 1/2εthmj = ....



Models of QWrs: recombination in magneto-optical traps
Laser-stimulated radiative recombination rate of
positron and antiproton into the bound states
|N = 3, l = 0,m = 0〉 in the magnetic
field H = 6T and laser field with intensity I =
24Wcm−2 at plasma temperature T = 4K and
positron density ne+ = 108cm−3. The rate of
the recombination into all nine states N = 3 for
zero magnetic field H = 0 is shown by a dashed
line.

Enhancement absorption coefficient K/K0 in
resonance formation of exciton states belong to
the continuous spectrum of GaAs valence band in
the magnetic field H = 6T vs the energy 2E
at m = 0 (in reduced atomic units): for the
first component of the total wave function (dash-
dotted line), its approximate values (dash-dot-
dotted line), and the partial contributions (solid
lines) of the open channels io = 1÷ 10.



Quantum transparency of coupled pair of ions on barriers

The total probabilities
T ≡ T11 =∑No

j=1 |T1j|2 of
penetration through
Coulomb-like repulsive
potential barriers.

Profiles |Ψ(−)
Em→| of the total wave functions of the continuous spectrum

in the yx plane with Ẑ1 = Ẑ2 = 0.5, m1 = m2 = 1 at resonance
energies 2E = 8.1403 a.u. and 2E = 9.4748 a.u., revealing
resonance transmission or quantum transparency and total reflection.



Conclusion

The revealed difference in the spectra and the absorption coefficients
allows verification of OSQD and PSQD models using the experimental
data, e.g., photo-absorption coefficient and conductivity, from which not
only the energy level spacing, but also the mean geometric dimensions of
QDs can be estimated. The adiabatic approximations implemented in the
analytic form can be applied also to treat a lower part of spectra of
models of strongly deformed nuclei.

• Gusev A.A., Chuluunbaatar O., Gerdt V.P., Rostovtsev V.A., Vinitsky S.I., Derbov
V.L., Serov V.V., Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal
Quantum Dot Models. Lect. Notes Comp. Sci. 6244, 106 (2010).
• Gusev A.A., Chuluunbaatar O., Vinitsky S.I., Dvoyan K.G., Kazaryan E.M.,
Sarkisyan H.A., Derbov V.L., Klombotskaya A.S., and Serov V.V., Adiabatic
description of nonspherical quantum dot models. Phys. At. Nucl. (2012) (accepted);
arXiv:1104.2292.



Conclusion

The revealed effects can be applied for preparing beams of atoms in
prescribed Zeeman states and with required velocity projection onto the
laser beam direction in high-precision spectroscopic experiments using
laser-induced recombination in magneto-optical traps. The results are
also important for the experimental study of low-energy nuclear reactions
of channeling ions in thin films and crystals.

• Chuluunbaatar O., Gusev A.A., Vinitsky S.I., Derbov V.L., Melnikov L.A. , Serov
V.V., Photoionization and recombination of a hydrogen atom in a magnetic field,
Phys. Rev. A 77, 034702 (2008).
• Chuluunbaatar O., Gusev A.A., Derbov V.L., Krassovitskiy P.M., Vinitsky S.I.,
Channeling problem for charged particles produced by confining environment, Phys.
At. Nucl. 72, 768 (2009).



Prospects

The computational scheme, the symbolic-numerical algorithms, and the
complex of programs implemented in Maple–Fortran environment allow
extension for the analysis of spectral and optical characteristics of the
exciton states in finite-dimensional quantum models at the different
geometry of structure, shape of confining potential, and external fields.
They also look promising for developing quantum transparency and
diffusion models, employment of MPI and Grid technologies.

Thank you for your attention !




