Status of JINR group participation in ALICE

Charged kaon femtoscopy correlations in pp collisions at sqrt(s) = 7 TeV

L. Malinina (JINR-SINP MSU),

Overview

ALICE experiment at LHC JINR group participation

Correlation femtoscopy (Bose-Einstein correlations,HBT) Motivation in HI & pp

JINR group analysis :

Charged Kaon femtoscopy correlations in pp collisions at 7 TeV, KK in PbPb collisions at 2.76 TeV (under way)

Conclusion & Plans

A Large Ion Collider Experiment (ALICE)

ALICE is the dedicated heavy-ion experiment at the LHC. In addition to its HI physics program, it also has a rich pp physics program benefiting from a detector with:

- a low momentum cut-off (pT 50 MeV/c);
- a small material budget
- excellent particle identification (PID) by specific energy loss & time of flight & transition & Cherenkov radiation;

- good primary and secondary vertex resolution allows for measurements of strangeness and heavy flavor with low backgrounds.

Pb-Pb at 2.76 TeV

ALICE physics analysis & publications

- **17** ALICE physics publications for
- p-p (mostly at 7 TeV) and 6 for PbPb
- at 2.76 TeV per NN interactions;
- □ 18 other articles for p-p and 16 for Pb-Pb
- are under preparation dedicated to :
- Charged and neutral particle spectra,
- strange and charmed particles,
- two-pion Bose-Einstein correlations,
- light vector mesons and baryon resonances,
- elliptic and direct flows,
- quarkonias,
- event-by-event

Bose-Einstein correlations (femtoscopy correlations):

Suggestion and responsibility for an analysis of two-charged kaons Bose-Einstein correlations in pp and PbPb:

Physics of resonances:

Participation in the analysis of \Box meson production in p-p and Pb-Pb collisions.

Quarkonia physics:

Participation in the analysis of $J/\psi \rightarrow \mu\mu$ in p-p and Pb-Pb collisions.

Updating of the analysis software.

GRID and PROOF computing and software activity.

Evolution of matter in HI collisions

Correlation femtoscopy: Quantum Statistics

2-particles correlation function:

$$C(q) = \frac{N_2(p_1, p_2)}{N_1(p_1)N_2(p_2)}$$

$$q=-(p_1-p_2)^2$$

 $C(\infty)-1$

Experimentally:

S(q) -distribution of pair momentum difference of particles from the same events

B(q) -reference distribution,

build by mixing particles from different events

Commonly used parametrizations: $C(q)=1+\lambda exp(-R^2q^2)$

- Out: direction of the mean transverse momentum of the pair
- Side: orthogonal to out
- Long: beam direction

- λ Strength of correlations
- ${\bf R}\,$ effective size of emission region

 $CF=1+\lambda exp(-R_{2}^{2}q_{2}^{2}-R_{2}^{2}q_{1}^{2})$

- Study of mt-dependence of correlation radii. In heavy ions collisions at RHIC was observed $m_T(KK) > m_T(\pi\pi)$, $R(KK) < R(\pi\pi)$ – indication on effects of hydrodynamic expansion

- KK suffer less from the resonance contributions then $\pi\pi$ -> more clear signal

- Strong FSI leads to coupling of $K+K- ->\phi$, dependence of the magnitude of the peak on the source size -> additional information about space-time source sizes and asymmetries

- Residual correlations of φφ can be seen from KK CF

- Strangeness distillation mechanism could lead to strong temporal emission asymmetries between K+ and K-. It is possible to determine the difference between emission times and positions of K+ and K- e.g. D.Ardouin et al. Phys.Lett.B446, 191 (1999)

KK at RHIC: Au+Au sqrt(s_{NN})=200 GeV

• KK one dimensional radius 3-5 fm

We studied the charged KK femtoscopy correlations in 7 TeV pp collisions from the ALICE date 2010. Preparation of the article is under way.

Results were shown on QM2011, Annecy & "LHC on the March", Protvino Nov2011

> L. Malinina (SINP MSU-JINR), B. Batyunya (JINR), A.Fedunov (JINR),

KK correlations in pp Motivation & main problems

- Perform the first measurements of the charged kaon source size in pp collisions by Bose-Einstein correlations (femtoscopy)

- Look for collective behavior by studying the source size dependence on the particle transverse momentum and mass

-Using charged KK & $K_{s}^{0}K_{s}^{0}$ increases available k_{τ} range

Problems: stronger Coulomb FSI & smaller purity of the charged KK make the correlation peak less pronounced then in $\pi\pi$ and $K^0_{\ s}K^0_{\ s}$ cases so the relative role of the non-femtoscopic background increases. Baseline determination is main problem of KK analysis.

Details of Analysis

General analysis conditions:

- 3 bins in uncorrected charged particle multiplicity : M<11, 11<M<22, M>23

- 4 bins in k_{T} (0.2-0.35) (0.35-0.5) (0.5-0.7) (0.7-1.0) GeV/c.

All LHC10bcd and MB trigger LHC10e ~300 mln events

Fit by : (1) $CF=N(1-\lambda+\lambda K_{cou1}(1+exp(-R^2Q_{inv}^2))) \{1 + a Q_{inv} + bQ_{inv}^2\}$ (2) $CF=N(1-\lambda+\lambda K_{cou1}(1+exp(-R^2Q_{inv}^2))) \operatorname{sqrt}\{1 + a Q_{inv}^2 + bQ_{inv}^4\}$

(3) CF=N(1- λ + λ K_{cou1}(1+exp(-R²Q_{inv}²)))b (1+exp(-aQ_{inv}²)

-Use PYTHIA(PERUGIA2011) to model baseline:

Make baseline fit with (1) $\{1 + a Q_{inv} + bQ_{inv}^2\}$; (2) $sqrt\{1 + a Q_{inv}^2 + bQ_{inv}^4\}$; (3) Gaussian to extract parameters a,b for fitting $CF(Q_{inv})$

Charged kaon identification pp @ 7 TeV

TOF momentum versus velocity

Kaons selection cuts

TPC dEdx versus momentum

KK CFs fitted by Gaussian * PERUGIA2011 baseline fitted with with {1 + a Q_{inv}+ bQ_{inv}²}

Figure from the article

Ideal description of long range correlations by PERUGIA2011, small hi2/ndf~ (2-3)

Comparison of different fitting strategies

blue M0(1-11), rosy M1(12-22), red (23-140)

- Rinv increase with multiplicity;
- Rinv decrease with \mathbf{k}_{T} for M1, M2
- Rinv obtained with different baseline fits are very close now !
 Systematic errors due to different fitting procedure are <5%

Charged KK versus K⁰_sK⁰_s and ππ (Gaussian*PERUGIA)

Figure for the article ALICE ππ N_{ch} 1-11 pp @ √s = 7 TeV ππ Ν., 12-22 1.5 К_{inv} (fm) N_{ch} 11-22 K^{ch}K^{ch} N... >23 0.5 statistical + systematic errors 0 0.5 1.5 m_T (GeV/c)

- radii increase with multiplicity

 radii decrease with kT at large multiplicities (M1(11-22),M2(>22)) similarly to HI

 at small multiplicity (M0 (1-11))
 behaviour of kaon radii is different, similarly to pion ones

- breaking of mt scaling Rκ>Rπ (attempt of interpretaion A. Kisiel, [arXiv:1012.1517 [nucl-th]]) in pp collisions flow of short lived resonances plays an important role differently for pions and kaons; T. J. Humanic, J. Phys. G 38, 124058 (2011) [arXiv:1107.0084 [hep-ex]].

We started study of charged KK femtoscopy correlations in 2.76 TeV PbPb collisions from the ALICE data 2010 (7 mln events in this analysis); data 2011(80 mln will be analised)

E.Rogochaya (JINR), L. Malinina (SINP MSU-JINR), B. Batyunya (JINR), A.Fedunov (JINR),

KK analysis in PbPb: first results

TPC dEdx

Fit with CF=N(1- λ + λ K_{cou1}(1+exp(-R²Q_{inv}²))) r=5 fm

KK analysis in PbPb: first results

✓ dependence of radii

Kaon radii decrease with kT, increase with multiplicity similarly to RHIC HI data; study of mT dependence for different centralities is under way.

Conclusions & Plans

- In pp and PbPb radii increase with multiplicity
- In pp radii decrease with kT at large multiplicities (M1(11-22), M2(>22)) similarly to PbPb
- At small multiplicity (M0 (1-11)) behaviour of kaon radii in pp is different, similarly to pion ones
- In pp breaking of mt-scaling.
- These peculiarities deserve further experimental and theoretical studies

Plans:

 Prepare the article "Charged kaon femtoscopy correlations in pp collisions at sqrt(s) = 7 TeV"

- Continue analysis of KK in PbPb at 2.76 TeV

Additional slides

Charged KK (Gaussian* P2 PERUGIA2011)

Tablefor the article

Table 1: $K^{ch}K^{ch}$ source parameters vs. k_T for $\sqrt{s}=7$ TeV pp collisions. Statistical and systematic errors are listed.

k_T range	N_{ch}	$< k_T >$	$dN_{ch}/d\eta$	λ	R_{inv}
(GeV/c)		(GeV/c)			(fm)
0.20 - 0.35	1-11	0.28 ± 0.04	3.2	$0.20 \pm 0.04 \pm 0.03$	$0.47 \pm 0.07 \pm 0.12$
0.35 - 0.50	1-11	0.42 ± 0.05	3.2	$0.31 \pm 0.03 \pm 0.02$	$0.65 \pm 0.05 \pm 0.06$
0.50 - 0.70	1-11	0.59 ± 0.06	3.2	$0.39 \pm 0.08 \pm 0.03$	$0.91 \pm 0.10 \pm 0.06$
0.07 - 1.00	1-11	0.80 ± 0.08	3.2	$0.23 \pm 0.10 \pm 0.20$	$0.81 \pm 0.21 \pm 0.24$
0.20 - 0.35	12-22	0.28 ± 0.04	8.9	$0.51 \pm 0.12 \pm 0.03$	$1.45 \pm 0.15 \pm 0.02$
0.35 - 0.50	12-22	0.42 ± 0.05	8.9	$0.46 \pm 0.04 \pm 0.04$	$1.18 \pm 0.06 \pm 0.03$
0.50 - 0.70	12-22	0.59 ± 0.06	8.9	$0.34 \pm 0.07 \pm 0.10$	$1.05 \pm 0.12 \pm 0.14$
0.70 - 1.00	12-22	0.80 ± 0.08	8.9	$0.21 \pm 0.04 \pm 0.10$	$0.73 \pm 0.07 \pm 0.10$
0.20 - 0.35	>23	0.28 ± 0.04	15.3	$0.51 \pm 0.08 \pm 0.03$	$1.53 \pm 0.10 \pm 0.02$
0.35 - 0.50	>23	0.42 ± 0.05	15.3	$0.44 \pm 0.03 \pm 0.04$	$1.44 \pm 0.04 \pm 0.03$
0.50 - 0.70	>23	0.59 ± 0.06	15.3	$0.30 \pm 0.03 \pm 0.04$	$1.25 \pm 0.06 \pm 0.06$
0.70 - 1.00	>23	0.80 ± 0.08	15.3	$0.37 \pm 0.05 \pm 0.06$	$1.31 \pm 0.08 \pm 0.08$

Statistical & systematic errors are shown;

(statistical + systematical errors were summarized quadratically)

Details of Analysis pp

Event selection:

- Only events with minimum bias trigger were selected.
- Reconstructed vertex must be within 10 cm of the center of the TPC along the beam direction.
- At least one particle must be reconstructed and identified as a kaon.

Single track cuts:

- $|\eta| < 1.0$ & 0.15 < $p_T < 1.2$ GeV/c.
- Only well reconstructed tracks are accepted: at least 70 out of maximum 159 points in the TPC.
- Distance of particle trajectory to the primary vertex. in the transverse plane < 0.2 cm and in the beam direction < 0.25 cm.

Double track cuts:

- pairs which share more than 5% of clusters in the TPC were removed anti-splitting cut;
- pairs that are separated by less than 3 cm at the entrance of the TPC were removed anti-merging cut.
- Pair cuts were applied in exactly the same way for same (signal) and mixed (background) pairs.

Details of Analysis PbPb

Event selection:

- Only events with minimum bias trigger were selected.
- Reconstructed vertex must be within 8 cm of the center of the TPC along the beam direction.
- At least one particle must be reconstructed and identified as a kaon.

Single track cuts:

- $|\eta| < 0.8$ & 0.14 < $p_T < 2.0$ GeV/c.
- TPC inner tracks
 Maximum TPC ChiNdof = 4
- Distance of particle trajectory to the primary vertex. in the transverse plane < 0.2 cm and in the beam direction < 0.15 cm.

Double track cuts:

SetShareQualityMax(1.0) SetShareFractionMax(0.05) SetPhiStarDifferenceMinimum(0.017) SetEtaDifferenceMinimum(0.015) SetMagneticFieldSign(-1)

PERUGIA 2011

Neither PYTHIA(PERUGIA0) nor PHOJET described kaon spectra; new PERUGIA2011 is created and seems to describe the kaon spectra much better then previous PYTHIA tunes e.g. PERUGIA0

Estimation of systematic errors

- systematic errors from baseline functional form (1-10%)
- systematic errors related to the choice of the fit range (2 15%) Q_{inv} (0.0-1.0) GeV/c was used, (0.0-1.5) GeV/c , (0.0-0.8) GeV/c for the test;

study of double tracks effects influence: (0.03-1.0); (0.06-1.0) GeV/c

- **Coulomb function influence**: (2-4 %) at first, the radius of the spherical source was taken equal to 1 fm, then the radii were calculated and for each correlation function the argument of Coulomb function was varied within ±3R (where R is the total systematic error).

- **PID contaminations** The contaminations in the kaon sample of the other particles were estimated by the Monte Carlo simulation:

 $p_T < 0.35$ GeV/c and 0.6 < $p_T < 1.2$ GeV/c all contaminations are negligible,

0.35 < pT < 0.5 the contamination comes mainly from **e** ~15%, π 2- 3%,

 $0.5 < p_T < 0.6 \text{ GeV/c}$ $\pi \sim 10\%$, $\mathbf{e} \sim 5\%$.

probability of taking the **ee** pair instead of **KK** pair at 0.35 < p⊤ < 0.5 GeV/c, where the contamination is maximal, is still very low **2%**;

probability of taking **eK** for **KK** is **12%**, but such contaminations decrease only the strength of correlations and do not change the shape of the correlation function.

purity of kaon pairs is higher than 95% at pT < 0.35 GeV/c and 0.6 < pT < 1.2 GeV/c, and about 72% at 0.35 < pT < 0.6 GeV/c.

Purity calculation by F. Noferini

The analysis JINR group :

- 11 physicists including 2 PhD and
- 1 graduate student
- (the group leader is Boris Batyunya)

- 30,000 cores
- 70 computer centres (1T0, 5T1, 64T2)
- America, Europe, Africa and Asia

- Stable and smooth operation 24 x 7
- Operated according to the Computing Model