

LABORATORY of INFORMATION TECHNOLOGIES

SEMINAR of COMPUTATIONAL PHYSICS

Friday, 20 September 2013, 11.00 Room 407

Anirudh Pradhan (V.B.S. Purvanchal University, Jaunpur, India), Bijan Saha (LIT, JINR), Hassan Amirhashchi (Department of Physics, Islamic Azad University, Mahshahr, Iran)

Accelerating Dark Energy Models of the Universe in Anisotropic Bianchi Type Space-Times and Recent Observations

In the present study of Bianchi type- I, II, III, V and VI₀ space-times, we observe that the EoS for dark energy ω is found to be time-dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606: 702, 2004) and latest combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high red-shift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. 180:225, 2009, Komatsu et al. in Astrophys. J. Suppl. 180:330, 2009). It has been suggested that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. The cosmological constant Λ is found to be a positive decreasing function of time and it approaches to a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent type Ia supernovae observations.