ОБЪЕДИНЁННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1-2008-xx

На правах рукописи УДК 539.123, 539.125

ЛЮБУШКИН Владимир Викторович

ИССЛЕДОВАНИЕ КВАЗИУПРУГОГО ВЗАИМОДЕЙСТВИЯ НЕЙТРИНО $\nu_{\mu}n \rightarrow \mu^{-}p$ И АНТИНЕЙТРИНО $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ В ЭКСПЕРИМЕНТЕ NOMAD (CERN)

Специальность 01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 2008

Работа выполнена в Лаборатории ядерных проблем им. В.П. Джелепова Объединённого института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук Б.А. Попов

Официальные оппоненты:

доктор фи	вико-математических наук, проф	ессор В.А. Бедняков (ЛЯП ОИЯИ)
доктор фи	зико-математических наук, проф	ессор Ю.Г. Куденко (ИЯИ)

Ведущая организация:

Институт физики высоких энергий, Протвино

Защита диссертации состоится "___" 2008 г. в "___" часов на заседании диссертационного совета Д 720.001.03 в Объединенном институте ядерных исследований, г. Дубна Московской области.

Автореферат разослан "____" ____ 2008 г.

С диссертацией можно ознакомиться в библиотеке Объединённого института ядерных исследований.

Учёный секретарь диссертационного совета доктор физико-математических наук, профессор Ю.А. Батусов

Общая характеристика диссертации

Актуальность

Измерение полного и дифференциального сечений процессов квазиупругого рассеяния (QEL) нейтрино $\nu_{\mu}n \rightarrow \mu^{-}p$ и антинейтрино $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ проводится на протяжении последних нескольких десятков лет. Результаты предыдущих экспериментов на ускорителях (с использованием в качестве детектора, в основном, пузырьковых камер), проведенных в ANL, BNL, FNAL, CERN и ИФВЭ, имеют значительные неопределенности. Как правило, основным недостатком этих измерений является малая статистика нейтринных взаимодействий, недостаточное знание спектра нейтринного пучка и сечений фоновых процессов.

На сегодняшний день полные сечения QEL процессов измерены для различных мишеней (от дейтерия до жидкого сцинтиллятора, см. рис. 6, 7 и 8). Даже с учетом больших ошибок измерений, результаты различных экспериментов часто находятся в противоречии друг с другом.

Одно из последних измерений полных сечений данных процессов было выполнено в работе [1]. Число идентифицированных здесь событий квазиупругого рассеяния сравнимо с суммарной статистикой всех предыдущих экспериментов. Однако, величина измеренного сечения антинейтрино оказалась существенно выше ожидаемого; более того, полученные результаты для ν_{μ} и $\bar{\nu}_{\mu}$ не могут быть одновременно описаны в рамках существующих на сегодняшний день теоретических моделей (что, возможно, является указанием в пользу наличия неучтенных при измерении систематических эффектов).

В настоящее время интерес к прецизионному измерению сечения квазиупругого рассеяния существенно возрос в связи с подготовкой экспериментов нового поколения по исследованию нейтринных осцилляций. В частности, в проекте T2K [2] предполагается использование нейтринного пучка большой интенсивности, что в совокупности с современными методами детектирования событий позволит решить проблему малой статистики, столь характерную для пузырьковых камер. А поскольку средняя энергия нейтринного пучка достаточно мала (~ 0.6 ГэВ), то и вклад QEL событий здесь будет доминирующим.

Помимо измерения сечения, в процессах квазиупругого рассеяния можно также изучать структуру нуклона, а именно его аксиальный формфактор F_A . В области низких и средних переданных импульсов Q^2 мы можем использовать дипольную параметризацию для F_A с одним эффективным параметром: так называемой аксиальной массой M_A .

Аксиальная масса характеризует внутреннюю структуру нуклона и не зависит от энергетического спектра нейтринного пучка (в отличие от из-

меряемого сечения); ее величина должна быть одинаковой как в случае рассеяния нейтрино, так и антинейтрино (если мы предполагаем изотопическую инвариантность сильного взаимодействия). Именно поэтому, сравнивать результаты различных экспериментов удобнее в терминах аксиальной массы.

Формальное вычисление средней величины M_A , полученной в различных экспериментах, выполнено в [3]. Полученную величину $M_A = 1.026 \pm 0.021$ ГэВ иногда называют среднемировым значением аксиальной массы. Заметим, что неопределенность параметра M_A , полученная в результате формального усреднения, существенно занижена. Как следует из рис. 9, интервал допустимых значений M_A , соответствующий накопленным к данному моменту экспериментальным данным, достаточно широк (приблизительно от 0.8 до 1.2 ГэВ).

Недавно опубликованы результаты измерений M_A в современных ускорительных экспериментах K2K [4, 5] и MiniBooNE [6]. Найденное значение M_A на ~ 15% выше полученного при анализе данных пузырьковых камер, наполненных дейтерием. К сожалению, большие систематические неопределенности измерений в экспериментах K2K b MiniBooNE не позволяют сделать однозначного вывода о величине аксиальной массы нуклона.

Эксперимент NOMAD на ускорителе SPS (CERN) обладает уникальной возможностью для исследования процессов квазиупругого взаимодействия нейтрино и антинейтрино. Большое количество зарегистрированных нейтринных событий¹ и высокое качество реконструкции треков частиц позволило измерить сечение исследуемых процессов в широком интервале энергий (анти)нейтрино с малой статистической ошибкой, а также аксиальную массу нуклона M_A , что в настоящее время, несомненно, является актуальным.

Цели работы

- Измерение полных сечений процессов квазиупругого рассеяния нейтрино и антинейтрино ($\nu_{\mu}n \rightarrow \mu^{-}p$ и $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$) в эксперименте NOMAD.
- Определение аксиальной массы нуклона M_A на основе измеренных полных сечений рассматриваемых процессов, а также из анализа Q^2 распределения идентифицированных QEL событий.
- Изучение систематических ошибок измерения, связанных с моделированием ядерных эффектов, а также разработка методов, которые могут быть использованы для их минимизации.

¹В выбранном нами эффективном объеме детектора было зарегистрировано 751 (23) тысяч $\nu_{\mu}(\bar{\nu}_{\mu})$ событий по каналу заряженного тока (CC).

²

Практическая ценность

- 1. Сечения процессов квазиупругого рассеяния нейтрино и антинейтрино на ядерной мишени (преимущественно углероде) измерены для разных интервалов энергии нейтрино.
- 2. Создан генератор событий квазиупругого рассеяния (анти)нейтрино; взаимодействие нейтрино с нуклоном ядра описывается в рамках модели Smith-Moniz, для моделирования внутриядерного каскада используется пакет DPMJET. Данный генератор может быть использован в будущих нейтринных экспериментах.
- 3. Разработан и реализован алгоритм идентификации QEL событий на основе анализа кинематических переменных.
- 4. Предложен и реализован метод настройки параметров внутриядерного каскада, позволивший воспроизвести соотношение между событиями с различной топологией, наблюдаемое в идентифицированных QEL событиях.

Научная новизна

- 1. Наиболее важным теоретическим результатом является обобщение модели однопионного рождения Rein-Sehgal [7, 8], позволившее принять во внимание массу и поляризацию лептона в конечном состоянии.
- 2. Сечение квазиупругого рассеяния мюонного нейтрино на нуклоне, а также соответствующий ему параметр аксиальной массы, измерены с наилучшей на сегодняшний день точностью для ядерных мишеней.
- 3. Для измерения сечения процесса ν_µn → µ[−]p идентифицированные QEL события были отнормированы на полное число ν_µ CC событий в интервале энергий от 40 до 200 ГэВ. В качестве дополнительной независимой проверки мы использовали нормировку на события обратного мюонного распада ν_µe[−] → µ[−]ν_e; подобная нормировка позволяет убедиться в отсутствии экспериментальных эффектов, связанных с возможной неэффективностью триггера при отборе событий с малой множественностью. Такой способ нормировки в QEL анализе был использован впервые.
- 4. Одновременное использование двух наборов событий с различной топологией (с реконструированным треком протона и без него) позволило с одной стороны получить наиболее чистые наборы сигнальных событий, а с другой стороны сохранить контроль за плохо изученными ядерными эффектами.

Апробация работы

Результаты диссертации докладывались автором на научных семинарах ЛЯП ОИЯИ и ИФВЭ, на рабочих совещаниях коллаборации NOMAD, а также на международных конференциях SPIN'03 (16-20 сентября 2003 года, Дубна), NANP'05 (20-25 июня 2005 года, Дубна) и рабочих совещаниях "Neutrino physics at accelerators" (23-25, января 2008 года, Дубна) и "GDR NEUTRINO '08" (14-15 октября 2008 года, Марсель, Франция).

Основные результаты, вошедшие в диссертацию, опубликованы в 7 работах.

Структура диссертации

Диссертация состоит из введения, 4 глав ("Феноменология взаимодействия нейтрино с нуклонами", "Описание детектора NOMAD", "Моделирование событий", "Изучение квазиупругого рассеяния (анти)нейтрино"), заключения и трех приложений.

Содержание диссертации

Во введении обсуждаются цель и актуальность данной работы, а также результаты, полученные в предыдущих нейтринных экспериментах.

В первой главе излагается общий формализм, используемый для описания взаимодействия нейтрино с нуклонами; приведено дифференциальное сечение рассеяния в терминах структурных функций нуклона, явный вид которых определяется типом рассматриваемого процесса.

Мы подробно рассматриваем феноменологию процесса квазиупругого рассеяния нейтрино: стандартную параметризацию адронного тока; ограничения на форм-факторы нуклона, налагаемые требованием инвариантности процесса относительно обращения времени и изотопической симметрии; связь между псевдоскалярным и аксиальным форм-факторами, обусловленную гипотезой частичного сохранения аксиального тока. И, наконец, мы приводим явный вид структурных функций в модели Smith-Moniz [9], используемой нами при моделировании данного процесса на ядерной мишени.

При описании процессов однопионного рождения особое внимание мы уделяем модели Rein-Sehgal [10], в которой рассматриваются 18 интерферирующих между собой барионных резонансов N и Δ с массами меньше 2 ГэВ. Формализм, развитый в работах [7, 8, 11], позволил обобщить модель для случая рождения массивного τ -лептона, а также учесть вклад псевдоскалярного форм-фактора.

Рис. 1: Детектор NOMAD (вид сверху).

Во второй главе дается описание пучка нейтрино и всех важнейших поддетекторов установки NOMAD на ускорителе SPS в CERN. Определяется система координат детектора, кратко описываются система вето, передний калориметр, дрейфовые камеры, триггерные плоскости, детектор переходного излучения, детектор ливней, электромагнитный калориметр, адронный калориметр и мюонные камеры (рис. 1).

Созданная установка представляет собой уникальный инструмент для изучения нейтринных взаимодействий с качеством реконструкции событий, сравнимым с качеством реконструкции в пузырьковых камерах. За время работы детектора с 1995 по 1998 годы было продемонстрировано, что качество работы различных частей детектора находится в хорошем согласии с ожидаемым.

Третья глава посвящена описанию моделирования событий в детекторе NOMAD, которое используется для определения эффективности отбора сигнальных QEL событий, а также позволяет оценить уровень фона в идентифицированном QEL наборе. Мы явным образом фиксируем выбор параметров теоретических моделей, лежащих в основе генераторов нейтринных взаимодействий.

Рассматривается вопрос представления инклюзивного процесса взаимодействия нейтрино с нуклоном по каналу заряженного тока как суммы вкладов отдельных эксклюзивных процессов и глубоконеупругого рассе-

яния; вводятся дополнительные кинематические границы для процессов однопионного рождения (RES) и глубоконеупругого рассеяния (DIS).

В этой главе также обсуждается учет ядерных эффектов (таких как Ферми движение нуклонов в ядре, принцип Паули). Особое внимание уделено моделированию взаимодействия частиц, образовавшихся в результате рассеяния нейтрино на нуклоне мишени, с ядерным остатком (внутриядерный каскад), которое осуществляется с помощью пакета DPMJET [12]. Настройка DPMJET осуществляется с помощью двух параметров. Первый из них, τ_0 (formation time), определяет развитие внутриядерного каскада. С увеличением τ_0 уменьшается число поколений каскада, а также число низкоэнергетичных частиц. Второй параметр, α^F_{mod} , введен для корректировки импульсного распределения нуклонов ядра (учет эффектов, связанных с конечными размерами ядра и взаимодействием между нуклонами, приводит к уменьшению среднего значения импульса нуклона).

В четвёртой главе рассматриваются особенности реконструкции и идентификации событий квазиупругого рассеяния (анти)нейтрино, а также методы измерения полного сечения процесса и аксиальной массы нуклона, которые были использованы для анализа экспериментальных данных.

Типичный вид полностью реконструированного события $\nu_{\mu}n \rightarrow \mu^{-}p$ в дрейфовых камерах показан на рис. 2. Мы видим два трека, выходящих из первичной вершины: один из них был идентифицирован как мюон, второй трек принадлежит положительно заряженной частице (предположительно протону). В дальнейшем мы будем называть события с такой топологией 2-трековыми².

В ряде случаев трек протона не может быть восстановлен (импульс частицы меньше порога регистрации в детекторе, часть энергии частицы была потеряна в результате перерассеяния на ядерном остатке и пр.). В этом случае событие будет содержать только реконструированный трек мюона; события такого рода называются 1-трековыми.

Для идентификации QEL событий используются кинематические критерии отбора. Так, в случае 2-трековых событий применяется функция правдоподобия \mathcal{L} :

$$\mathcal{L}(\boldsymbol{\ell}) = \ln \frac{P(\boldsymbol{\ell} | QEL)}{P(\boldsymbol{\ell} | BG)}$$

которая учитывает корреляции между следующими кинематическими переменными (см. рис. 3):

1. недостающий поперечный импульс: $P_{\perp}^{mis} < 0.8 \ \Gamma$ эВ,

 $^{^2{\}rm B}$ данном анализе мы не принимаем во внимание кластеры в электромагнитном калориметре, которые могут соответствовать нейтральным частицам, родившимся в первичной вершине.

 $[\]mathbf{6}$

Рис. 2: Событие из экспериментальных данных, идентифицированное как квазиупругое рассеяние $\nu_{\mu}n \rightarrow \mu^{-}p$ (run 16049 событие 11514). Частица, оставившая длинный трек, была идентифицирована как мюон; короткий трек предположительно принадлежит протону.

Рис. 3: Переменные, используемые в функции правдоподобия \mathcal{L} : недостающий поперечный импульс P_{\perp}^{mis} , угол вылета протона θ_h , угол α между поперечными компонентами импульсов заряженных треков. Также показан азимутальный угол протона φ_h .

- 2. угол вылета протона: $0.2 \leqslant \theta_h/\pi \leqslant 0.5$,
- 3. угол α между поперечными компонентами импульсов заряженных частиц: $\alpha/\pi \ge 0.8$.

Здесь $P(\ell | QEL)$ and $P(\ell | BG)$ – вероятности того, что событие квазиупругого рассеяния и фоновое событие соответственно имеют заданный набор переменных $\ell = (P_{\perp}^{mis}, \theta_h, \alpha)$. Сравнение распределений переменных P_{\perp}^{mis} , α, θ_h и \mathcal{L} в экспериментальных данных с MC показано на рис. 4.

В случае 1-трековых событий (к которым также относятся и события квазиупругого рассеяния антинейтрино) наши возможности подавить вклад фоновых процессов существенно ограничены, поскольку все кинематические переменные выражены через импульс p_{μ} и угол вылета θ_{μ} мюона с помощью закона сохранения энергии-импульса. Здесь мы используем восстановленный угол вылета протона θ_h как аналог функции правдоподобия:

$$\cos \theta_h = (E_
u - p_\mu \cos \theta_\mu)/p_h$$

где

$$E_{\nu} = \frac{ME_{\mu} - m_{\mu}^2/2}{M - E_{\mu} + p_{\mu}\cos\theta_{\mu}}$$
$$p_h = [(E_{\nu} - p_{\mu}\cos\theta_{\mu})^2 + p_{\mu}^2\sin^2\theta_{\mu}]^{1/2}$$

Распределения по переменной θ_h для 1-трековых ν_{μ} и $\bar{\nu}_{\mu}$ событий приведены на рис. 5; в таблице 1 представлены результаты отбора событий квазиупругого рассеяния в экспериментальных данных.

Измерение сечений процессов квазиупругого рассеяния выполнено посредством нормировки на полное сечение взаимодействия ν_{μ} ($\bar{\nu}_{\mu}$) с веществом по каналу заряженного тока. Подобная процедура часто применялась в предыдущих нейтринных экспериментах (например, в CERN BEBC [13]). В качестве дополнительной независимой проверки для процесса $\nu_{\mu}n \rightarrow \mu^{-}p$ мы использовали нормировку на события обратного мюонного распада $\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$; подобная нормировка позволяет убедиться в отсутствии экспериментальных эффектов, связанных с возможной неэффективностью триггера при отборе событий с малой множественностью.

При анализе 1- и 2-трековых событий было найдено, что значение сечения QEL процесса и соответствующая ему величина M_A зависят от параметра τ_0 , используемого при моделировании. Так, значение M_A , полученное для 1-трековых событий, увеличивается при увеличении τ_0 ; для 2-трековых событий наблюдается противоположный эффект: с ростом τ_0 величина M_A уменьшается.

Рис. 4: Сравнение распределений кинематических переменных P_{\perp}^{mis} , α , θ_h и функции правдоподобия \mathcal{L} в MC и экспериментальных данных. Заитрихованная область соответствует QEL MC, сплошная линия - сумме вкладов QEL, RES и DIS процессов, точки с ошибками - экспериментальным данным. Пунктирные линии определяют используемые значения критериев отбора.

Рис. 5: Распределение θ_h для 1-трековых ν_μ и $\bar{\nu}_\mu$ событий.

Таблица 1: Числа идентифицированных ν_{μ} и $\bar{\nu}_{\mu}$ QEL событий N_{dat} ; эффективность отбора, чистота и ожидаемая доля фоновых событий (BG).

	$ u_{\mu}$ события		$ar{ u}_{\mu}$ события	
	1-трековые	2-трековые	сумма	1-трековые
N_{dat}	10358	3663	14021	2237
Эффективность (%)	21.3	13.3	34.6	64.4
QEL vucmoma (%)	41.7	73.9	50.0	36.6
DIS BG $(\%)$	34.5	15.9	29.7	33.5
RES BG $(\%)$	23.2	10.2	19.8	28.5
другой фон (%)	< 0.6	< 0.1	< 0.5	1.3

Это может быть объяснено следующим образом. Параметр τ_0 определяет вероятность участия протона, образовавшегося в результате взаимодействия нейтрино с нуклоном мишени, во внутриядерном каскаде. Таким образом, с увеличением τ_0 возрастает доля QEL событий с низкоэнергетичными протонами, которые в основном реконструируются как 1-трековые; при этом число 2-трековых событий в QEL MC сокращается. Это приводит к систематическому завышению (занижению) предполагаемой эффективности отбора QEL событий с фиксированной топологией, и, как следствие, изменению значений сечения $\langle \sigma_{qel} \rangle_{\nu_{\mu}}$ и аксиальной массы M_A . Тем не менее, значения этих величин, измеренные для комбинированного набора 1и 2-трековых событий, практически не зависят от величины параметра τ_0 , поскольку полное число зарегистрированных QEL событий (с учетом чи-

стоты и эффективности отбора) остается постоянным:

$$\langle \sigma_{qel} \rangle_{\nu_{\mu}} = (0.92 \pm 0.02(ctat) \pm 0.06(cuct)) \cdot 10^{-38} \text{ cm}^2$$

 $M_A = 1.05 \pm 0.02(ctat) \pm 0.06(cuct) \Gamma$ pB

Было найдено, что QEL MC с параметрами $\tau_0 = 1$ и $\alpha_{mod}^F = 0.6$ обеспечивает наиболее адекватное моделирование внутриядерного каскада, поскольку в этом случае воспроизводится соотношение между 1- и 2-трековых событиями, наблюдаемое в экспериментальных данных.

При измерении M_A из анализа Q^2 распределения мы используем только набор идентифицированных 2-трековых событий с малой долей фона (чистота отбора в данном случае составляет ~ 74%, см. таб. 1). И снова мы видим, что результаты зависят от исходных параметров QEL MC (M_A^{sim} и τ_0). Тем не менее, они согласуются со значениями M_A , полученными при измерении полного QEL сечения для 2-трековых событий, и поэтому могут рассматриваться как дополнительная проверка результатов данного анализа.

Измерение сечения процесса $\bar{\nu}_{\mu}p \rightarrow \mu^+ n$ основано на анализе 1-трековых событий (поскольку образовавшийся нейтрон не оставляет отсчетов в дрейфовых камерах); поэтому здесь мы не исследуем зависимость полученных результатов от параметров внутриядерного каскада. Найденное в этом случае значение аксиальной массы согласуется с результатами, полученными при анализе событий $\nu_{\mu}n \rightarrow \mu^-p$, однако имеет бо́льшую статистическую и систематическую ошибки:

$$\langle \sigma_{qel} \rangle_{\bar{\nu}_{\mu}} = (0.81 \pm 0.05(ctat) \pm 0.08(cuct)) \cdot 10^{-38} \text{ cm}^2$$

 $M_A = 1.06 \pm 0.07(ctat) \pm 0.10(cuct) \text{ Gamma}$

На рис. 6, 7 и 8 показано измеренное сечение исследуемых процессов как функция энергии (анти)нейтрино. Сравнение полученных результатов для аксиальной массы нуклона M_A с данными предыдущих экспериментов приведено на рис. 9.

В приложении А приведен закон преобразования полевой функции при обращении времени; показан явный вид матрицы *T* в представлении Дирака-Паули.

В приложении В представлены основные соотношения изотопического формализма для нуклонов (группа SU(2)).

<u>Приложение С</u> содержит выполненную автором компиляцию данных по полному и дифференциальному сечению процессов однопионного рождения.

Рис. 6: Сравнение полученных результатов (приведена статистическая и полная ошибка измерения для каждого интервала E_{ν}) с данными предыдущих экспериментов на ядерной мишени. Сплошная линия соответствует значению аксиальной массы, полученному при анализе данных эксперимента NOMAD по ν_{μ} рассеянию; заштрихованная область - полной ошибке. Расчет выполнен для углерода согласно модели Smith-Moniz.

Рис. 7: Сравнение полученных результатов с данными предыдущих экспериментов с дейтериевой мишенью. Все экспериментальные данные приведены с учетом ядерных эффектов; значение аксиальной массы такое эксе, как и на предыдущем рисунке.

Рис. 8: Сравнение полученных результатов с данными предыдущих экспериментов. Сплошная линия соответствует значению аксиальной массы, полученному при анализе данных эксперимента NOMAD по $\bar{\nu}_{\mu}$ рассеянию; заштрихованная область - полной ошибке; расчет выполнен для углерода согласно модели Smith-Moniz.

Рис. 9: Аксиальная масса нуклона: экспериментальные данные для квазиупругого рассеяния ν_{μ} (слева) и $\bar{\nu}_{\mu}$ (справа). Пунктирная линия соответствует среднемировому значению $M_A = 1.026 \pm 0.021$ ГэВ (см. обзор [3]).

В заключении

приведены основные результаты и выводы

- Используя ковариантное представление для лептонного тока, мы обобщили модель Rein-Sehgal (были учтены масса и спин лептона в конечном состоянии). Данная теоретическая схема использовалась при моделировании событий однопионного рождения в детекторе NOMAD.
- Создан генератор событий квазиупругого рассеяния (анти)нейтрино; взаимодействие нейтрино с нуклоном ядра описывается в рамках модели Smith-Moniz, для моделирования внутриядерного каскада используется пакет DPMJET. Предложен метод настройки параметров каскада, позволивший воспроизвести соотношение между 1- и 2-трековыми событиями, наблюдаемое в идентифицированном QEL наборе ν_µn → µ⁻p событий. Продемонстрировано хорошее согласие между распределениями основных кинематических переменных в MC и экспериментальных данных.
- 3. Разработана процедура идентификации событий квазиупругого рассеяния в данных эксперимента NOMAD. Для анализа было отобрано 14021 ν_µ и 2237 ν̄_µ событий; эффективность и чистота отбора при этом оцениваются в 34.6% и 50.0% для ν_µn → µ⁻p событий и 64.4% и 36.6% для ν̄_µp → µ⁺n событий соответственно. Измерение сечений процессов квазиупругого рассеяния (анти)нейтрино на ядерной мишени (преимущественно углероде) выполнено посредством нормировки на полное сечение взаимодействия ν_µ и ν̄_µ по каналу заряженного тока. Для сечений процессов ν_µn → µ⁻p и ν̄_µp → µ⁺n, усредненных по спектру в интервале энергий 3 100 ГэВ, получены следующие результаты:

$$\langle \sigma_{qel} \rangle_{\nu_{\mu}} = (0.92 \pm 0.02(\text{ctat}) \pm 0.06(\text{chct})) \cdot 10^{-38} \text{ cm}^2 \langle \sigma_{qel} \rangle_{\bar{\nu}_{\mu}} = (0.81 \pm 0.05(\text{ctat}) \pm 0.08(\text{chct})) \cdot 10^{-38} \text{ cm}^2$$

На рис. 6, 7 и 8 показано измеренное сечение этих процессов как функция энергии (анти)нейтрино; приведено сравнение полученных результатов с данными предыдущих экспериментов.

4. Особое внимание уделено оценке систематической ошибки, которая в данном анализе является доминирующей. В результате можно утверждать, что основными источниками систематической ошибки являются неопределенность в сечениях фоновых процессов, моделирование ядерного каскада, а также процедура идентификации QEL событий. Показано, что наиболее надежный результат для случая νµn → µ⁻p получается при совместном анализе 1- и 2- трековых событий.

5. Значение аксиальной массы, соответствующее $\langle \sigma_{qel} \rangle_{\nu_{\mu}}$, равно

$$M_A = 1.05 \pm 0.02(cтат) \pm 0.06(cист)$$
 ГэВ

Оно находится в хорошем согласии с величиной M_A , вычисленной для сечения квазиупругого рассения антинейтрино, и не противоречит данным, полученным из анализа Q^2 распределения, но обладает наименьшей систематической ошибкой. Найденное значение M_A согласуется с результатами измерений предыдущих экспериментов. Недавно опубликованные измерения M_A в экспериментах K2K и MiniBooNE несколько отличаются от нашего значения, хотя формально и не противоречат ему ввиду их больших ошибок (см. рис. 9).

6. Полученные результаты имеют важное практическое значение для ускорительных нейтринных экспериментов нового поколения, которые используют пучки с относительно низкой энергией. В частности, в эксперименте T2K на ускорителе J-PARC (Япония), созданном для прецизионного измерения параметров нейтринных осцилляций, при средней энергии пучка нейтрино (*E_ν*) = 0.6 ГэВ вклад процессов квазиупругого рассеяния будет доминирующим.

Результаты диссертации опубликованы в следующих работах:

- V. V. Lyubushkin and B. A. Popov, "A study of quasi-elastic muon (anti)neutrino scattering in the NOMAD experiment," // Сообщение ОИЯИ E1-2008-108, Дубна (2008);
- 2. V. V. Lyubushkin and B. A. Popov, "A study of quasielastic neutrino interactions $\nu_{\mu}n \rightarrow \mu^{-}p$ in the NOMAD experiment," // Ядерная физика **69**, 1876 (2006);
- K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, "Quasielastic axialvector mass from experiments on neutrino-nucleus scattering," // Eur. Phys. J. C 54, 517 (2008); arXiv:0712.4384 [hep-ph];
- K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, "Fine-tuning parameters to describe the total charged-current neutrino-nucleon cross section," // Ядерная физика 69, 1857 (2006);
- K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, "Axial masses in quasielastic neutrino scattering and single-pion neutrinoproduction on nucleons and nuclei," // Acta Phys. Polon. B 37, 2337 (2006); arXiv:hepph/0606184;
- K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, "Extended Rein-Sehgal model for tau lepton production," // Nucl. Phys. Proc. Suppl. 139, 158 (2005); arXiv:hep-ph/0408106;
- K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, "Lepton polarization in neutrino nucleon interactions," // Mod. Phys. Lett. A 19, 2815 (2004) [Phys. Part. Nucl. 35, S133 (2004)]; arXiv:hep-ph/0312107.

Список литературы

- N. Suwonjandee, The measurement of the quasi-elastic neutrino-nucleon scattering cross section at the Tevatron, Ph.D. thesis, University of Cincinnati (2004).
- [2] Y. Hayato, Nucl. Phys. Proc. Suppl. 143, 269 (2005).
- [3] V. Bernard, L. Elouadrhiri and U. G. Meissner, J. Phys. G 28, R1 (2002), hep-ph/0107088.
- [4] R. Gran et al., Phys. Rev. D74, 052002 (2006), hep-ex/0603034.
- [5] C. Mariani, AIP Conf. Proc. 981, 247 (2008).
- [6] A. A. Aguilar-Arevalo *et al.*, Phys. Rev. Lett. **100**, 032301 (2008), 0706.0926.
- [7] K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, Mod. Phys. Lett. A 19, 2815 (2004), hep-ph/0312107.
- [8] K. S. Kuzmin, V. V. Lyubushkin and V. A. Naumov, Nucl. Phys. Proc. Suppl. 139, 158 (2005), hep-ph/0408106.
- [9] R. A. Smith and E. J. Moniz, Nucl. Phys. **B43**, 605 (1972).
- [10] D. Rein and L. M. Sehgal, Ann. Phys. 133, 79 (1981).
- [11] C. Berger and L. M. Sehgal, Phys. Rev. D76, 113004 (2007), 0709.4378.
- [12] G. Battistoni, P. Lipari, J. Ranft and E. Scapparone (1998), hep-ph/9801426.
- [13] D. Allasia et al., Nucl. Phys. B343, 285 (1990).