На правах рукописи УДК 539.123, 539.125, 539.126

САМОЙЛОВ ОЛЕГ БОРИСОВИЧ

Сечение рождения очарованного кварка и оценка существования пентакварка Θ^+ в нейтринных взаимодействиях в эксперименте NOMAD

01.04.16 – физика атомного ядра и элементарных частиц

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории ядерных проблем им. В.П. Джелепова Объединенного института ядерных исследований.

Научный руководитель:	кандидат физмат. наук			
	Наумов Дмитрий Вадимович			
Научный консультант:	доктор, профессор			
	Петти Роберто			
Официальные оппоненты:	доктор физмат. наук, профессор			
	Сапожников Михаил Григорьевич			
	кандидат физмат. наук			
	Алехин Сергей Иванович			
Ведущая организация:	Иркутский государственный университет			
Защита состоится «»	2011 г. в часов на заседании			
диссертационного совета Д 720.0	01.03 при Объединенном институте ядерных			
исследований, расположенном по	адресу: 141980, Моск. обл., г. Дубна, ул. Жо			
лио-Кюри, д. 6.				
С диссертацией можно ознакоми	ться в библиотеке Объединенного института			
ядерных исследований.				
Автореферат разослан «»	2011 г			
in proposed passonan «=====» ==				
Отзывы и замечания по автореф	ерату в двух экземплярах, заверенные печа-			
гью, просьба высылать по вышеу	указанному адресу на имя ученого секретаря			
диссертационного совета.				
Ученый секретарь				

диссертационного совета, доктор физ.-мат. наук, профессор

Общая характеристика работы

Актуальность работы Одной из актуальных тем для исследования вот уже несколько десятилетий является странность в нуклоне (протоне или нейтроне). Отсутствие "валентных" по группе $SU(3)_{\rm F}$ странных кварков в нуклонах не запрещает наличие "морских" странных кварков, которые были обнаружены уже в первых экспериментах по глубоко-неупругому рассеянию (ГНР) лептонов на нуклонах [1]. Такие ГНР процессы, характеризуемые большой передачей 4-импульса Q, позволяют исследовать внутреннюю структуру нуклона. В настоящее время накоплен довольно большой экспериментальный материал и развиты теоретические методы извлечения партонных (кварковых и глюонных) распределений в нуклоне из анализа экспериментальных данных [2]. В то время как распределения валентных и морских u- и d-кварков в нуклонах измерены достаточно хорошо, распределения странных кварков в и антикварков в известны с большой неопределенностью, достигающей 100% [3]. Причина такой неопределенности заключается, в основном, в том, что партонные распределения s- и s-кварков извлекаются только из результатов измерений экспериментов с пучками нейтрино и антинейтрино. Эти эксперименты, на анализе которых основаны современные данные о кварковых распределениях, характеризуются большими статистическими и систематическими ошибками.

Экспериментальный метод измерения импульсных распределений (анти)странных кварков и рождения очарованных кварков в ν N-взаимодействиях заключается в измерении сечения рождения димюонных событий – событий с двумя противоположно заряженными мюонами, детектируемых в процессе взаимодействия мюонного нейтрино на нуклонах с рождением очарованного адрона ν_{μ} N $\rightarrow \mu^{-}h_{c}X$ и в последующем полуинклюзивном распаде очарованного адрона $h_{c} \rightarrow \mu^{+}Y$ с усредненной вероятностью $B_{\mu} \simeq 8\%$ [3].

По своему построению кварковая модель [2, 4, 5] описывает статические

свойства адронов, не имея внутреннего динамического механизма для предсказания корреляций между различными степенями свободы. Это подтверждается в ряде экспериментальных фактов (спиновый кризис, сигма-член), не находящих естественного объяснения в рамках кварковой модели [2, 6]. С другой стороны, существует ряд моделей, происходящих из квантовой хромодинамики (КХД), обладающих соответствующей динамикой, которые могли бы улучшить кварковую модель добавлением в неё необходимых корреляций. Одной из таких моделей является модель киральных солитонов, которая весьма успешно описывает экспериментальные данные в пределе слабо нарушенной $SU(3)_L \times SU(3)_R$ симметрии кирального лагранжиана КХД [7]. Кроме того, в рамках этой модели предсказывается не только существование октета и декуплета барионов, но и антидекуплета барионов с $J^{\mathrm{P}}=\frac{1}{2}^+$ с экзотическими свойствами. Эти адроны должны состоять из четырех кварков и одного антикварка в "валентном" состоянии. Самый легкий из них, пентакварк Θ^+ , имеет состав uudd \bar{s} , т.е. это барион с положительной странностью и очень малой шириной распада порядка 15 $M \ni B/c^2$. В то время как в модели киральных солитонов упомянутая малость ширины распада Θ^+ довольно естественно объясняется динамикой и малым углом смешивания октета и антидекуплета барионов, кварковая модель вынуждена делать целый ряд предположений для объяснения такой малости. Экспериментальная "метка" распада пентакварка Θ^+ - сохраняющееся барионное число и открытая положительная странность - определяет моды распада Θ^+ на нейтрон и K^+ -мезон или на протон и K^0 -мезон. Небольшая предсказываемая ширина распада Θ^+ позволяет изучение его рождения на большестве современных экспериментальных установках для различного класса реакций [8].

Анализ данных эксперимента NOMAD (Neutrino Oscillation MAgnetic Detector, WA-96) [9–11], проводимом на ускорителе SPS в CERN с 1995 по 1998 годы, по измерению рождения очарованного кварка посредством собы-

тий димюонного типа из рассеяния нейтрино на нуклоне и оценке существования пентакваркового состояния $\Theta^+(\mathrm{uudd}\bar{s})$ может значительно улучшить знания о странном море нуклона и лежащей в основе динамики взаимодействия кварков в существенно непертурбативной области.

Цель диссертационной работы Целью работы является изучение странного кварка в нуклоне в нейтринных взаимодействиях в эксперименте NOMAD. Для достижения этой цели были поставлены следующие задачи:

- 1) Оценка существования пентакварка Θ^+ в распаде на протон и K^0_S -мезон, измерение интегральной и дифференциальной вероятности рождения исследуемого состояния как функции доли его продольного импульса в системе центра масс налетающего нейтрино и мишени x_F .
- 2) Измерение дифференциальных отношений сечений очарованного кварка по димюонной сигнатуре к инклюзивному сечению взаимодействия нейтрино с железом в переднем калориметре по каналу заряженного тока.

Научная новизна

- В работе впервые измерен верхний предел на 90% уровне достоверности на рождение пентакварка Θ^+ как функции $x_{\rm F}$ на одно нейтринное событие в области масс 1530 MэB/c². Из полученного распределения установлены пределы на рождения Θ^+ в области фрагментации кварка и в области фрагментации мишени, равные $\sim 2.5 \cdot 10^{-3}$ и $\sim 1.0 \cdot 10^{-3}$ соответственно. Оцениваемый интегральный верхний предел на одно нейтринное событие составляет $2.13 \cdot 10^{-3}$.
- Идентифицирована рекордная статистика событий димюонного типа с лучшим на текущий момент порогом чувствительности к рождению очарованного кварка на реконструированную энергию нейтрино. В перед-

нем калориметре детектора NOMAD после вычета фона зарегистрировано 15 340 таких событий в интервале энергий нейтрино от 6 до 300 ГэВ.

- Впервые получены дифференциальные распределения отношений сечений очарованного кварка по димюонной сигнатуре к инклюзивному сечению взаимодействия нейтрино с железом по каналу заряженного тока $\mathcal{R}_{\mu\mu} = \sigma_{\mu\mu}/\sigma_{\rm cc}$ при энергиях пучка в широком интервале $E_{\nu} \in [6;300]$ ГэВ для $x \in [0;0,75]$ и $Q^2 > 1$ ГэВ $^2/{\rm c}^2$. Стоит отметить, что в данный момент ни один нейтринный эксперимент не чувствителен к области [0,3;0,75] для переменной x-Бьёркена при измерении рождения димюонных событий.

Практическая значимость

- Разработанная процедура предсказания фона на основе метода "смешивания" пар продуктов распада резонанса из разных событий в экспериментальных данных может быть использована при изучении резонансных состояний в других экспериментах, исследующих ГНР взаимодействия лептонов с нуклонами, например, COMPASS [12].
- Измеренные дифференциальные отношения сечений $\mathcal{R}_{\mu\mu} = \sigma_{\mu\mu}/\sigma_{cc}$ позволяют уточнить кварк-партонную функцию распределения по импульсам странного кварка с точностью выше, чем в два раза [3].
- В два раза уточнен параметр фрагментации очарованного кварка в параметризации Коллинз-Спиллера (Collins-Spiller) [13], который составляет совместно для экспериментов E531 [14] и NOMAD: $\epsilon = 0.165 \pm 0.025$. Полученные результаты дают более точную информацию о рождении очарованных частиц в нейтринных взаимодействиях, например, для оценки фона при изучении $\nu_{\mu} \rightarrow \nu_{\tau}$ осцилляций в эксперименте OPERA [15].

- Измеренное отношение вероятностей рождения положительных и отрицательных мезонов $(N_{\pi^+} + N_{K^+})/(N_{\pi^-} + N_{K^-})$ во взаимодействиях нейтрино с углеродом как функция импульсов мезонов предоставляет новую информацию для настройки модели рождения упомянутых адронов.

На защиту выносятся следующие основные результаты и положения:

- Разработка "слепого" метода для исследования спектра инвариантной массы при резонансном анализе новых состояний в нейтринных взаимодействиях.
- Предложение и реализация процедуры оценки комбинаторного фона, основанная на методе "смешивания" пар продуктов распада резонанса из разных событий в экспериментальных данных, для ГНР взаимодействий лептонов с нуклонами. Показано, что учет энергии адронной струи, угловых и импульсных распределений предполагаемых продуктов распада от события к событию позволяет хорошо предсказывать данный источник фона.
- Построение алгоритма идентификации протонов для наибольшей чувствительности к сигналу от пентакварка Θ^+ для различных значений $x_{\rm F}$ и $\cos \theta^*$, где θ^* угол между протоном в системе покоя Θ^+ и импульсом Θ^+ в лабораторной системе отсчета.
- Результат исследования спектра инвариантной массы pK_S^0 для оценки существования пентакварка Θ^+ для всех значений переменной x_F в $\nu_\mu N$ взаимодействиях эксперимента NOMAD. Измерение верхнего предела на 90% уровне достоверности на рождение пентакварка Θ^+ , составляющего $2,13\cdot 10^{-3}$ на одно нейтринное событие в области масс $1530~\mathrm{MpB/c^2}$ после интегрирования по всем значениям x_F .

- Отбор событий димюонного типа в переднем калориметре детектора NOMAD с порогом чувствительности к рождению очарованного кварка на реконструированную энергию нейтрино равным 6 ГэВ. Оценка фона от распадов π^+ , K^+ мезонов по лептонной моде распада на $\nu_\mu \mu^+$. После вычета фона зарегистрировано 15 340 событий димюонного типа в интервале энергий от 6 до 300 ГэВ.
- Измерение дифференциальных отношений сечений димюонного рождения с-кварка и инклюзивного взаимодействия нейтрино с нуклоном по каналу заряженного тока $\mathcal{R}_{\mu\mu} = \sigma_{\mu\mu}/\sigma_{\rm cc}$ как функций реконструированной энергии нейтрино, переносимого импульса взаимодействующего партона (кварка) x-Бьёркена и полной энергии в системе центра масс W-бозона и взаимодействующего партона (кварка) при энергиях пучка в широком интервале $E_{\nu} \in [6;300]$ ГэВ для $x \in [0;0,75]$ и $Q^2 > 1$ ГэВ $^2/c^2$.
- Уточнение значения параметра фрагментации очарованного кварка в параметризации Коллинз-Спиллера, полученного из совместного анализа данных экспериментов Е531 и NOMAD: $\epsilon=0.165\pm0.025$.
- Измерение отношения вероятностей рождения положительно и отрицательно заряженных мезонов $(N_{\pi^+} + N_{K^+})/(N_{\pi^-} + N_{K^-})$ во взаимодействиях нейтрино с углеродом как функции импульсов мезонов для моделируемых событий и накопленных экспериментальных данных.

Апробация работы Основные результаты диссертации докладывались и обсуждались на следующих научных российских и международных конференциях: VIII, IX, XIV научные конференции молодых ученых и специалистов ОИЯИ (Дубна, 2004, 2005, 2010), XXXIII международная конференция по физике высоких энергий (Москва, 2006), XXVIII и XXX международные рабочие совещания по нейтринной физике на ускорителях (Дубна, 2006,

2008), XII международная конференция по спектроскопии адронов (Фраскати, Италия, 2007), рабочее совещание по поляризации странного кварка в глубоко-неупругом рассеянии лептонов с нуклонами (Тренто, Италия, 2008), XIV международная Ломоносовская конференция по физике частиц (Москва, 2009), XVIII международное рабочее совещание по физике глубоко-неупругого рассеяния (Флоренция, Италия, 2010), а также на рабочих совещаниях и научных семинарах ЛЯП и ЛФВЭ ОИЯИ, ИФВЭ, ИНФН, ИГУ, коллаборации NOMAD, на российских и международных школах: IV, V, VIII, X летние Байкальские школы ОИЯИ-ИГУ по физике элементарных частиц и астрофизике (Б.Коты, 2004, 2005, 2008, 2010), Европейская школа по физике высоких энергий ЦЕРН-ОИЯИ (Трест, Чехия, 2007), II международная школа по физике нейтрино (Йокогама и Токай, Япония, 2010), IV международная школа по физике нейтрино им. Б.М. Понтекорво (Алушта, Украина, 2010).

Публикации. Материалы диссертации опубликованы в 12 печатных работах, из них 3 статьи в рецензируемых журналах [A1, A2, A3], 6 статей в сборниках трудов конференций [A4, A5, A6, A7, A8, A9] и 3 тезиса докладов [A10, A11, A12].

Личный вклад автора Автор участвовал во всех работах, результаты которых вошли в диссертацию: изучении и настройке моделирования исследуемых процессов, обработке экспериментальных данных и интерпретации результатов, их представлении и опубликовании.

Структура и объем диссертации Диссертация состоит из введения, четырех глав, заключения, списка литературы и включает список сокращений и обозначений и приложение.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

В первой главе приводится обзор литературных источников по теме диссертации. Конспективно излагается $SU(3)_F$ кварковая модель и систематизация адронов на её основе. Приводятся сведения о мультиплетах адронов. Рассматриваются кварковая структура протона и современные методы её теоретического и экспериментального исследования. Приводится обзор экспериментальных данных по измерению сечений димюонного рождения в нейтринных взаимодействиях. Подробно обсуждаются сегодняшние неопределенности в знании странного моря нуклона. Дается обзор теоретических и экспериментальных исследований по оценке существования и вероятности рождения экзотических пентакварковых состояний.

Во второй главе дается описание пучка нейтрино и всех важнейших компонентов установки NOMAD на ускорителе SPS в ЦЕРН. Определяется система координат детектора, кратко описываются система вето, передний калориметр, дрейфовые камеры, триггерные плоскости, детектор переходного излучения, детектор ливней, электромагнитный калориметр, адронный калориметр и мюонные камеры. На рис. 1 представлена схема детектора NOMAD.

В главе определяются триггеры (наборы сигналов электроники), используемые при наборе данных. Дается принципиальная схема реконструкции событий, цепочка программ моделирования пучка нейтрино и событий взаимодействия нейтрино в установке NOMAD.

Рис. 1. Детектор NOMAD (вид сбоку).

В третьей главе изложен анализ по оценке существования пентакварка Θ^+ в распаде на протон и K^0_S -мезон в инклюзивных нейтринных взаимодействиях эксперимента NOMAD. Для анализа использовались данные, накопленные в дрейфовых камерах за четыре года работы детектора. Изложен подход "слепого" метода для оценки рождения пентакварка Θ^+ с предсказываемой массой в области 1530 $M \ni B/c^2$, который основан на системе заранее продуманных процедур и критериев качества, применяемых к экспериментальным данным один раз, что позволяет исключить предвзятость экспериментатора к получаемому результату.

Обнаружение резонансной частицы, распадающейся на несколько частиц, определяется наличием пика в спектре инвариантной массы её продуктов распада. Это связано с тем, что число рождающихся частиц пропорционально сечению процесса, которое имеет пик вблизи массы резонанса [2, 16].

Типичный вид реконструированного ГНР события $\nu_{\mu}N \to \mu^{-}pK_{S}^{0}X$ в дрейфовых камерах с инвариантной массой пары pK_{S}^{0} в области предсказываемой массы Θ^{+} показан на рис. 2.

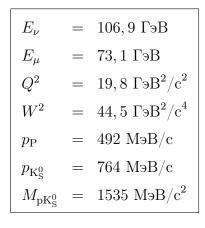


Рис. 2. Событие из экспериментальных данных с кандидатом в пентакварковое состояние Θ^+ (run 16 737, событие 14 693). В легенде слева приведена информация о событии: реконструированные энергии налетающего нейтрино E_{ν} и вылетающего мюна E_{μ} , квадрат переданного 4-импульса от нейтрино к взаимодействующему кварку Q^2 и квадрат инвариантной массы родившейся адронной системы W^2 , импульсы протона и K_S^0 -мезона, инвариантная масса пары pK_S^0 .

В главе описываются процедуры отбора нейтринных событий по каналам заряженного и нейтрального токов, идентификации K^0_S -мезонов и протонов. Полная статистика отобранных событий показана в таб. 1.

Таблица 1. Количество реконструированных $\nu_{\mu} N$ взаимодействий, идентифицированных K^0_{S} -мезонов и средняя множественность протонов на одно нейтринное событие.

	$N_{ u_{\mu} m N}$	$N_{ m K_S^0}$	$N_{ m p}/N_{ u_{\mu}{ m N}}$
Заряженный ток	785 232	15 934	0,77
Нейтральный ток	393 539	7 657	0,72
Полная стат.	1 178 771	23 591	_

Проводится сравнение реконструированных кинематических переменных в моделировании Монте Карло и в накопленных экспериментальных данных. Рассматриваются глобальные переменные нейтринных взаимодействий, переменные, описывающие рождение и распад K_S^0 -мезонов, и переменные, характеризующие поведение протонов в адронной струе.

Детально описывается процедура оценки фонового распределения на основе метода "смешанных" пар продуктов распада резонанса из разных событий в экспериментальных данных. Для оценки фонового спектра инвариантной массы pK_S^0 для каждого протона из одного события были отобраны несколько K_S^0 -мезонов из других событий в экспериментальных данных. При подборе таких пар было уделено особое внимание свойствам оригинальных событий, таких как множественность рождения протонов и K_S^0 , их импульсы, угол между ними, а также энергия и направление распространения адронной системы в событиях. Спектр инвариантной массы полученных пар являлся основным методом оценки фона. Процедура была проверена на распадах $\Lambda \to p\pi^-$, $K_S^0 \to \pi^+\pi^-$ и $K^{*\pm} \to K_S^0\pi^\pm$. Во всех случаях наблюдается хорошее согласие между экспериментальными данными, моделированием Монте Карло и предсказываемыми фоновыми распределениями. Наблюдается также хорошее согласие для спектра инвариантной массы pK_S^0 во всей области рассматриваемых масс, исключая сигнальную область Θ^+ .

Аглоритм отбора протонов использует информацию трех поддетекторов при построении функций правдоподобия для отделения протонов от других положительно заряженных частиц, регистрируемых в детекторе. Критерии отбора протонов были подобраны для наибольшей чувствительности (максимальной значимости) к сигналу от пентакварка Θ^+ для различных значений $x_{\rm F}$ и $\cos\theta^*$. Алгоритм был проверен на распаде $\Lambda \to p\pi^-$ вблизи первичной вершины $\nu_\mu {\rm N}$ взаимодействий как для моделируемых событий, так и для накопленных экспериментальных данных.

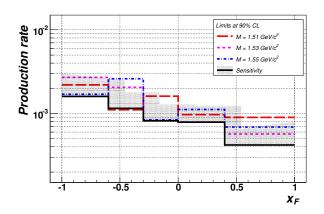

В спектре инвариантной массы pK_S^0 мы не наблюдаем сигнал от Θ^+ для всех значений переменной x_F в $\nu_\mu N$ взаимодействиях в рассматриваемом эксперименте. В таб. 2 представлены полученные верхние пределы на числа со-

Таблица 2. Результат аппроксимации спектра инвариантной массы pK_S^0 в предположении наличия сигнала от Θ^+ в области масс 1530. Приведены: достоверность сигнала S_L на число сигнальных событий в спектре N_S (fit) и верхние пределы на 90% уровне достоверности на число Θ^+ кандидатов N_S^{up} и на относительное рождение R^{up} на 10^3 нейтринных взаимодействий.

$x_{\rm F}$ интервал	[-1;-0,6)	[-0,6;-0,3)	[-0,3;0)	[0;0,4)	[0,4;1]	[-1;1]
$N_{ m S}$ (fit)	12	29	-26	-34	24	-33
$S_{ m L}$	1,38	1,72	1,35	1,85	1,25	0,97
$N_{ m S}^{ m up}$	28	68	39	36	52	67
R^{up}	2,80	2,60	0,84	0,79	1,00	2,13

бытий и на вероятность рождения Θ^+ на одно нейтринное взаимодействие для пяти интервалов по переменной $x_{\rm F}$. Измеренный верхний предел на 90% уровне достоверности на рождение пентакварка Θ^+ , составляет $2,13\cdot 10^{-3}$ на одно нейтринное событие в области масс $1530~{\rm MpB/c^2}$ после интегрирования по всем значениям $x_{\rm F}$, на основании которого нельзя сделать утверждение о рождении пентакварка Θ^+ . Проведенный нами анализ не подтверждает полученный ранее факт обнаружения пентакварка Θ^+ из анализа данных пузырьковых камер BEBC (WA21, WA25, WA59) в ЦЕРН и больших 15-ти дюймовых пузырьковых камер (E180, E632) в лаборатории Ферми [17]. На рис. 3 показаны чувствительность, верхний предел рождения Θ^+ и распределение от потенциального Θ^+ сигнала как функции $x_{\rm F}$.

Результаты третьей главы опубликованы в работах [A1, A2, A4, A5, A6, A7, A10].

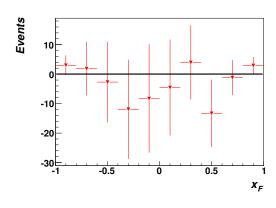
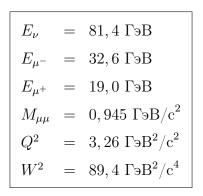



Рис. 3. Слева показаны чувствительность и верхний предел рождения на 90% уровне достоверности (СL) Θ^+ как функции x_F для различных значений масс Θ^+ : 1510, 1530, 1550 MэB/c². Справа представлено распределение по переменной x_F от потенциального Θ^+ сигнала.

В четвертой главе изложен анализ рождения очарованного кварка по димюонной сигнатуре в нейтринных взаимодействиях эксперимента NOMAD. Для анализа использовались данные, накопленные в переднем калориметре за четыре года работы детектора. Типичный вид реконструированного события ν_{μ} N $\rightarrow \mu^{-}\mu^{+}X$ в детекторе NOMAD с первичной вершиной взаимодействия в переднем калориметре показан на рис. 4.

В главе описываются процедуры отбора нейтринных событий по каналу заряженного тока, идентификация положительно и отрицательно заряженных мюонов. Описывается система триггеров переднего калориметра, эффект насыщения сигнала регистрации электроники и её калибровка. Проводится сравнение реконструированных кинематических переменных в моделированных событиях и в накопленных экспериментальных данных. Рассматриваются глобальные переменные нейтринных взаимодействий и переменные, описывающие рождение димюонных событий в адронной струе. Для всех переменных наблюдается хорошее согласие между данными и применяемым моделированием.

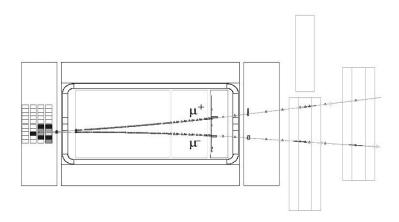


Рис. 4. Димюонное событие из экспериментальных данных (run 8 138, событие 23 906). В легенде слева приведена информация о событии: реконструированные энергии налетающего нейтрино E_{ν} и вылетающих мюонов, лидирующего E_{μ^-} и "очарованного" E_{μ^+} , инвариантная масса этой пары $\mu^-\mu^+$, квадрат переданного 4-импульса от нейтрино к взаимодействующему кварку Q^2 и квадрат инвариантной массы родившейся адронной системы W^2 .

Детально описывается процедура оценки фона от распадов π^+ , K^+ мезонов по лептонной моде распада на $\nu_{\mu}\mu^+$. Для расчета числа фоновых событий были использованы димюонные события одинакового знака в переднем калориметре (FCAL), умноженные на коэффициент из моделировании Монте Карло (MC)

$$N_{\mu\mu_{bg}^{+}}^{ ext{data}} = N_{\mu\mu^{-}}^{ ext{fcal}} \cdot \left(N_{\mu\mu_{bg}^{+}}^{ ext{MC}}/N_{\mu\mu^{-}}^{ ext{MC}}\right)^{ ext{DCH}}_{ ext{corr}}.$$

Этот коэффициент был рассчитан при измерении отношения вероятностей рождения положительно и отрицательно заряженных легких мезонов $(N_{\pi^+} + N_{K^+})/(N_{\pi^-} + N_{K^-})$ как функция импульсов мезонов в дрейфовых камерах (DCH).

Таким образом, после вычета фона реконструировано 15 340 димюонных событий и порядка 9 млн. событий инклюзивных взаимодействий ν_{μ} N по каналу заряженного тока на железе. Данная статистика димюонных событий является рекордной на текущий момент (см. таб. 3).

Таблица 3. Сопоставление мировых данных по статистике димюонных событий и энергии нейтринного пучка (диапозон и среднее значение).

Эксп.	Публ.	Стат. $(N_{\mu\mu})$	E_{ν} (ГэВ)
CDHS [18]	Янв 1982	9 922	30-250 (20)
CHARM II [19]	Окт 1999	3 100	35-290 (24)
CCFR [20, 21]	Фев 2001	5 030	30-600 (150)
NuTeV [21]	Фев 2001	5 102	20-400 (157.8)
CHORUS [22]	Апр 2008	8 910	15-240 (27)
NOMAD	2011	15 340	6-300 (27)

Для анализа мы выбрали измерение отношения двух сечений, димюонного $\sigma_{\mu\mu}$ и инклюзивного σ_{cc} , как функции кинематических переменных

$$\mathcal{R}_{\mu\mu}(\mathbf{x}) \equiv \sigma_{\mu\mu}/\sigma_{\mathrm{cc}} \simeq N_{\mu\mu}/N_{\mathrm{cc}}(\mathbf{x}),$$
 где $\mathbf{x} = E_{\nu}, x, \sqrt{\hat{s}}$

Здесь $N_{\mu\mu}$, $N_{\rm cc}$ - числа регистрируемых событий по димюонной сигнатуре и нейтринных событий по каналу заряженного тока соответственно, E_{ν} - энергия нейтрино, x - масштабная переменная Бьёркена и $\sqrt{\hat{s}} = Q^2(1/x-x)$ - полная энергия в системе центра масс W-бозона и взаимодействующего партона, позволяющая измерить значение массы с-кварка. Измерение относительной характеристики $\mathcal{R}_{\mu\mu}$ позволяет исключить систематические ошибки, входящие в её числитель и знаменатель.

Измерены дифференциальные отношения сечений димюонного рождения с-кварка и инклюзивного взаимодействия нейтрино с нуклоном по каналу заряженного тока $\mathcal{R}_{\mu\mu}$ с оценкой систематических погрешностей, связанных в основном с предсказанием фоновых событий, фрагментацией с-кварка в очарованные адроны и ошибкой на значение массы с-кварка (см. рис. 5).

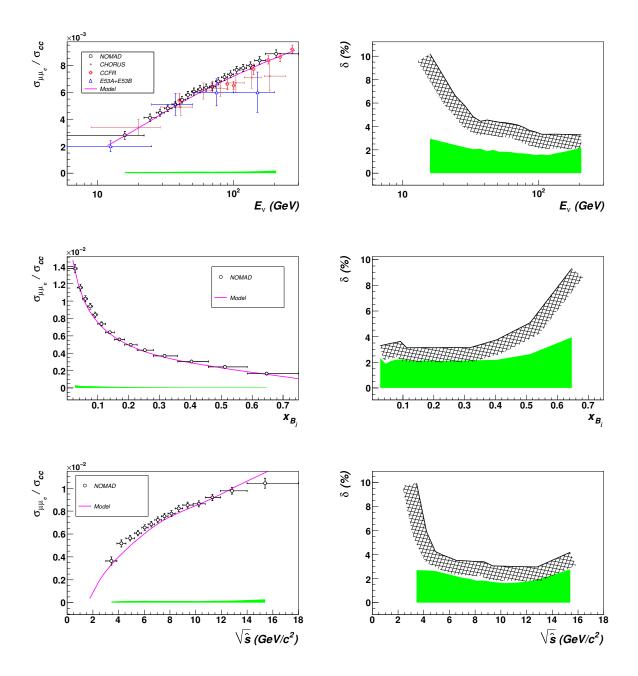


Рис. 5. Отношение $\mathcal{R}_{\mu\mu}$ между сечениями димюонного рождения с-кварка и инклюзивного взаимодействия нейтрино с нуклоном по каналу заряженного тока: энергия нейтрино (вверху), переносимый импульс взаимодействующего партона (кварка) х-Бьёркена (середина) и полная энергия в системе центра масс W-бозона и взаимодействующего партона (кварка) $\sqrt{\hat{s}}$ (внизу). Отдельно статистические (гистограмма) и систематические (подложка) неопределенности показаны на распределениях справа. Представленная функция (Model) построена независимо от данных эксперимента NOMAD, и основывается на глобальной аппроксимации существующих данных из анализа [3].

Результаты четвертой главы опубликованы в работах [А3, А8, А9, А11, А12].

Приложение завершает диссертацию более детальной информацией о сечении рождения очарованного кварка. Приводятся таблицы значений отношения сечений рождения очарованного кварка по димюонной сигнатуре и инклюзивного взаимодействия нейтрино с нуклоном по каналу заряженного тока $\mathcal{R}_{\mu\mu} = \sigma_{\mu\mu}/\sigma_{\rm cc}$ как функций кинематических переменных: энергии нейтрино, переносимого импульса взаимодействующего партона (кварка) x-Бьёркена и полной энергии в системе центра масс W-бозона и взаимодействующего партона (кварка) $\sqrt{\hat{s}}$.

В заключении сформулированы основные результаты и выводы:

- Исследован спектр инвариантной массы pK_S^0 в нейтринных взаимодействиях эксперимента NOMAD для оценки существования пентакварка Θ^+ при различных значениях доли его продольного импульса в системе центра масс налетающего нейтрино и мишени x_F . В изучаемом спектре не наблюдается значимого сигнала от пентакварка Θ^+ с предсказываемой массой в области $1530 \text{ M} \cdot \text{B}/\text{c}^2$ для всей области значений x_F .
- Впервые в нейтринных взаимодействиях измерен верхний предел на 90% уровне достоверности на рождение пентакварка Θ^+ , составляющий 2,13· 10^{-3} на одно нейтринное событие в области масс 1530 MэB/с² после интегрирования по всем значениям $x_{\rm F}$. Оценка была получена "слепым" методом, впервые разработанным и реализованным в нейтринных взаимодействиях для резонансного анализа.
- Для анализа резонансных состояний разработана процедура оценки комбинаторного фона, основанная на методе "смешивания" пар продуктов распада резонанса из разных событий в экспериментальных данных, для ГНР взаимодействий лептонов с нуклонами. Показано, что учет энергии адронной струи, угловых и импульсных распределений предполагаемых продуктов распада от события к событию позволяет предсказывать данный источник фона с точностью, равной статистическим экспериментальным ошибкам.
- Основываясь на информации трех поддетекторов NOMAD, произведен расчет функции максимального правдоподобия для протонной и фоновой гипотез с наибольшей чувствительностью к сигналу Θ^+ при различных значениях x_F и $\cos \theta^*$, где θ^* угол между протоном в системе покоя Θ^+ и импульсом Θ^+ в лабораторной системе отсчета.

- В переднем калориметре детектора NOMAD зарегистрирована наибольшая в мире статистика событий димюонного типа с рождением с-кварка, равная 15 340. Минимальная реконструированная энергия нейтрино в спектре зарегистрированных событий, составляющая 6 ГэВ, обеспечивает наилучшую чувствительность данных к массе с-кварка среди всех нейтринных экспериментов, исследовавших димюонные события.
- На основании полученных данных эксперимента NOMAD измерено отношение сечений рождения очарованного кварка по димюонной сигнатуре и инклюзивного взаимодействия нейтрино с нуклоном по каналу заряженного тока $\mathcal{R}_{\mu\mu} = \sigma_{\mu\mu}/\sigma_{\rm cc}$ при энергиях пучка в широком интервале $E_{\nu} \in [6;300]$ ГэВ при $x \in [0;0,75]$ и $Q^2 > 1$ ГэВ $^2/c^2$. Проведена оценка систематических погрешностей, связанных в основном с предсказанием фоновых событий, фрагментацией с-кварка в очарованные адроны и ошибкой на значение массы с-кварка. По сравнению с другими экспериментами точность измерения $\mathcal{R}_{\mu\mu}$ для всей кинематической области увеличена в 2-3 раза. Впервые в нейтринных взаимодействиях отношение $\mathcal{R}_{\mu\mu}$ получено в области [0,3;0,75] для переменной x-Бьёркена.
- Уточнен параметр фрагментации очарованного кварка в параметризации Коллинз-Спиллера, который совместно для экспериментов Е531 и NOMAD составляет $\epsilon=0.165\pm0.025$.
- Измерено отношение вероятностей рождения положительно и отрицательно заряженных мезонов $(N_{\pi^+}+N_{K^+})/(N_{\pi^-}+N_{K^-})$ во взаимодействиях нейтрино с углеродом как функция их импульсов для моделируемых событий и для накопленных экспериментальных данных.

Список публикаций

- [A1] A. Chukanov, ... O. Samoylov, ... et al. Production properties of K*(892)+-vector mesons and their spin alignment as measured in the NOMAD experiment // Eur. Phys. J. 2006. Vol. C46. Pp. 69–79.
- [A2] O. Samoylov et al. Search for the exotic Theta+ resonance in the NOMAD experiment // Eur. Phys. J. 2007. Vol. C49. Pp. 499–510.
- [A3] R. Petti, O. Samoylov. Precise measurement of Charm Dimuon Production from Neutrino Interactions at NOMAD // Письма в ЭЧАЯ. 2011. Т. 42 №7 (в печати).
- [A4] О. Б. Самойлов. Идентификация протонов для поиска экзотического барионного резонанса Theta+ в распаде на протон и K_S^0 -мезон в эксперименте NOMAD // Тезисы докладов VIII научной конференции молодых ученых и специалистов ОИЯИ, 2 6 февраля 2004. Дубна, 2004. С. 172–175.
- [А5] О. Б. Самойлов. Поиск пентакварка Theta+ в эксперименте NOMAD // Тезисы докладов IX научной конференции молодых ученых и специалистов ОИЯИ, 31 января 6 февраля 2005. Дубна, 2005. С. 283–286.
- [A6] V. Cavasinni, ... O. Samoylov, ... [on behalf of the NOMAD Collaboration]. A search of the Theta+ pentaquark baryon in neutrino interactions in the NOMAD experiment // Proceedings of XXXIII International Conference on High Energy Physics, July 26 - August 2, 2006. — Moscow, 2006. — Pp. 972–975.
- [A7] V. Cavasinni, D. Naumov, O. Samoylov. A search for an exotic Theta+baryon in inclusive neutrino-nucleon interactions in the NOMAD experiment // Proceedings of XII International Conference on Hadron Spec-

- troscopy HADRON 07, Frascati Physics Series, October 7-13, 2007.—2007.—Vol. XLVI.—Pp. 1405–1416.
- [A8] О. Б. Самойлов [для коллаборации NOMAD]. Исследование событий ди-мюонного рождения чарма из странного моря нуклона в нейтринных взаимодействиях эксперимента NOMAD // Тезисы докладов XIV научной конференции молодых ученых и специалистов ОИЯИ, 1 6 февраля 2010. Дубна, 2010. С. 114–117.
- [A9] R. Petti, O. Samoylov. Precise measurement of Charm Dimuon Production from Neutrino Interactions at Nomad // Proceedings of XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects, April 19 23, 2010. Florence, 2010.
- [A10] O. Samoylov. Search for PentaQuark Theta+ at NOMAD // XXVIII International Workshop Neutrino Physics on Accelerators, January 25-27, 2006. Dubna, 2006.
- [A11] O. Samoylov. A study of dimuon events in the NOMAD experiment // XXX International Workshop Neutrino Physics on Accelerators, January 23-25, 2008. Dubna, 2008.
- [A12] O. Samoylov. Charm production in neutrino DIS and strangeness in the nucleon // Trento workshop on Strangeness polarization in semi-inclusive and exclusive Lambda production, October 27-30, 2008. Trento, 2008.

Цитированная литература

- [1] \mathcal{I} . \mathcal{E} .
- [2] K. Nakamura. Review of particle physics // J. Phys. 2010. Vol. G37. P. 075021.
- [3] S. Alekhin, Sergey A. Kulagin, R. Petti. Determination of Strange Sea Distributions from Neutrino- Nucleon Deep Inelastic Scattering // Phys. Lett. 2009. Vol. B675. Pp. 433–440.
- [4] J. D. Bjorken, Emmanuel A. Paschos. Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon // Phys. Rev. 1969. Vol. 185. Pp. 1975–1982.
- [5] R. P. Feynman. Photon-hadron interactions. Reading 1972, 282 p.
- [6] M. E. Sainio. Pion nucleon sigma-term: A review // PiN Newslett. 2002. Vol. 16. Pp. 138–143.
- [7] Dmitri Diakonov, Victor Petrov, Maxim V. Polyakov. Exotic anti-decuplet of baryons: Prediction from chiral solitons // Z. Phys. — 1997. — Vol. A359. — Pp. 305–314.
- [8] Michael Danilov, Roman Mizuk. Experimental Review on Pentaquarks.— 2007.
- [9] J. Altegoer et al. The NOMAD experiment at the CERN SPS // Nucl. Instrum. Meth. 1998. Vol. A404. Pp. 96–128.
- [10] P. Astier et al. Prediction of neutrino fluxes in the NOMAD experiment // Nucl. Instrum. Meth. 2003. Vol. A515. Pp. 800–828.
- [11] Luigi Di Lella. NOMAD home page at CERN. http://nomad-info.web.cern.ch/nomad-info/.

- [12] P. Abbon et al. The COMPASS Experiment at CERN // Nucl. Instrum. Meth.-2007.- Vol. A577. - Pp. 455–518.
- [13] P. D. B. Collins, T. P. Spiller. The Fragmentation of Heavy Quarks // J. Phys.-1985.- Vol. G11. P. 1289.
- [14] N. Ushida et al. Production characteristics of charmed particles in neutrino interactions // Phys. Lett. 1988. Vol. B206. Pp. 380–384.
- [15] R. Acquafredda et al. The OPERA experiment in the CERN to Gran Sasso neutrino beam // JINST. 2009. Vol. 4. P. P04018.
- [16] *М. В. Терентьев.* Введение в теорию элементарных частиц. М.:ИТЭФ, 1998.-236 с.
- [17] A. E. Asratyan, A. G. Dolgolenko, M. A. Kubantsev. Evidence for formation of a narrow pKshort resonance with mass near 1533 MeV in neutrino interactions // Phys. Atom. Nucl. 2004. Vol. 67. Pp. 682–687.
- [18] H. Abramowicz et al. Experimental Study of Opposite Sign Dimuons Produced in Neutrino and anti-neutrinos Interactions // Z. Phys. 1982. Vol. C15. P. 19.
- [19] P. Vilain et al. Leading-order QCD analysis of neutrino induced dimuon events // Eur. Phys. J. 1999. Vol. C11. Pp. 19–34.
- [20] A. O. Bazarko et al. Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production // Z. Phys. 1995. Vol. C65. Pp. 189–198.
- [21] M. Goncharov et al. Precise measurement of dimuon production cross-sections in nu/mu Fe and anti-nu/mu Fe deep inelastic scattering at the Tevatron // Phys. Rev. 2001. Vol. D64. P. 112006.

[22] A. Kayis-Topaksu et al. Leading order analysis of neutrino induced dimuon events in the CHORUS experiment // Nucl. Phys. — 2008. — Vol. B798. — Pp. 1–16.