

Frank Laboratory of Neutron Physics presents

Frank Laboratory of Neutron Physics

FLNP 7-Year Research Program

A.V.Belushkin

Report to the 92 Session of JINR Scientific Council

Dubna, 6 June, 2002

Contents

- Basic Facilities:
 - IBR-2
 - IREN

Scientific Investigations. First Priorities.

- Neutron Investigations of Structure and Dynamics of Condensed Matter
- Nuclear Physics with Neutrons
- Applied Research
- R&D on Advanced Detectors
- International Cooperation
- Personnel
- Conclusions

IBR-2 Reactor Modernization Program

IBR-2 is included into 20 years strategic program of neutron scttering research in Europe.

Main Parameters:

Peak power in pulse-1500 MWFlux in moderator $-2.4 \cdot 10^{16} n cm^{-2} s^{-1}$ Pulse width $-200 \mu s$

of modernization: higher nuclear safety, reliability and stability, longer life-time of

major equipment

2003	2004	2005	2006	2007	2008		2009	2010
	IBR-2 operation							
MR-3								
Fuel elements								
				Dismar	Dismantling			
					Equipment Installation			
							IBR-2M startup	Operation for expt.

Σ²⁰⁰³⁻²⁰⁰⁹ = 4620 k\$ JINR = 2100 k\$ MAE = 2520 k\$

Plan for Creation and Operation of IREN source

Main Parameters:

Electron beam energy-200 MeVNeutron flux -10^{15} n/s Neutron pulse duration-400 nsRepetition rate-150 Hz

2002	2003	2004	2005	2006-2009	
Creation and start, first stage					1572 K\$
			Full completion		350 K\$
	Moderni	ization of spe	ectrometers		950 K\$
				Data taking	760 K\$

Neutron Investigations of Structure and Dynamics of Condensed Matter. Scientific Research

Nano-structures. Biopolymers. Fullerenes in solutions. Medical and biological applications

Systems with strong electron correlations. Magnetism of layered nano-structures and organic compounds

Crystalline structure and defects in constructional materials for nuclear power engineering

Neutron Investigations of Structure and Dynamics of Condensed Matter. Experimental Methods

Neutron optics with polarized and cold neutrons. Reflectometry and small angle scattering

Diffractometry of internal stresses and textures of materials

High-efficiency neutron detectors

Nuclear Physics with Neutrons. Fundamental Research

Fundamental symmetries investigation

Establishing the upper limit for the T - violating term in the forward scattering neutron amplitude, which is proportional to T - violation matrix element Near 3.2 eV p - wave resonance in ¹³¹Xe the experimental effect to be expected $R \approx \sqrt{\frac{\Gamma_n^p}{\Gamma_n^s}} \cdot \frac{v_{PT}}{E_s - E_p} \cdot \frac{(E_s - E_p)^2}{\Gamma^2} \leq 10^{-6}$ This value corresponds to $\lambda^{QCD} = \frac{V_{PT}}{V_P} \leq 10^{-4}$ where $v_P \approx 10^{-3}$ eV

nn-Scattering Direct Measurements

The global goal is obtaining new results concerning the **charge symmetry of nuclear forces**. The expected specific results are as follows:

- Performing for the first time a direct measurement of neutron-neutron scattering.
- Determining the neutron-neutron scattering length at **3-5% level**.

Indirect measurements a_{nn} : 2000: a_{nn} = -(18.7±0.4) fm (mean value) a_{pp} - a_{nn} = -(1.3±0.6) fm 2001: a_{nn} = -(16.3±0.4) fm (Bonn group) a_{pp} - a_{nn} = (1.1±0.6) fm

Applied Research

Moss Biomonitoring and Nuclear Relative Technique

Creation of Subcritical Assembly Driven by proton accelerator (project SAD)

R & D on Advanced Detectors

HEND: High Energy Neutron Detector. First Results

HEND has 4 signals of neutrons from sensors SD, MD, LD and SC/IN, and for each of them the map of orbital measurements is currently produced

ສໍາຫລັບເອັດແມ່ນອຸດາສາ

The map of MD sensor is contributed by epithermal neutrons mainly left

This MD map is consistent with the map for epithermal neutrons from Neutron Spectrometer

Count rate over the South Pole is 5-10 times lower (blue region) – doubtless water presence

International Cooperation

JINR member-states

Collaboration with other neutron centers

Personnel

Distribution of FLNP scientific and technical staff by age

JINR University Center, MSU Interfaculty Center, MSU Chair on neutron scattering, etc. Regular Schools on neutron scattering and synchrotron radiation for students and young scientists

Personnel

Distribution of FLNP scientific and technical staff by age

Similar training programs are needed for young engineers and technicians

Conclusions

- It is mandatory to complete the IBR-2 modernisation by 2009. This requires to follow strictly the approved working and financing plans according to JINR-MINATOM agreement
- IREN project should be realised to provide unique possibilities for the JINR member-states to develop nuclear physics research with neutrons
- ✓ FLNP research program focuses on the most efficient use of JINR basic facilities with the aim of obtaining new results of the world class in fundamental and applied sciences in the interests of JINR member-states
- Training of young engineering and technical staff should be among the first priority issues. JINR Directorate should continue work on salaries increase and solution of accommodation problem
- ✓ All FLNP plans could be realized in the frame of full planned JINR budget