Reactor Neutrino Experiments - Lecture II

- Precision Oscillation Physics With Reactor Antineutrinos -

Karsten Heeger

University of Wisconsin

http://neutrino.physics.wisc.edu

Outline

Lecture I - The First 50 Years: From The Discovery of the Antineutrino to the First Observation of Antineutrino Disappearance

- The Reactor as an Antineutrino Source
- Detection of Antineutrinos
- Discovery of the Free Antineutrino
- Search for Neutrino Oscillation with Reactor Antineutrinos
- Observation of Reactor Antineutrino Disappearance at KamLAND
- Other Reactor Neutrino Experiments

Lecture II - Precision Oscillation Physics with Reactor Antineutrinos

- Precision Measurement of Δm_{12}^2 at KamLAND
- Evidence for Oscillation of Reactor Antineutrinos at KamLAND
- Search for the Unknown Neutrino Mixing angle θ_{13}
- Future Opportunities: Precision Measurement of θ_{12}
- Applied Neutrino Physics: Reactor Monitoring with Antineutrinos

Discovery Era in Neutrino Physics: 1998 - Present

Pontecorvo Neutrino Physics School, Sec.

E_{prompt} (MeV)

reactor \bar{v} flux ~ 6 x 10⁶/cm²/sec

Antineutrino Detection in KamLAND

through inverse β -decay

Pontecorvo Neutrino Physics School, September 2007

Reactor Neutrino Physics 1956-2004

Precision Neutrino Oscillation Parameters with KamLAND

events/day

Updates to 2007 KamLAND analysis:

- increased livetime
- lowered analysis threshold
- modified analysis to enlargen the fiducial volume
- reduced uncertainty in ¹³C(α,n)¹⁶O backgrounds
- reduced systematic in target protons (fiducial volume)

In KamLAND 2007 analysis:fiducial volume: R_p , $R_d < 6.0m$ livetime1491 daysexposure: $2.44x10^{32}$ proton-year

expected rate in no oscillation [events/day]

Routine Calibration Sources

⁶⁸ Ge	e +	2 x 0.511 MeV
⁶⁵ Zn	γ	1.116 MeV
⁶⁰ Co	γ	2.506 MeV
²⁴¹ Am ⁹ Be		γ, n 2.22, 4.44, and 7.65 MeV
²⁰³ Hg		
¹³⁷ Cs		
l aser a	nd I FDs	

energy resolution $\sigma = 6.5\% / \sqrt{E}$ vertex reconstruction resolution ~ 12cm/ \sqrt{E}

KamLAND 4π "Full-Volume" Calibration

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, S

calibration deck

inside view of KamLAND detector

4π Full-Volume Calibration

4π calibration system

KamLAND Calibration Upgrade

Installation completed in December 2005

4π Full-Volume Calibration of KamLAND

 X_{prime} axis is defined by azimuth angle of the source.

Source positions are used determined to check the radial dependence of vertex and energy biases.

Karsten Heeger, Univ. Wisconsin

Karsten Heeger, Univ. Wisconsin

Radial Dependence of Vertex Reconstruction Biases

source location radii R ~ 2.8, 3.3, 4.1, 4.6, 5.5m

 \rightarrow for the range shown below all biases are within 3cm

spallation products are used to extend fiducial volume from 5.5 to 6m

Pontecorvo Neutrino Physics School, September 2007

E 600 400 200 0 -200 -200 -400 -600

1. construct PDF for accidental coincidence events $f_{acc}(E_d, \Delta R, \Delta T, R_p, R_d)$ - pair coincidence events in a delayed-coincidence window between 10ms and 20s

shaded region indicates the 1 sigma error band caused by the uncertainties in the likelihood selection

Prompt event energy spectrum for \overline{v}_e

Prompt event energy spectrum for \overline{v}_e

Ratio of the observed anti-neutrino spectrum to the expectation for nooscillation as a function of L_0/E .

(Observed-Bkg)

Ratio = No-Oscillation Expectation without geo-neutrinos 20% geo-neutrino flux uncertainty based on geology 1.4 CHOOZ data KamLAND data 1.4 KamLAND data best-fit osci. best-fit osci. best-fit osci. + Expected Geo v. 1.2 best-fit osci. + Expected Geo \overline{v}_e 1.2 Ratio 0.8 0.8 0.6 0.6 0.4 0.4 KamLAND 2004 0.2 0.2 KamLAND 2007 10 20 30 50 70 4060 30 20 50 60 70 80 100 90 40 $L_0/E_{\overline{v}}$ (km/MeV) $L_0/E_{\overline{v}}$ (km/MeV)

Karsten Heeger, Univ. Wisconsin

Ratio

L/E plot shows oscillatory behavior -

KamLAND 2007 Data

Alternative Hypotheses

The solid, dash and dot-dash curves show the expectation for the best-fit oscillation, best-fit decay, and best-fit decoherence.

Alternative Oscillation Wavelength

The solid, dash and dot-dash curves show the expectation for the best-fit LMA I, LMA 0, and LMA II.

LMA 0 and LMA II are disvafored at $> 4\sigma$

Karsten Heeger, Univ. Wisconsin

Systematic Uncertainties and Backgrounds

Systematic Uncertainties

Principal change from $2004 \rightarrow 2007$: fiducial volume $4.7\% \rightarrow 1.8\%$

energy threshold, cut eff.
→ energy scale, L-selection

Detector related	Reactor related		
Fiducial volume	1.8	$\overline{\nu}_e$ -spectra	2.4
Energy scale	1.5	Reactor power	2.1
L-selection eff.	0.6	Fuel composition	<1.0
OD veto	0.2	Long-lived nuclei	0.3
Cross section	0.2	Time lag	0.01
Livetime	0.03		
Sum of syst. uncert .:	2.4		3.4

total systematics: 4.1%

Background	Contribution	
Accidentals	80.5 ± 0.1	estimated backgrounds in t
⁹ Li/ ⁸ He	13.6 ± 1.0	data set
Fast neutron & Atmosperic ν	<9.0	
$^{13}C(\alpha,n)^{16}O$ G.S.	157.2 ± 17.3	
$^{13}C(\alpha,n)^{16}O^{12}C(n,n\gamma)^{12}O(4.4 \text{ MeV } \gamma)$	6.1 ± 0.7	
$^{13}C(\alpha,n)^{16}O 1^{st}$ exc. state (6.05 MeV e ⁺ e ⁻)	15.2 ± 3.5	
$^{13}C(\alpha,n)^{16}O 2^{nd}$ exc. state (6.13 MeV γ)	3.5 ± 0.2	
Total excluding geo-neutrinos	276.1 ± 23.5	(number of events)

http://www.sno.phy.gueensu.ca/

Pontecorvo Neutrino Physics School, September 2007

	Louisiana State University	University of Wisconsin	
California Institute of Technology	Kansas State University	IN2P3-CNRS and University of Bordeaux	
UC Berkeley/LBNL	University of Hawaii	UNC/NCSU/TUNL	
University of Alabama	Drexel University	University of Tennessee	
RCNS, Tohoku University	Colorado State University	Stanford University	

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, September 2007

KamLAND (Anti-)Neutrino Program

Reactor Antineutrinos

Solar ⁷Be Neutrinos

 $\nu_{\rm e}\text{+}\text{e}^\text{-} \twoheadrightarrow \nu_{\rm e}\text{+}\text{e}^\text{-}$

Terrestrial Antineutrinos

Anti-Neutrinos from the Sun

PRL 92:071301 (2004)

Other Physics Studies

- Oscillation analysis of \overline{v}_e spectrum
- Nucleon decay studies
- Supernova watch
- Muon spallation

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, Sep Nature 436, 499-503 (28 July 2005)

Precision Measurement of Oscillation Parameters

Karsten Heeger, Univ. Wisconsin

Pontec CPT invariance)

Precision Measurement of Oscillation Parameters

Pontecorvo Neutrino Physics School, Septer

 $\sin^2\!\theta_{13}$

Experiment & Theory

Global Fit

Theory

Madel(a)	Dofe	$\sin^2 04$
Model(s)	neis.	sin 2013
Minimal SO(10)	[22]	0.13
Orbifold SO(10)	[23]	0.04
SO(10) + Flavor symmetry	[24]	$1.2 \cdot 10^{-6}$
	[25]	$7.8 \cdot 10^{-4}$
	[26-28]	0.01 0.04
	[29-31]	0.09 0.18
SO(10) + Texture	[32]	$4 \cdot 10^{-4} 0.01$
	[33]	0.04
$SU(2)_L \times SU(2)_R \times SU(4)_c$	[34]	0.09
Flavor symmetries	[35-37]	0
	[38 - 40]	$\lesssim 0.004$
	[41-43]	$10^{-4} \dots 0.02$
	[40, 44-47]	0.04 0.15
Textures	[48]	$4 \cdot 10^{-4} 0.01$
	[49-52]	0.03 0.15
3×2 see-saw	[53]	0.04
	[54] (n.h.)	0.02
	(i.h.)	$> 1.6 \cdot 10^{-4}$
Anarchy	[55]	> 0.04
Renormalization group enhancement	[56]	0.03 0.04
M-Theory model	[57]	10^{-4}

we don t know 13...

Ref: FNAL proton driver report, hep-ex/0509019

ntecorvo Neutrino Physics School, September 2007

Is there μ - τ symmetry in neutrino mixing?

Can we search for leptonic \mathcal{P} ?

θ_{13} and Nuclear Astrophysics

neutrino oscillation effects on supernova light-element synthesis

understanding the origin of matter (vs antimatter)

Leptogenesis

Fukugita, Yanagida, 1986

• Out-of-equilibrium L-violating decays of heavy Majorana neutrinos leading to L asymmetry but leaving B unchanged. B_L-L_L is conserved.

Measuring θ_{13}

- appearance experiment $v_{\mu} \rightarrow v_{e}$
- measurement of $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ yields θ_{13}, δ_{CP}
- baseline O(100 -1000 km), matter effects present

Method 2: Reactor Neutrino Oscillation Experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

absorber

detector

decay pipe

 μ^+

 π^+

 π^+

- disappearance experiment $v_e \rightarrow v_e$
- look for rate deviations from 1/r² and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

target horn

$\theta_{\rm 13}$ from Reactor and Accelerator Experiments

reactor (\overline{v}_{e} disappearance) $P_{ee} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{v}}\right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{v}}\right)$

- Clean measurement of $\theta_{\rm 13}$

accelerator (v_e appearance)

- No matter effects

mass hierarchy

CP violation

matter

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \,. \end{split}$$

- $\text{sin}^22\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

Resolving the θ_{23} Parameter Ambiguity

Resolving the θ_{23} Parameter Ambiguity

High-Precision Measurement of θ_{13} with Reactor Antineutrinos

Search for θ_{13} in new oscillation experiment with <u>multiple detectors</u>

$$P_{ee} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{v}}\right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{v}}\right)$$
Small-amplitude oscillation
due to θ_{13} integrated over E
$$Large-amplitude oscillation due to \theta_{12}$$
Integrated over E
$$Large-amplitude oscillation due to \theta_{12}$$

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, September 2007

Baseline (km)

Two Oscillation Wavelengths: Δm^2_{atm} and Δm^2_{sol}

Karsten Heeger, Univ. Wisconsin

Experimental Resolution

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)$$

- Oscillation probability is dependent on neutrino energy and distance from source-detector
- Oscillatory behavior is "washed" out by:
 - Finite energy resolution
 - Effectively integrate over the ~7-10 % uncertainty in the measured energy
 - Spread in distances from reactor
 - Reactor core size
 - Varying distances from multiple reactors

Detecting Reactor \overline{v}_e

$$\overrightarrow{v_{e}} + p \rightarrow e^{+} + n$$

$$0.3 b \qquad \rightarrow p \rightarrow D + \gamma (2.2 \text{ MeV})$$

$$(delayed)$$

$$49,000 b \rightarrow + \text{Gd} \rightarrow \text{Gd}^{*}$$

$$\rightarrow \text{Gd} + \gamma's (8 \text{ MeV})$$

$$(delayed)$$

$$(delayed)$$

$$(delayed)$$

coincidence signal allows background suppression

0.1% Gadolinium-Liquid Scintillator

- Proton-rich target
- Easily identifiable n-capture signal above radioactive backgrounds
- Short capture time (τ~28 µs)
- Good light yield

¹⁵⁵Gd $\Sigma\gamma$ =7.93 MeV ¹⁵⁷Gd $\Sigma\gamma$ =8.53 MeV

other Gd isotopes with high abundance have very small neutron capture cross sections

Detector Target

0.1% Gadolinium-Liquid Scintillator

- Proton-rich target
- Easily identifiable n-capture signal above radioactive backgrounds
- Short capture time (τ~28 µs)
- Good light yield

Isotopic Abundance

Gd(152)	0.200
Gd(154)	2.18
Gd(155)	14.80
Gd(156)	20.47
Gd(157)	1 5.65
Gd(158)	24.84

Gd(160) 21.86

¹⁵⁵Gd Σγ=7.93 MeV ¹⁵⁷Gd Σγ=8.53 MeV

other Gd isotopes with high abundance have very small neutron capture cross sections

	fraction by weight		
С	0.8535		
Н	0.1	1288	
N	0.0	0003	
0	0.0164		
Gd	0.0010		
Gd cap	pture 86.7%		
H capture		13.2%	
C capture		0.08%	

Pontecorvo Neutrino Physics School

Principle of Relative Measurement

Measure ratio of interaction rates in detector (+shape)

Concept of Reactor θ₁₃ Experiments

Strategy/Method

- 1. relative measurement between detectors at different distances
- 2. cancel source (reactor) systematics
- 3. need "identical detectors" at near and far site

Concept of "Identical Detectors"

identical target

identical detector response

- \rightarrow <u>relative</u> target mass (measure to < 0.1%)
- → <u>relative</u> target composition between pairs of detectors (e.g. fill pairs of detectors from common reservoir)

→ calibrate <u>relative</u> antineutrino detection efficiency of detector pair to < 0.25%</p>

Ratio of Measured to Expected \overline{v}_e Flux

Expected precision in Daya Bay to reach $sin^22\theta_{13} < 0.01$

Original Idea: First proposed at Neutrino2000

World of Proposed Reactor θ_{13} Neutrino Experiments

Proposed and R&D.

Double Chooz

0

0

1

2

3

Exposure time in years

Δ

5

> Physics School, September 2007

Reactor Experiment for Neutrino Oscillations (RENO) at YongGwang, Korea

Daya Bay, China

http://dayawane.ihep.ac.cn/

and a reaction of the second second			State State		
		Sites	DYB	LA	Far
		DYB cores	363	1347	1985
For Site		LA cores	857	481	1618
1600 m from Ling Ao	Ling Ao Near	LA II cores	1307	526	1613
2000 m from Daya Overburden: 350 m	Overburden: 98 m	100 2			
	0	0.04			T
	570 m Ling Ao II	sin	² 20 ₁₃ .	< <mark>0</mark> .01	@
A AND A SHE	(under construction)	e ¹ 90.	.C.L. ir	n 3 ye	ars
		n ² 2			
1. J. + F					
290 m	230-m	0.01			
	Dava Bay Near	Ē			
· (mart	360 m from Daya Bay	0 1	2 Run Tim	3 e (Vears)	4 5
	Overburden: 97 m		Kun Im	ic (Tears)	,
Dava	Bay				
		07			

Daya Bay, China

Powerful v_e **Source:** Multiple reactor cores. (at present 4 units with 11.6 GW_{th}, in 2011 6 units with 17.4 GW_{th})

Shielding from Cosmic Rays: Up to 1000 mwe overburden nearby.

Adjacent to mountain.

http://dayawane.ihep.ac.cn/

nool, September 2007

Daya Bay Site

Event Rates and Signal

Antineutrino Interaction Rates (events/day per 20 ton module)

Daya Bay near site 960 Ling Ao near site ~760 Far site 90

Prompt Energy Signal

Delayed Energy Signal

Statistics comparable to single detector in far hall

reconstructed neutron (delayed) capture energy spectrum

Design, R&D, and Prototyping for Daya Bay

Design of civil infrastructure

groundbreaking on October 13, 2007

Detector Prototypes at IHEP and in Hong Kong

Joint R&D program in US and China on Gd-LS Production

Acrylic Vessel Prototyping

Upcoming Reactor θ_{13} Neutrino Experiments

	Location	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)	Exposure in 3 yrs (ton-GW-y)
Angra						
proposed / R&D	Brazil	4.1	300/1500	250/2000	500	~ 6150
Daya Bay construction start in 07	China	11.6 17.4 after 2010	360(500)/1750	260/910	80	~ 4180
Double-CHOOZ						
under construction	France	8.7	150/1067	80/300	8	~ 210
RENO						
ready to start construction	Korea	17.3	150/1500	230/675	15.4	~ 800

* experiments are underway

Karsten Heeger, Univ. Wisconsin

Number of Protons

- reproducability: volume flow < 0.02%, mass flow < 0.1%
- combustion analysis, NMR or neutron beam to determine H/C ratio

Position & Time Cuts

- no position cuts: volume defined by neutron capture on Gd.
- time cuts: time window 1-200 μ s, precision <10ns, uncertainty < 0.03%

Low-energy threshold: Routine calibration using positron annihilation source (⁶⁸Ge)

Calibrate the 6 MeV cut \rightarrow relative uncertainty in neutron efficiency <0.2%.

Gd/H Ratio

1% mass uncertainty causes 0.12% change in n-capture efficiency

Detector-Related Uncertainties

Daya Bay as an example: most ambitious in reducing error between detectors

Absolute Relative measurement measurement					
Sourc	e of uncertainty	Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3 0.1 0.006		
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	<0.0 1	<0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

O(0.2%) precision for relative measurement between detectors at near and far sites

Ref: Daya Bay TDR

Karsten Heeger, Univ. Wisconsin

Daya Bay

For multi cores, **reweight oversampled** cores to maximize near/far cancellation of the reactor power fluctuation.

$$\frac{\text{Near}}{\text{Far}} = \alpha \frac{\text{Near1}}{\text{Far}} + \frac{\text{Near2}}{\text{Far}}$$

Assuming 30 cm precision in core position

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, September 2007

- 1. Natural Radioactivity: PMT glass, steel, rock, radon in the air, etc
- 2. Slow and fast neutrons produced in rock & shield by cosmic muons
- **3. Muon-induced cosmogenic isotopes:** ⁸He/⁹Li which can β -n decay
- Cross section measured at CERN (Hagner et. al.)
- Can be measured in-situ, even for near detectors with muon rate ~ 10 Hz:

Muon System: Water Pool with PMTs + RPC

- Muon Veto
- spallation neutrons
- 99.5% efficient
- Water shield (2.5m)
 - rock neutrons
 - radioactivity

Assuming 99.5% muon veto, even with delayed coincidence event signature, the following backgrounds remain:

- Fast neutrons (prompt recoil, delayed capture)
- ${}^{9}\text{Li}/{}^{8}\text{He}$ (T_{1/2}= 178 msec, β decay w/neutron emission, delayed capture)
- Accidental coincidences

(Other smaller contributions can be neglected)

\Rightarrow All three remaining backgrounds are small (<1%) and can be measured and/or constrained using data.

Fast Neutrons from Muons

Karsten Heeger, Univ. Wisconsin

Pontecorvo Neutrino Physics School, September 2007

⁹Li/⁸He

$\label{eq:alpha} {}^9\text{Li} \rightarrow e^- + \overline{\nu}_e + {}^9\text{B}e^* \rightarrow {}^8\text{B}e + n$ $Q=13 \ \text{MeV}$ $T_{1/2}= 178 \ \text{msec}$ $(\text{Long } T_{1/2} \ \text{\& poor spatial correlation with } \mu \ \text{track make rejection}$

problematic.)

Rates computed from CERN measurements (Hagner et al.,)

	DYB site	LA site	Far site
(⁸ He+ ⁹ Li)/day/module	3.7	2.5	0.26

Note: B/S ~ 0.3% for all sites

 \Rightarrow <u>Strategy:</u> measure rate and statistically subtract from event sample. <u>Issue</u>: dead time from long veto on showering muons?

Measure time since muon for candidate events

Projected results: $\sigma(B/S) = 0.3\%$ (near), 0.1%(far)

Prompt: γ from radioactivity (~50Hz/module)

Delayed: 1.) untagged single neutron capture 2.) Cosmogenic beta emitters (6-10 MeV, mostly ¹⁰B) 3.) U/Th \rightarrow O, Si (α ,n γ [6–10 MeV])

	DB	LA	Far
neutrons	18/day	12/day	1.5/day
betas	210/day	141/day	14.6/day
(α, n γ)	<10/day	<10/day	<10/day
coinc rate	2.3/day	1.3/day	0.26/day
B/S	~2x10 ⁻³	~2x10 ⁻³	~3x10 ⁻³

(use neutron capture time window $\tau \sim 200 \mu sec$)

\Rightarrow Tiny, and subtractable.

	Daya Bay site	Ling Ao site	Far site
Accidental/signal	<0.2%	<0.2%	<0.1%
Fast n / signal	0.1%	0.1%	0.1%
⁹ Li- ⁸ He / signal	0.3%	0.2%	0.2%

- B/S ~ same for near and far sites
- constrained by measurements to required precision
- input to sensitivity calculations (assume 100% uncertainty)

Daya Bay Sensitivity & Milestones

- Apr 2007 completed DOE CD-1 review
- Oct 2007 start civil construction
- Oct 2008 delivery of Gd-LS to Daya Bay
- Aug-Dec 2008 assembly of first detector pair
- Aug 2009 start data taking at near site
- mid 2010 start data taking at near+far sites

- Relative detector systematics: 0.38% (baseline)
- Backgrounds will be measured: < 0.2%

Daya Bay Collaboration

~ 150 collaborators

Karsten Heeger, Univ. Wisconsin

Antarctica

$sin^22\theta_{13}$ Sensitivity Limits

Ref: FNAL proton driver report, hep-ex/0509019

Towards Measuring CP Violation in Neutrinos

Next-generation experiments will not measure CP violation but some values of δ_{CP} could be excluded.

Why measure $sin^2 2\theta_{13}$ to 1%?

Planning future facilities:

 $\sin^2 2\theta_{13} \ge 10^{-2}$: reactor finds $\theta_{13} \rightarrow$ superbeams

 $sin^{2}2\theta_{13} < 10^{-2}$: NuFact with L~3000 km

An Alternative Method of Measuring θ_{13}

Fourier Transform Approach

- "High-frequency" amplitude in energy spectrum is θ_{13}
- In L/E plot, a purely sinusoidal component
- Invites the use of Fourier Transform for analysis

slides from J. Learned et al.

Fourier Transformed Spectrum

- Size of peak proportional to θ_{13} .
- The asymmetry tells about hierarchy

Preliminary 50 kt-y exposure at 50 km range $\sin^2(2\theta_{13}) \ge 0.02$ $\Delta m^2_{31} = 0.0025 \text{ eV}^2$ to 1% level

Includes energy smearing

Learned, Dye, Pakvasa, Svoboda hep-ex/0612022

slides from J. Learned et al.

- Uses the difference in spectra
- Efficiency depends heavily on energy resolution

slides from J. Learned et al.

Hanohano Project

Detector for Geo and Reactor Antineutrinos

- 10-kt LS detector in ocean
- Primary detection method: inverse-beta decay
- Ocean-based detector, with key features:
 - Adjustable baseline
 - Ability to avoid reactor background in the geo-neutrino studies
 - Unique sensitivity to mantle geo-neutrinos
 - Ability to avoid reactor background when needed
 - Additional physics measurements achievable to higher precision, due to large size

Precision Measurement of θ_{12} with Reactor Antineutrinos

A Future Opportunity?

 $\mathsf{P}(v_e \rightarrow v_e) \approx 1 - \sin^2(2\theta_{12}) \sin^2(\Delta m_{21}^2 L/4E)$

Pontecorvo

60 GW·kt·y exposure at 50-70 km

- ~4% systematic error
 from near detector
- $\sin^2(\theta_{12})$ measured with

~2% uncertainty

Bandyopadhyay et al., Phys. Rev. D67 (2003) 113011. Minakata et al., hep-ph/0407326 Bandyopadhyay et al., hep-ph/0410283

Reactor Antineutrinos and Precision Oscillation Physics

Measurement of the Oscillation Parameters: A Summary

- Mass Splitting
 - KamLAND measures Δm_{12}^2 to 2.8% precision. Best measurement of $\Delta m_{12}^{2.}$
- Neutrino Mixing Angles
 - <u>KamLAND helps constrain</u> the lower bound of the mixing angle θ_{12} (Best measurement of θ_{12} from solar experiments.)
 - <u>Next-generation reactor experiments will provide best sensitivity to</u> θ_{13} in a clean, degeneracy-free measurement. <u>(using baseline</u> <u>from $\Delta m_{13}^2 \approx \Delta m_{23}^2 = \Delta m_{atm}^2$)</u>
 - Future long-baseline reactor antineutrino experiments may be used for a precision measurement of θ_{12} (using baseline from $\Delta m_{12=}^2 \Delta m_{sol}^2$)

Future of Neutrino Oscillation Physics: Next 10 Years

Measurement of θ_{13} with reactor antineutrinos

Accelerator neutrino studies of

Constraining CP-violating parameters in combined analysis

Applied Neutrino Physics: Reactor Monitoring

June 15, 2006

slide from M. Cribier, Nu2006

Reactor Monitoring in US

June 15, 2006

Michel Cribier

slide from M. Cribier, Nu2006 arz

Proposal for Reactor Monitoring in Brazil

Michel Cribier

Neutrino Physics at Reactors: Past, Present, Future

Next - Precision measurement of θ_{13}

2007 - Precision measurement of Δm_{12}^2 . Evidence for oscillation

> 2004 - Evidence for spectral distortion

2003 - First observation of reactor antineutrino disappearance

1995 - Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe

1956 - First observation of (anti)neutrinos

Past Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France **Reactors in Japan**

Tell me G13 / 14 May 2003 「教えてください、 013を!」 シェルドン・リー・グラショウ S. Glashow 2003年5月14日 グラショウ氏は物理学特別講演のため夫人と共に来位。吉本高志東北大学総長と会見後、 ニュートリノ科学研究センターを訪問され、ニュートリノ研究の新たな成果を折念して記された。