Neutrino Oscillation Parameters: Results and Prospects – II

Sandhya Choubey

Harish-Chandra Research Institute, Allahabad, India

III International Pontecorvo Neutrino Physics School September 16-26, 2007, Alushta, Ukraine

 $rac{
u_e}{
u_\mu} rac{
u_\mu}{
u_\mu}$

Ve Ve Ve

 $\dot{\mathcal{V}}_{\tau}$

Ve Vµ

Ve Ve Vu

 $\dot{\mathcal{V}}_{\mu}$

• Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}

Ve Vµ

Ve Vr Ve

- Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}
- Can be measured in KamLAND or KamLAND-like SPMIN experiments. Next-generation solar neutrino experiments can also measure $\sin^2 \theta_{12}$.

 ν_e ν_μ

V_T Ve

- Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}
- Can be measured in KamLAND or KamLAND-like SPMIN experiments. Next-generation solar neutrino experiments can also measure $\sin^2 \theta_{12}$.
- Δm_{31}^2 and $\sin^2 \theta_{23}$: Channel needed is $P_{\mu\mu}$

 ν_e ν_μ

- Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}
- Can be measured in KamLAND or KamLAND-like SPMIN experiments. Next-generation solar neutrino experiments can also measure $\sin^2 \theta_{12}$.
- Δm_{31}^2 and $\sin^2 \theta_{23}$: Channel needed is $P_{\mu\mu}$
- Will be mesured very well by ν_{μ} disappearance measurement in accelerator based experiments MINOS, ICARUS, OPERA, T2K, NO ν A. It can also be measured very well in atmospheric neutrino experiments.

 ν_e ν_μ

ντνε

- Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}
- Can be measured in KamLAND or KamLAND-like SPMIN experiments. Next-generation solar neutrino experiments can also measure $\sin^2 \theta_{12}$.
- Δm_{31}^2 and $\sin^2 \theta_{23}$: Channel needed is $P_{\mu\mu}$
- Will be mesured very well by ν_{μ} disappearance measurement in accelerator based experiments – MINOS, ICARUS, OPERA, T2K, NO ν A. It can also be measured very well in atmospheric neutrino experiments.
- Why disappearance experiments?

 $\nu_e \nu_\mu$

 \mathcal{V}_{e}

V_T Ve

- Δm_{21}^2 and $\sin^2 \theta_{12}$: Channel needed is P_{ee}
- Can be measured in KamLAND or KamLAND-like SPMIN experiments. Next-generation solar neutrino experiments can also measure $\sin^2 \theta_{12}$.
- Δm_{31}^2 and $\sin^2 \theta_{23}$: Channel needed is $P_{\mu\mu}$
- Will be mesured very well by ν_{μ} disappearance measurement in accelerator based experiments MINOS, ICARUS, OPERA, T2K, NO ν A. It can also be measured very well in atmospheric neutrino experiments.
- Why disappearance experiments?
- Because statistics there are very large

 $\nu_e \nu_\mu$

ντνε

The Unanswered Questions

 $\nu_e \nu_\mu$

Ve Ve Ve

 \mathcal{V}_{μ}

• What is the magnitude of θ_{13} ?

Ve Vµ

V V V V V V V V V V V V V

• What is the magnitude of θ_{13} ?

- Main channels to determine θ_{13}
 - **●** $\nu_e \rightarrow \nu_e$ or $\bar{\nu}_e \rightarrow \bar{\nu}_e$: P_{ee} or $P_{\bar{e}\bar{e}}$; Disappearance Expts
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts

 $\nu_e \nu_\mu$

Ve Vr Ve

• What is the magnitude of θ_{13} ?

- Main channels to determine θ_{13}
 - $\mathbf{P}_{e} \rightarrow \nu_{e} \text{ or } \overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$: $P_{ee} \text{ or } P_{\overline{e}\overline{e}}$; Disappearance Expts
 - $\nu_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts

• What is the sign of Δm_{31}^2 ?

 ν_e ν_μ

Ve Vr Ve

• What is the magnitude of θ_{13} ?

- Main channels to determine θ_{13}
 - ▶ $\nu_e \rightarrow \nu_e$ or $\bar{\nu}_e \rightarrow \bar{\nu}_e$: P_{ee} or $P_{\bar{e}\bar{e}}$; Disappearance Expts
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts
- \checkmark What is the sign of Δm^2_{31} ?
 - Main channels to determine $sign(\Delta m_{31}^2)$ • $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts • "binned" $\nu_{\mu} \rightarrow \nu_{\mu} P_{\mu\mu}$; Disappearance Expts • $\nu_{e} \rightarrow \nu_{e} P_{ee}$; Disappearance Expts

 ν_e ν_μ

V_µ Ve Ve

> Ve Vr

• What is the magnitude of θ_{13} ?

- Main channels to determine θ_{13}
 - $\boldsymbol{P}_{e} \rightarrow \boldsymbol{\nu}_{e} \text{ or } \bar{\boldsymbol{\nu}}_{e} \rightarrow \bar{\boldsymbol{\nu}}_{e}$: P_{ee} or $P_{\bar{e}\bar{e}}$; Disappearance Expts
 - $\mathbf{P}_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts
- \checkmark What is the sign of Δm^2_{31} ?
 - Main channels to determine $sign(\Delta m_{31}^2)$ • $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts • "binned" $\nu_{\mu} \rightarrow \nu_{\mu} P_{\mu\mu}$; Disappearance Expts • $\nu_{e} \rightarrow \nu_{e} P_{ee}$; Disappearance Expts

Is there CP violation in the lepton sector?

 $\nu_e \nu_\mu$

V_µ Ve

> Ve Vr

• What is the magnitude of θ_{13} ?

- Main channels to determine θ_{13}
 - $\mathbf{P}_{e} \rightarrow \nu_{e} \text{ or } \overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$: $P_{ee} \text{ or } P_{\overline{e}\overline{e}}$; Disappearance Expts
 - $\nu_{\mu} \rightarrow \nu_{e} \text{ or } \nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e} \text{ or } P_{e\mu}$; Appearance Expts
- \checkmark What is the sign of Δm^2_{31} ?
 - Main channels to determine $sign(\Delta m_{31}^2)$ • $\nu_{\mu} \rightarrow \nu_{e}$ or $\nu_{e} \rightarrow \nu_{\mu}$: $P_{\mu e}$ or $P_{e\mu}$; Appearance Expts • "binned" $\nu_{\mu} \rightarrow \nu_{\mu} P_{\mu\mu}$; Disappearance Expts
 - $\nu_e \rightarrow \nu_e P_{ee}$; Disappearance Expts

Is there CP violation in the lepton sector?

Main channel to see δ_{CP}
 ν_μ → ν_e or ν_e → ν_μ: P_{μe} or P_{eμ}; Appearance Expts
 Also possible using ν_μ → ν_μ P_{μμ}; Disapp Expts

 $\nu_e \nu_\mu$

 \mathcal{V}_{μ} \mathcal{V}_{e} \mathcal{V}_{τ}

 ν_e ν_μ

Ve Vr

e V

νμ Ve Vτ

Measuring θ_{13} , δ_{CP} and $sgn(\Delta m_{31}^2)$

Ve Vµ

Ve Ve Ve

V_µ

Ve Vµ

Ve Ve Ve

 $\dot{\mathcal{V}}_{\mu}$

 $I = \sin^2 2\theta_{13}$ can be measured in Reactor experiments

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

 $\nu_e \nu_{\mu}$

Ve Ve Ve

 $I = \sin^2 2\theta_{13}$ can be measured in Reactor experiments

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

Free of "degeneracies" and matter effects

 ν_e ν_{μ}

VT Je V

 $= \sin^2 2\theta_{13}$ can be measured in Reactor experiments

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

Free of "degeneracies" and matter effects

Systematic uncertainty has to be at sub-percent level

 ν_e ν_{μ}

VT Pus

 $I = \sin^2 2\theta_{13}$ can be measured in Reactor experiments

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

- Free of "degeneracies" and matter effects
- Systematic uncertainty has to be at sub-percent level
- Proposals include:
 Double Chooz, Daya Bay, Reno, Angra,....

 $\nu_e \nu_\mu$

Ve Vu

μ Ve Vτ

 $I = \sin^2 2\theta_{13}$ can be measured in Reactor experiments

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(\alpha^2)$$

Free of "degeneracies" and matter effects

Systematic uncertainty has to be at sub-percent level

Proposals include:
 Double Chooz, Daya Bay, Reno, Angra,....

Sensitivity (90% C.L.):

 $\sin^2 2\theta_{13} < 0.032 \quad \text{Double Chooz}$ $\sin^2 2\theta_{13} < 0.009 \quad \text{Reactor II}$

Ve Vµ

Vir Vius

Ve

Line Ve Vr

Vµ Ve

 $P_{app}^{vac} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$

 $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$

+ $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$

+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$ where $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}$, $\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and we have expanded the probability in α and θ_{13} keeping only lower order terms

 ν_e ν_{μ}

Vµ Ve Vr Ve

 $P_{app}^{vac} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$

 $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$

+ $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$

+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$ where $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}$, $\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and we have expanded the probability in α and θ_{13} keeping only lower order terms • First term gives θ_{13}

 ν_e ν_{μ}

yee yu

 $P_{app}^{vac} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$

 $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$

+ $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$

+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$ where $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}$, $\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and we have expanded the probability in α and θ_{13} keeping only lower order terms • First term gives θ_{13}

Second term gives CP violating part of the prob

 ν_e ν_{μ}

VT PH

μ V_e V_t

 $P_{app}^{vac} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$

 $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$

+ $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$

+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$ where $\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}$, $\alpha \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and we have expanded the probability in α and θ_{13} keeping only lower order terms • First term gives θ_{13}

Second term gives CP violating part of the prob

Third term gives CP conserving part of the prob

 ν_e ν_{μ}

VT PH

V_µ Ve

 $P_{app}^{vac} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$

- $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$
- + $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$

+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

 ν_e ν_μ

Ve Vr Ve

> V. V.

- $P_{app}^{vac} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$
 - $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$
 - + $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$
 - + $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$
 - $P_{\nu} = A \cos \delta_{CP} + B \sin \delta_{CP} + C$ $P_{\overline{\nu}} = A \cos \delta_{CP} B \sin \delta_{CP} + C$

 ν_e ν_{μ}

V e v u

> H V V

Vµ Ve

- $P_{app}^{vac} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$
 - $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$
 - + $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$
 - $+ \cos^2\theta_{23}\sin^22\theta_{12}\sin^2(\alpha\Delta)$
 - $P_{\nu} = A\cos\delta_{CP} + B\sin\delta_{CP} + C$
 - $P_{\bar{\nu}} = A\cos\delta_{CP} B\sin\delta_{CP} + C$
 - $P_{\nu} + P_{\bar{\nu}} 2C = 2A\cos\delta_{CP}$ $P_{\nu} P_{\bar{\nu}} = 2B\sin\delta_{CP}$

 ν_e ν_{μ}

Ve Vu

u Ve

V_µ Ve

- $P_{app}^{vac} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$
 - $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$
 - + $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$
 - $+ \cos^2\theta_{23}\sin^22\theta_{12}\sin^2(\alpha\Delta)$
 - $P_{\nu} = A \cos \delta_{CP} + B \sin \delta_{CP} + C$ $P_{\overline{\nu}} = A \cos \delta_{CP} B \sin \delta_{CP} + C$
 - $P_{\nu} + P_{\bar{\nu}} 2C = 2A\cos\delta_{CP}$ $P_{\nu} P_{\bar{\nu}} = 2B\sin\delta_{CP}$ $\left(\frac{P_{\nu} + P_{\bar{\nu}} 2C}{2A}\right)^{2} + \left(\frac{P_{\nu} P_{\bar{\nu}}}{2B}\right)^{2} = 1$

Ve Vµ

VT e v

V_µ Ve

- $P_{app}^{vac} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$
 - $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$
 - + $(\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$
 - + $\cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$
 - $P_{\nu} = A \cos \delta_{CP} + B \sin \delta_{CP} + C$ $P_{\nu} = A \cos \delta_{LP} B \sin \delta_{CP} + C$
 - $P_{\bar{\nu}} = A\cos\delta_{CP} B\sin\delta_{CP} + C$
 - $P_{\nu} + P_{\bar{\nu}} 2C = 2A\cos\delta_{CP}$

$$P_{\nu} - P_{\bar{\nu}} = 2B\sin\delta_{CP}$$

$$\left(\frac{P_{\nu}+P_{\bar{\nu}}-2C}{2A}\right)^2 + \left(\frac{P_{\nu}-P_{\bar{\nu}}}{2B}\right)^2 = 1$$

• This is the eqn of an ellipse in the $P_{\nu} - P_{\overline{\nu}}$ plane. These are called "bi-probability plots". Major (minor) axes measure the amplitude of $\sin \delta_{CP} (\cos \delta_{CP})$ term

 $\nu_e \nu_\mu$

Vir Vus

Vµ Ve

νενμ

 $\dot{\nu}_{\mu}$

 $\nu_e \nu_{\mu}$

 ν_e ν_{μ}

 \mathcal{V}_{μ}

 $\nu_e \nu_\mu$

V_µ
Bi-Probability Plots

Sandhya Choubey

Ve Vµ

 \mathcal{V}_{μ} \mathcal{V}_{e} \mathcal{V}_{e} \mathcal{V}_{μ}

V V

Neutrino Oscillation Parameters: Results and Prospects – II

Bi-Probability Plots

ν ν_τ

Degeneracies

V_{μ} $Sgn(\Delta m_{31}^2)$ Degeneracy

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

UT Ve

$Sgn(\Delta m^2_{31})$ Degeneracy

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

Do the simultaneous transformation

$$\delta_{CP} \to \pi - \delta_{CP}$$
$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$

Sandhya Choubey

Ve Vµ

VT Ve

$Sgn(\Delta m^2_{31})$ Degeneracy

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

Do the simultaneous transformation

$$\delta_{CP} \to \pi - \delta_{CP}$$
$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$

• The expression for $P_{appearance}$ remains invariant

Ve Vµ

UT Ve

$Sgn(\Delta m_{31}^2)$ Degeneracy

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 (\alpha \Delta)$

$$\delta_{CP} \to \pi - \delta_{CP}$$
$$\Delta m_{31}^2 \to -\Delta m_{31}^2$$

- The expression for $P_{appearance}$ remains invariant
- Since $Sgn(\Delta m_{31}^2)$ is unknown, there will always be an ambiguity in the measured value of δ_{CP}

Sandhya Choubey

Vr

μ Ve Vτ

$Sgn(\Delta m_{31}^2)$ Degeneracy

V V

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

 ν_e ν_{μ}

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

• We only have measurement on $\sin^2 2\theta_{23}$.

 ν_e ν_{μ}

Vµ Ve

UT Ve

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

- We only have measurement on $\sin^2 2\theta_{23}$.
- For every non-maximal $\sin^2 2\theta_{23}$, there are 2 possible $\sin^2 \theta_{23}$

 ν_e ν_{μ}

V_µ Ve

VE

μ V_t V_T

 $P_{appearance} = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta$ $\pm (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin \Delta \sin \Delta$ $+ (\alpha \Delta) \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \sin \Delta$ $+ \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2(\alpha \Delta)$

- We only have measurement on $\sin^2 2\theta_{23}$.
- For every non-maximal $\sin^2 2\theta_{23}$, there are 2 possible $\sin^2 \theta_{23}$
- This will give 2 disjoint fitted value for θ_{13} .

Ve Vµ

Vµ Ve

VE

μ *V*ε *V*τ

Barger et al, hep-ph/0112119

• If $\sin^2 2\theta_{23} = 0.9$ then both $\sin^2 2\theta_{13} = 0.01$ and 0.0011 would fit the data from a given LBL expt.

 ν_e ν_{μ}

Ve

 ν_{μ}

 $\begin{array}{c}
 \mathcal{U}_{\tau} \\
 \mathcal{U}_{e}
 \end{array}$

Sandhya Choubey

 $rac{
u_e}{
u_\mu} rac{
u_\mu}{
u_\mu}$

Intrinsic (δ_{CP}, θ_{13}) Degeneracy

 \blacksquare For a fixed value of E, it might happen that

 $\nu_e \nu_\mu$

Ve

Vµ

Up to Eight-Fold Degeneracy Expected

Ve Vµ

Ve Vr Ve

The $\nu_e \rightarrow \nu_\mu$ Channel in Matter

Ve Vµ

Ve Ve Vu

 ν_{μ}

The $\nu_e \rightarrow \nu_\mu$ Channel in Matter

$$P_{app} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

 $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta)}{(1-\hat{A})}$

 $+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$

$$+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$$

= ±A/∆m²₃₁
A is positive for neutrinos
A is negative for antineutrinos

Sandhya Choubey

Ve Vµ

 $\mathcal{V}_{\mu}
 \mathcal{V}_{e}
 \mathcal{V}_{\tau}
 \mathcal{V}_{e}$

Neutrino Oscillation Parameters: Results and Prospects – II

The $\nu_e \rightarrow \nu_\mu$ Channel in Matter

V VT

Resolving the Eight-Fold Degeneracy

Ve Vµ

Ve Ve Vu

Vu

Ve Vµ

Pe Ve Vµ

• Matter effects break the $Sgn(\Delta m_{31}^2)$ Degeneracy

Neutrino Oscillation Parameters: Results and Prospects - II

• Matter effects break the $Sgn(\Delta m_{31}^2)$ Degeneracy

Neutrino Oscillation Parameters: Results and Prospects - II

Resolving the Intrinsic $(\delta_{CP}, \theta_{13})$ Degeneracy

- Choose $\Delta = m\pi/2$.
- The $\cos \delta_{CP}$ term vanishes for $\Delta = (n - \frac{1}{2})\pi$.
- The $\sin \delta_{CP}$ term vanishes for $\Delta = n\pi$.
- Ellipse collapse to a line
- Ambiguity resolved.
- Better to work with $\Delta = (n \frac{1}{2})\pi$.
- That is where we will directly see CPV.
- Thats where we get the oscillation maxima.

Barger et al. hep-ph/0112119

 $\nu_e \nu_\mu$

 \mathcal{V}_e

Vμ

VT Ve

Ve Vµ

Ve Ve Vu

 \mathcal{V}_{μ}

- Using atmospheric neutrino data in
 - $\sqrt{Megaton water detectors:}$
 - $\star \Delta m^2_{21}$ driven osc effects in sub-GeV electrons
 - \star θ_{13} driven matter effects in multi-GeV electrons
 - $\sqrt{}$ Large magnetized iron detectors:
 - $\star \theta_{13}$ driven matter effects in multi-GeV muons

 $\nu_e \nu_\mu$

- Using atmospheric neutrino data in
 - $\sqrt{Megaton water detectors:}$
 - $\star \Delta m^2_{21}$ driven osc effects in sub-GeV electrons
 - \star θ_{13} driven matter effects in multi-GeV electrons
 - $\sqrt{\text{Large magnetized iron detectors:}}$
 - $\star \theta_{13}$ driven matter effects in multi-GeV muons

Using data from next generation reactor neutrinos

 $\nu_e \nu_\mu$

VT Ve

- Using atmospheric neutrino data in
 - $\sqrt{Megaton water detectors:}$
 - $\star \Delta m^2_{21}$ driven osc effects in sub-GeV electrons
 - \star θ_{13} driven matter effects in multi-GeV electrons
 - $\sqrt{\text{Large magnetized iron detectors:}}$ $\star \theta_{13}$ driven matter effects in multi-GeV muons
- Using data from next generation reactor neutrinos
- Other ways using LBL expts have been suggested.

Ve Vµ

VT Ve

> P F

Ve Vu Vu Correlations

Suppose you measure a quantity z experimentally.

VIT PUR

 ν_e ν_μ

V_T Ve

- Suppose you measure a quantity z experimentally.
- And suppose z is parametrized in terms of 2 parameters x and y such that z = x + y.

 $\nu_e \nu_\mu$

UT Ve

- Suppose you measure a quantity z experimentally.
- And suppose z is parametrized in terms of 2 parameters x and y such that z = x + y.
- This means that measurement of z only gives information on a particular combination of x and y and not x and y themselves.

 $\nu_e \nu_\mu$

V_T Ve

- Suppose you measure a quantity z experimentally.
- And suppose z is parametrized in terms of 2 parameters x and y such that z = x + y.
- This means that measurement of z only gives information on a particular combination of x and y and not x and y themselves.
 - We say that the 2 params x and y are "correlated".

 $\nu_e \nu_\mu$

V_T Ve

- Suppose you measure a quantity z experimentally.
- And suppose z is parametrized in terms of 2 parameters x and y such that z = x + y.
- This means that measurement of z only gives information on a particular combination of x and y and not x and y themselves.
- We say that the 2 params x and y are "correlated".
- Oscillation probabilities come in such forms:

$$P_{ee} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

 $\nu_e \nu_\mu$

V Ve D

 \mathcal{V}_{τ}

- Suppose you measure a quantity z experimentally.
- And suppose z is parametrized in terms of 2 parameters x and y such that z = x + y.
- This means that measurement of z only gives information on a particular combination of x and y and not x and y themselves.
- We say that the 2 params x and y are "correlated".
- Oscillation probabilities come in such forms:

$$P_{ee} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

This correlation between parameters leads to increase in the error in the measured value of the individual parameters.

Correlations

Huber et al, hep-ph/0204352

Note how correlations are increasing the spread.

● Input from an external measurement he pesal, hep-ph/0204352

Note how correlations are increasing the spread.

Correlations, as I showed in the previous case, come from continuous uncertainty in the measured value of the parameters which appear together in the expression for the probability.

Ve Vµ

VT e Vµ

- Correlations, as I showed in the previous case, come from continuous uncertainty in the measured value of the parameters which appear together in the expression for the probability.
- Degeneracies are usually disjoint and appear because the same probability can be given by two very different sets of parameter values

Ve Vµ

Ve D

- Correlations, as I showed in the previous case, come from continuous uncertainty in the measured value of the parameters which appear together in the expression for the probability.
- Degeneracies are usually disjoint and appear because the same probability can be given by two very different sets of parameter values
- Both result in loss of sensitivity of the experiment and we have to finds ways to overcome/reduce them.

Ve Vµ

Ve Ve

- Correlations, as I showed in the previous case, come from continuous uncertainty in the measured value of the parameters which appear together in the expression for the probability.
- Degeneracies are usually disjoint and appear because the same probability can be given by two very different sets of parameter values
- Both result in loss of sensitivity of the experiment and we have to finds ways to overcome/reduce them.
- We discussed some ways to tackle degeneracies.

Ve Vµ

 \mathcal{V}_{τ}

- Correlations, as I showed in the previous case, come from continuous uncertainty in the measured value of the parameters which appear together in the expression for the probability.
- Degeneracies are usually disjoint and appear because the same probability can be given by two very different sets of parameter values
- Both result in loss of sensitivity of the experiment and we have to finds ways to overcome/reduce them.
- We discussed some ways to tackle degeneracies.
- The only way to reduce impact of correlations is to combine experiments with different characteristics.

 $\nu_e \nu_\mu$

Ve

Ve Ve

 \mathcal{V}_{τ}

Sensitivity of Near-Future Experiments to θ_{13}

Huber et al., hep-ph/0403068

Sensitivity of Near-Future Experiments to θ_{13}

Albrow et al., hep-ex/0509019

 ν_e ν_{μ}

 $\frac{\nu_{\tau}}{\nu_{e}}$

• SuperBeam $\Rightarrow P_{\mu e}$

 $\nu_e \nu_{\mu}$

 \mathcal{V}_{e}

Ve Vu

- SuperBeam $\Rightarrow P_{\mu e}$
- Beta-Beam $\Rightarrow P_{e\mu}$

 $\nu_e \nu_{\mu}$

 \mathcal{V}_{e}

Vie Vie

- SuperBeam $\Rightarrow P_{\mu e}$
- Beta-Beam $\Rightarrow P_{e\mu}$
- Neutrino Factory $\Rightarrow P_{e\mu}$

Ve Vµ

Ve Ve Ve

Ve Vµ

V_µ Ve

• Beta-Beams are produced from beta used, c. accelerated radioactive ions, circulating in a storage ring $= 1 + e^+ + \nu_e$ or $(A, Z) \rightarrow (A, Z - 1) + e^+$

 $(A, Z) \to (A, Z+1) + e^+ + \nu_e$ or $(A, Z) \to (A, Z-1) + e^- + \bar{\nu}_e$

Proton Driver –

SPL ($\approx 4 \text{ GeV}$)

Target

Ion Source –

Pulsed ECR Accelerators –

linac.RCS.PS.SPS Storage Ring –

7000m; 2500m straight

Zucchelli, PLB 532, 166, (2002)

- Pure beam with just one flavor
- Very intense beam

- Pure beam with just one flavor
- Very intense beam
- Completely known

- Pure beam with just one flavor
- Very intense beam
- Completely known
- Determined by just the end-point beta decay energy and γ

- Pure beam with just one flavor
- Very intense beam
- Completely known
- Determined by just the end-point beta decay energy and γ
- Flux normalization given by number of radioactive ions circulating in the ring

- Pure beam with just one flavor
- Very intense beam
- Completely known
- Determined by just the end-point beta decay energy and γ
- Flux normalization given by number of radioactive ions circulating in the ring
- Beam divergence given by γ : higher boost gives higher collimation

- Pure beam with just one flavor
- Very intense beam
- Completely known
- Determined by just the end-point beta decay energy and γ
- Flux normalization given by number of radioactive ions circulating in the ring
- Beam divergence given by γ : higher boost gives higher collimation
- Can produce either ν_e OR $\bar{\nu}_e$ FLUX

 $rac{
u_e}{
u_\mu}$

Ve

VT

Produced be decay of accelerated muons circulating in a storage ring:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ and/or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

 ν_e ν_{μ}

 \mathcal{V}_{e}

VT Ve Vu

Produced be decay of accelerated muons circulating in a storage ring:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ and/or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

Pure, Intense, Collimated, Known beam

 ν_e ν_μ

Ve Vu

Produced be decay of accelerated muons circulating in a storage ring:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ and/or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

- Pure, Intense, Collimated, Known beam
- For a given muon sign in the ring, we will have muons of of both signs in the detector. For a μ^+ source $\bar{\nu}_{\mu}$ in the original beam will given rise to μ^+ in the detector (right sign muons), while $\nu_e \rightarrow \nu_{\mu}$ oscillations will give μ^- (wrong sign muons).

 $\nu_e \nu_\mu$

VT Ve Vµ

WT

V

Produced be decay of accelerated muons circulating in a storage ring:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ and/or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

- Pure, Intense, Collimated, Known beam
- For a given muon sign in the ring, we will have muons of of both signs in the detector. For a μ^+ source $\bar{\nu}_{\mu}$ in the original beam will given rise to μ^+ in the detector (right sign muons), while $\nu_e \rightarrow \nu_{\mu}$ oscillations will give μ^- (wrong sign muons).
- Charge ID is a MUST.

 $\nu_e \nu_\mu$

VT Ve Vµ

V7

V. V.

Produced be decay of accelerated muons circulating in a storage ring:

 $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ and/or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

- Pure, Intense, Collimated, Known beam
- Solution For a given muon sign in the ring, we will have muons of of both signs in the detector. For a μ^+ source $\bar{\nu}_{\mu}$ in the original beam will given rise to μ^+ in the detector (right sign muons), while $\nu_e \rightarrow \nu_{\mu}$ oscillations will give μ^- (wrong sign muons).
- Charge ID is a MUST.
- Need magnetised detectors

 $\nu_e \nu_\mu$

VT Ve Vµ

 \mathcal{V}_{τ}

V. V.

Vµ Ve

- SuperBeam $\Rightarrow P_{\mu e}$
- Beta-Beam $\Rightarrow P_{e\mu}$
- Neutrino Factory $\Rightarrow P_{e\mu}$
- One has to find ways to kill the clone solutions
- Various ways have been suggested in the literature for this

Ve Vµ

Vir Vius

Killing the Clones

Vir Pe Combining data from appearance experiments at different L and/or different E:

Barger, Marfatia, Whisnant, hep-ph/0206038 Barger, Marfatia, Whisnant, hep-ph/0210428 Burguet-Castell, Gavela, Gomez-Cadenas, Hernandez, Mena, hep-ph/0103258 Huber, Lindner, Winter, hep-ph/0211300 Mena and Parke hep-ph/0408070 Mena, Palomares-Ruiz, Pascoli, hep-ph/0504015 Mena, Palomares-Ruiz, Pascoli, hep-ph/0510182 Mena, Nunokawa, Parke, hep-ph/0609011 Minakata, Nunokawa, hep-ph/9706281 Minakata, Nunokawa, Parke, hep-ph/0301210 Ishitsuka, Kajita, Minakata, Nunokawa, hep-ph/0504026 Hagiwara, Okamura, Senda, hep-ph/0607255

Ve Vµ

Vµ

 \mathcal{V}_{T}

Killing the Clones

Combining data from different channels:

The Silver Channel $P_{e\tau}$

Autiero *et al.*, hep-ph/0305185 Donini, Meloni, Migliozzi, hep-ph/0206034

Disappearance Channel $P_{\mu\mu}$

Donini, Fernandez-Martinez, Meloni, Rigolin, hep-ph/0512038 Donini, Fernandez-Martinez, Rigolin, hep-ph/0411402

The Platinum Channel $P_{\mu e}$

Sandhya Choubey

Killing the Clones

Combining LBL data with data from other experiments:

Adding reactor antineutrino data

Huber, Lindner, Schwetz, Winter, hep-ph/0303232

Adding atmospheric neutrino data

Huber, Maltoni, Schwetz, hep-ph/0501037 Campagne, Maltoni, Mezzetto, Schwetz, hep-ph/0603172

Killing the Clones at The Magic Baseline

Ve Vµ

Ve Ve Ve

 $P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$ $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+ \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \delta_{CP} \cos \Delta \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2}$

 $P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$ $\pm \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin \delta_{CP} \sin(\Delta) \frac{\sin(\hat{A}\Delta)}{\hat{A}} \frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+\alpha\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}\cos \delta_{CP}\cos \Delta \frac{\sin(\hat{A}\Delta)}{\hat{A}}\frac{\sin[(1-\hat{A})\Delta]}{(1-\hat{A})}$ $+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(\hat{A}\Delta)}{\hat{\lambda}^2}$

 $If \sin(\hat{A}\Delta) \simeq 0$

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

• All δ_{CP} dependent terms drop out • (δ_{CP}, θ_{13}) and ($\delta_{CP}, sgn(\Delta m_{31}^2)$) degeneracies vanish • "Clean" measurement of θ_{13} and $sgn(\Delta m_{31}^2)$

 ν_e ν_{μ}

VTVe

$$P_{e\mu} \simeq \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2[(1-\hat{A})\Delta]}{(1-\hat{A})^2}$$

• All δ_{CP} dependent terms drop out • (δ_{CP}, θ_{13}) and ($\delta_{CP}, sgn(\Delta m_{31}^2)$) degeneracies vanish • "Clean" measurement of θ_{13} and $sgn(\Delta m_{31}^2)$

 $\sin(\hat{A}\Delta) \simeq 0$ \Rightarrow $L_{magic} \simeq 7690 \text{ km}$

Barger, Marfatia, Whisnant, hep-ph/0112119

Huber, Winter, hep-ph/0301257

Smirnov, hep-ph/0610198

Ve Vµ
Ve Vu

Ve Vr Ve Vu

 $\dot{\nu}_{\mu}$

• Large Distance \Rightarrow Large Matter effects

Ve Vµ

Vre Vu

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

 ν_e ν_{μ}

UT Ve

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

• For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV

 $\nu_e \nu_\mu$

Ve Ve

> μ Ve Vτ

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

- For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV
- Maximal oscillations when $\sin^2 2\theta_{13}^m \simeq 1$ and $\sin^2(\frac{(\Delta m_{31}^2)^m L}{4E}) \simeq 1$ simultaneously

Gandhi et al, hep-ph/0408361

Ve Vµ

Vµ Ve Ve

> μ Ve Vr

- Large Distance \Rightarrow Large Matter effects
- Resonance energy

$$E_{res} = \frac{|\Delta m_{31}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

- For $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{13} = 0.1$ and the PREM profile $\rho_{av} = 4.13$ gm/cc, $E_{res} \simeq 7.5$ GeV
- Maximal oscillations when $\sin^2 2\theta_{13}^m \simeq 1$ and $\sin^2(\frac{(\Delta m_{31}^2)^m L}{4E}) \simeq 1$ simultaneously

Gandhi et al, hep-ph/0408361

• At the magic baseline, largest oscillations come when $E \simeq 6 \text{ GeV}$

Ve Vµ

 \mathcal{V}_{μ} \mathcal{V}_{e} \mathcal{V}_{e}

/μ Ve Vτ

The Probability

Agarwalla, S.C., Raychaudhuri, hep-ph/0610333

 $\nu_e \nu_\mu$

Vµ

L L

The Probability

Agarwalla, S.C., Raychaudhuri, hep-ph/0610333

V VT

Conclusions (Comparison of different setups)

	γ	L(km)	Detector	$T_{\nu}/T_{\bar{\nu}}$	$\sin^2 2\theta_{13}$	$sgn(\Delta m^2_{31})$	Max CPV
NF@3000		3000	50 (MI)	4/4	2.5×10^{-3}	$(0.8 - 10) \times 10^{-3}$	7×10^{-5}
NF@7500		7500	50 (MI)	4/4	2×10^{-4}	2×10^{-4}	No sens
2							
CERN-	350	7152	50 (MI)	10	2.1×10^{-3}	1.1×10^{-2}	No sens
INO	500	7152	50 (MI)	10	8.4×10^{-4}	8.5×10^{-3}	No sens
$\mathrm{hep}\text{-}\mathrm{ph}/$	100/100	130	440 (WC)	10/10	$5 \times 10^{-3} (W)$	2.5×10^{-3}	2×10^{-4}
0603172					$3 \times 10^{-4} (B)$	+SPL+ATM	
$\mathrm{hep}\text{-}\mathrm{ph}/$	200/200	520	500 (WC)	8/8	1.5×10^{-3}	$(0.7-2) \times 10^{-2}$	2×10^{-4}
0506237	500/500	650	50 (TASD)	8/8	1.5×10^{-3}	$(0.6 - 4.5) \times 10^{-2}$	1×10^{-4}
	1000/1000	1300	50 (TASD)	8/8	4×10^{-4}	$(1-7) \times 10^{-3}$	7×10^{-5}
$\mathrm{hep}\text{-}\mathrm{ph}/$	100/60	130	400 (WC)	10(S)	Not	No Sens	1×10^{-3}
0312068	580/350	732	$400 \; (WC)$	10(S)	Given	2×10^{-2}	2×10^{-4}
	2500/1500	3000	40 (MI)	10(S)		4×10^{-3}	4×10^{-4}
hep-ph/	120/120	130	440 (WC)	10(S)	5×10^{-3}	Not	1×10^{-3}
0503021	150/150	300	440 (WC)	10(S)	6×10^{-4}	Given	2×10^{-4}
	350/350	730	440 (WC)	10(S)	4×10^{-4}		1×10^{-4}

Sandhya Choubey

Ve Vµ

 \mathcal{V}_{τ}

Neutrino Oscillation Parameters: Results and Prospects – II

Backup Slides

 $\nu_e \nu_\mu$

Ve Ve Vu

Vu

Proposal to build a large iron detector (ICAL) at INO

 ν_e ν_{μ}

Vr e v

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN

 ν_e ν_μ

U_T Ve

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km

 $\nu_e \nu_\mu$

Vr Ve

1/_

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline

 $\nu_e \nu_\mu$

UT Ve

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV

 $\nu_e \nu_\mu$

VT Ve

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV
- Beta beam spectrum depends on the end point energy of the beta unstable ion and Lorentz boost γ

 $\nu_e \nu_\mu$

 $\begin{array}{c}
 \mathcal{V}_{\tau} \\
 \mathcal{V}_{e}
 \end{array}$

 \mathcal{V}_{τ}

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV
- Beta beam spectrum depends on the end point energy of the beta unstable ion and Lorentz boost γ
- The standard Beta-Beam ions ¹⁸Ne and ⁶He would require very large gamma

 $\nu_e \nu_\mu$

UT Ve

V-

- Proposal to build a large iron detector (ICAL) at INO
- A Beta-Beam facility might come up at CERN
- CERN-INO distance is equal to 7152 km
- This is tantalizingly close to the magic baseline
- Energy threshold of ICAL would be about 1 GeV
- Beta beam spectrum depends on the end point energy of the beta unstable ion and Lorentz boost γ
- The standard Beta-Beam ions ¹⁸Ne and ⁶He would require very large gamma
- Alternative ions ⁸B and ⁸Li have large end-point energy and hence "harder" spectra. Works!!

 $\nu_e \nu_\mu$

VT Ve Vu

V-

Agarwalla, SC, Raychaudhuri, hep-ph/0610333

. Flux peaks at $E \simeq 6$ GeV for $\gamma = 350 - 500$

ν V V V e V μ

Agarwalla, SC, Raychaudhuri, hep-ph/0610333

$\ensuremath{{\,\bullet\,}}$ The rate shows a sharp dependence on the hierarchy and θ_{13}

Sandhya Choubey

 ν_e ν_{μ}

Ve

VT

Neutrino Oscillation Parameters: Results and Prospects – II

Sensitivity to θ_{13}

Agarwalla, SC, Raychaudhuri, hep-ph/0610333

• At 3σ , $\sin^2 2\theta_{13} < 8.5 \times 10^{-4} (1.5 \times 10^{-3})$ with 80% efficiency and 10(5) years data

Ve Vµ

Vµ Ve VT

μ Ve Vτ

Agarwalla, SC, Raychaudhuri, hep-ph/0610333

• At 3σ , $\sin^2 2\theta_{13} < 8.5 \times 10^{-3} (9.8 \times 10^{-3})$ with 80% efficiency and 10(5) years data

μ Ve

Large Matter Effects in *P*_{*ee*}

Large Matter Effects in *P*_{*ee*}

$$\lim_{\Delta m_{21}^2 \to 0} P_{e\mu} = \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \frac{(\Delta m_{31}^2)^m L}{4E}$$

Ve Vµ

Ve Ve Ve

 \mathcal{V}_{μ}

Large Matter Effects in *P*_{*ee*}

$$\lim_{\Delta m_{21}^2 \to 0} P_{e\tau} = \cos^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \frac{(\Delta m_{31}^2)^m L}{4E}$$

Ve Vµ

Ve Ve Ve

 ν_{μ}

Sandhya Choubey

 $rac{
u_e}{
u_\mu}$

Neutrino Oscillation Parameters: Results and Prospects – II

 $rac{
u_e}{
u_\mu}$

P Ve Ve

 ${m
u_e \over
u_\mu}$

Pure $\nu_e/\bar{\nu}_e$: Beta Beams $\blacksquare E \sim 6$ GeV: ⁸B and ⁸Li Very long baselines: CERN-UNO: L = 7000 - 8600 km FNAL-MEMPHYS: L = 7313 km **FNAL-HK:** L = 10184 km CERN-HK: L = 9647 km

Agarwalla, S.C., Goswami, Raychaudhuri, hep-ph/0611233

At magic baseline CP sensitivity is smothered

 $\nu_e \nu_\mu$

Ve

- At magic baseline CP sensitivity is smothered
- Must move away from the magic baseline

 ν_e ν_{μ}

V_T Ve

- At magic baseline CP sensitivity is smothered
- Must move away from the magic baseline
- Which set-up could be best?

 ν_e ν_{μ}

UT Ve

- At magic baseline CP sensitivity is smothered
- Must move away from the magic baseline
- Which set-up could be best?

#	1	2	3					
type	WC	TASD	TASD					
$m[{ m kt}]$	500	50	50					
γ	200	500	1000					
$L[\mathrm{km}]$	520	650	1000					
ν signal	1983	2807	7416					
ν background	105	31	95					
The following results are taken from								
PH. M. Lindner, M. Rolinec, W. Winter.								
hep-ph/0506237.								

Ve Vµ

UT Ve
CP Discovery Reach with Beta-Beams ($P_{e\mu}$ **)**

- At magic baseline CP sensitivity is smothered
- Must move away from the magic baseline
- Which set-up could be best? Normal hierarchy Inverted hierarchy 0.8 0.8 Fraction of (true) $\delta_{\rm CP}$ Fraction of (true) $\delta_{\rm CP}$ 0.6 0.6 0.4 0.4 Setup 1 (γ=200, WC) Setup 1 (γ =200, WC) Setup 2 (γ =500, TASD) Setup 2 (γ =500, TASD) 0.2 0.2 Setup 3 (γ =1000,TASD) Setup 3 (γ =1000,TASD) NF@3000km NF@3000km **T2HK*** T2HK* 0 0 10^{-4} 10^{-2} 10^{-4} 10^{-3} 10^{-3} 10^{-2} 10^{-1} 10^{-1} True value of $\sin^2 2\theta_{13}$ True value of $\sin^2 2\theta_{13}$ Huber et al., hep-ph/0506237

Beta-Beams CP sensivity is similar to NuFacts

Physics Potential of CERN-MEMPHYS

Sandhya Choubey

Ve Vµ

Neutrino Oscillation Parameters: Results and Prospects - II

20.09.07 - p.59

Huber et al., hep-ph/0606199

J Best around $E_{\mu} = 30$ GeV and close to magic baseline

γμ Ve Vr

• Sensitivity to $sgn(\Delta m_{31}^2) \gtrsim 1.8 \times 10^{-4} (3\sigma)$

Huber et al., hep-ph/0606199

 ${\scriptstyle \bullet}$ Best around $E_{\mu}=20-40~{\rm GeV}$ and close to magic baseline

Huber et al., hep-ph/0606199

. Best at around L = 4000 km

Ve Vt

• Combining baselines for best θ_{13} sensitivity

Gandhi, Winter, hep-ph/0612158

• With two detectors, one at L = 4000 km and another farther away, the range of "optimal" baselines widens

 ν_e ν_{μ}

 ν_e

V_T Ve