

Double Beta Decay: History, Present and Future

Fedor Šimkovic

Department of Nuclear Physics and Biophysics Comenius University, Bratislava

1

9/19/2007

OUTLINE

- Introduction (History and experimental status)
- The $0\nu\beta\beta$ -decay in light of ν oscillations
- Mechanisms of the 0vββ–decay (LR-symmetric models, R-parity breaking MSSM)
- The DBD NME
- Neutrinoless double electron capture (³⁶Ar)
- Bosonic neutrino and 2νββ-decay (⁷⁶Ge)
- Conclusion and outlook

Neutrinos are everywhere

The Sun is the most intense detected source with a flux on Earth of 6 10¹⁰ v/cm²s

D. Vignaud and M. Spiro, Nucl. Phys.A 654 (1999) 350

Neutrino properties (60 years after discovery of v)

we know

Δ

3 families of light (V-A) neutrinos: ν_e, ν_µ, ν_τ
neutrinos are massive: we know mass squared differences
relation between flavor eigenstates and mass eigenstates (neutrino mixing) only partially known

we do not know

- Absolute v mass scale? (cosmolology, 0vββ-decay, ³H, ¹⁸⁷Rh)
- Are ν their own antiparticle? (Majorana ν) or not (Dirac ν)
- Is there a CP violation in the neutrino sector? (leptogenesis)
- Are neutrinos stable?

??

• What is the magnetic moment of $v? \ ^{ud}$

Standard Model Lep				Lept	on	n Universality			
PARTICLES Par	ticle	Symbol	Anti - p.	mass	3	L_e	L_{μ}	L_{τ}	life-time
				[MeV]]				[s]
elec	ron	e ⁻	e^+	0.511	-	1	0	0	stable
a s b 9 g el.n	eutrino	ν_e	$\overline{\nu}_e$	$< 2.2 \ 1$	0-6	1	0	0	stable
	n	μ^{-}	μ^+	105.6	j	0	1	0	$2.2\ 10^{-6}$
	n neutr.	ν_{μ}	$\overline{ u}_{\mu}$	< 0.1	9	0	1	0	stable
I II III Three Generations of Matter	, .	τ^{-}	τ^+	1777		0	0	1	$2.9 \ 10^{-13}$
tau	neutrino	ν_{τ}	ν_{τ}	< 18.	2	0	0	T	stable
Lepton Family	EW PI	HYSICS		Т	ota	l Le	pto	n	
Number Violation	ve neutr	inos, SUS	SY	Nur	nbe	er V	iola	tion	
$ u_{e,\mu\tau} \leftrightarrow \nu_{e,\mu\tau}, \overline{\nu}_{e,\mu\tau} \leftrightarrow \overline{\nu}_{e,\mu\tau} $	observ	ved	$ u_{e,\mu\tau} \leftrightarrow \overline{\nu} $	ν e,μτ			1	not o	bserved
$\mu^+ ightarrow e^+ + \gamma$	$\mu^+ \to e^+ + \gamma$ $R \le 1$			2×10^{-11} $K^+ \to \pi^- + e^+ + \mu^+$				$R \leq 5 \times 10^{-10}$	
$\mu^+ \rightarrow e^+ + e^- + e^+$	$.0 \times 10^{-12}$	$\times \ 10^{-12} \qquad \tau^- \to \pi^- + \pi^+ + e^+$					$R \leq 1.9 \times 10^{-6}$		
$K^+ \to \pi^+ + e^- + \mu^+$	$R \leq 4$	$.7 \times 10^{-12}$	$W^- + W$	$f^- \rightarrow e^- +$	- e ⁻				
$\tau^- \to e^- + \mu^+ + \mu^- \qquad \qquad R \le 1.$		$.8 \times 10^{-6}$	$(A, Z) \rightarrow$	(A, Z + 2)	2) + e	- +	e- '	$T^{0\nu} \ge$	
$Z^0 \to e^\pm + \mu^\mp$	$\rightarrow e^{\pm} + \mu^{\mp}$ $R \le 1.7 \times$			$Z) \to (A,$	Z-2	2) +	e ⁺ .	$R \leq 3$	3.6×10^{-11}
$\mu_b^- + (A, Z) \to (A, Z) + e^-$	$R \leq 1$	$.2 \times 10^{-11}$	$e^- + e^-$ -	$\rightarrow \pi^- + \pi^-$	_		,	?	
9/19/2007		Fedor	Simkovic						5

1937 Beginning of Majorana neutrino physics

Ettore Majorana discoveres the possiility of existence of truly neutral fermions

Charged fermion (electron) + electromagnetic field

$$\begin{aligned} (i\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A_{\mu} - m)\Psi &= 0 \\ (i\gamma^{\mu}\partial_{\mu} + e\gamma^{\mu}A_{\mu} - m)\Psi^{c} &= 0 \end{aligned} \qquad \qquad \Psi^{c} = \Psi \quad \text{forbidden} \end{aligned}$$

Neutral fermion (neutrino) + electromagnetic field

$$(i\gamma^{\mu}\partial_{\mu} - m) \nu = 0 \qquad \qquad \nu^{c} = \nu \quad \text{allowed}$$
$$(i\gamma^{\mu}\partial_{\mu} - m) \nu^{c} = 0 \qquad \qquad \text{Majorana condition}$$

Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171

Here is the beginning of Nonstandard Neutrino Properties

Heidelberg-Moscow Experiment LNGS (completed 2003)

Technical parameters of the five enriched ⁷⁶ Ge detectors						
Detect or number	Total mass (kg)	Active mass (kg)	Enrichment in ⁷⁶ Ge(%)	PSA		
No. 1	0.980	0.920	85.9 ± 1.3	No		
No. 2	2.906	2.758	86.6 ± 2.5	Yes		
No. 3	2.446	2.324	88.3 ± 2.6	Yes		
No. 4	2.400	2.295	86.3 ± 1.3	Yes		
No. 5	2.781	2.666	85.6 ± 1.3	Yes		

$$\begin{array}{l} T_{1/2} > 1.9 \; 10^{25} \; years \\ < m_{\beta\beta} > < 0.34 \; eV \end{array}$$

H-M collaborations, PRL 83 (1999) 41

Fig. 1. The HEIDELBERG–MOSCOW ββ-experiment in the Gran Sasso (top), and four of the enriched detectors during installation (bottom left). The fifth detector was installed in an extra shielding using electrolytic copper as inner shield (bottom right).

9/19/2007

Heidelberg claim for evidence

Analysis of the ⁷⁶Ge experiment in Gran Sasso 1990-2003 H.V. Klapdor-Kleingrothaus et al.,NIM A 522, 371 (2004); PLB 586, 198 (2004)

Data reanalyzed with improved summing
Peak visible
Effect reclaimed with 4.2σ
T^{0v}_{1/2} = (0.69 - 4.18) 10²⁵ years
0.23 eV ≤ |m_{ββ}| ≤ 0.57 eV
Unknown peak at 2030 keV?

9/19/2007

Running Double Beta Decay experiments

Gran Sasso

GERDA at LNGS: <u>GER</u>manium <u>D</u>etector <u>A</u>ssembly for the search of neutrinoless ββ decays in Ge-76 at LNGS

History of Double Beta Decay I

The early period (1935-1957)

- 1935 Goepper-Mayer suggested the 2vββ-decay
- **1937 Dirac** $\nu \neq \overline{\nu}$ or **Majorana** $\nu \equiv \overline{\nu}$
- 1939 Furry proposed the 0vββ-decay
- till 1957 Observation of 0vββ more favored (phase space)

 $n \rightarrow p + e^- + \overline{\nu}_e \quad \nu_e + n \rightarrow p + e^-$

Period of scepticism (1957-1970)

• 1957 Wu, weak interaction violates parity, Majorana or

Dirac – open question

 $n \rightarrow p + e^{-} + \overline{\nu}_{e}^{RH} \quad \nu_{e}^{LH} + n \rightarrow p + e^{-}$ Declined interest to $0\nu\beta\beta$ -decay

• **1968** Pontecorvo proposed $\pi^- \rightarrow \pi^+ + 2e^-$, superweak int.

Period of GUT (1970-1998)

- 1975 Primakoff and Rosen Right handed current mech.
- **1981** Doi, Kotani, Takasugi v-mech. within gauge theories
- 1981 Wolfenstein: cancellation mech. possible

$$\langle m_{\nu} \rangle = \sum_{k} |U_{ek}|^2 \eta_{CP} m_k, \quad \eta_{CP} = \pm i$$

History of Double Beta Decay II

- 1982 Scheckter-Valle theorem The observation of 0vββ-decay implies the existence of Majorana mass term
- 1986 Vogel, Zirnbauer quenching mech. of 2vββdecay
- 1987 Elliott, Hahn, Moe -first detection of 2vββ-decay (⁸²Se)
- 1987 Mohapatra, Vergados, Rparity breaking SUSY mech.
- 1997 Feassler, Kovalenko, Simkovic, dominance of pionexchange SUSY mech.
- 1997 Kovalenko, Hirsch, Klapdor, leptoquark mech.

Period of massive v (1998→20??)
•1998- neutrino oscillations (SK, SNO, Kamland) convin. evid.

- 2001 Klapdor-Kleingrothaus, Dietz, Krivosheina, first claim for observation of the 0vββ-decay
- Many works on neutrino mass pattern, absolute mass scale, CP phases, extra dim. mech.
- Many works on future large (tons) 0vββ-decay experiments

Quo vadis 0vββ-decay?

Majorana period $(2??\rightarrow)$

- **2???** Observation of 0vββ-decay
- 2??? ...

9/19/2007

Neutrino oscillations ⇒ **Massive neutrinos**

Reactor neutrinos

Pontecorvo-Maki-Nakagawa-Sakata matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$
$$Quark mixing \qquad Neutrino mixing$$
$$U_{CKM} = \begin{pmatrix} 0.98 & 0.22 & 0.003 \\ -0.22 & 0.97 & 0.04 \\ 0.003 & -0.04 & 1.00 \end{pmatrix} \qquad U_{PMNS} = \begin{pmatrix} 0.83 & 0.55 & 0.05 \\ 0.34 - 0.45 & 0.56 - 0.62 & 0.70 \\ 0.34 - 0.45 & 0.55 - 0.62 & 0.70 \end{pmatrix}$$
$$Large off diagonal elements$$
Instruction for an extension of SM? Disperity and challange for quark-lepton unified theories

Fedor Simkovic

18

9/19/2007

3 neutrino observables	Present knowledge	Near Future
$\theta_a \rightarrow \theta_{12}$	$45^\circ \pm 9^\circ$	$P(v_{\mu} \rightarrow v_{\mu})$ MINOS, CNGS
$\theta_s \rightarrow \theta_{23}$	$33^{\circ} \pm 3^{\circ}$	$P(v_e \rightarrow v_e)$ SNO
$\theta_x \rightarrow \theta_{13}$	$\leq 9^{\circ}$	$P(\overline{\nu}_e \rightarrow \overline{\nu}_e)$ Reactor, $P(\nu_\mu \rightarrow \nu_e)$ LBL
Δm_a^2	$(2.5^{+2}_{-1}) \times 10^{-3} \mathrm{eV}^2$	$P(v_{\mu} \rightarrow v_{\mu})$ MINOS, CNGS
$sign(\Delta m_a^2)$	unknown	$P(\nu_{\mu} \rightarrow \nu_{e}), P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \text{ LBL}$
Δm_s^2	$(7.\pm2.) \times 10^{-5} \text{ eV}^2$	$P(\overline{v}_e \rightarrow \overline{v}_e)$ KamLAND
$sign(\Delta m_s^2)$	+ (MSW)	done
δ	unknown	$P(\nu_{\mu} \rightarrow \nu_{e}), P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ LBL
Majorana	unknown	0νββ !
α_{12}	unknown	0 νββ (if $\approx 0, \pi$)
α_{23}	unknown	hopeless
$m_{ m v}$	$\Sigma m_{\rm v} < 1 {\rm eV}$	cosmology, 0νββ, β-decay

Neutrino mass spectrum

And perspectives of the 0νββ-decay search

What is the absolute mass scale of neutrinos: Limits from cosmology, tritium beta decay, neutrinoless double beta decay What are the Majorana CP phases? ...

Inverted hierarchy

Normal hierarchy

θ_{13} and the cancellation

Mechanisms of the $0\nu\beta\beta$ -decay

S-matrix term

$$S^{(2)} = -\frac{(-i)^2}{2} 4 \left(\frac{G_F}{\sqrt{2}}\right)^2 \int N\left[\overline{e_L}(x_1)\gamma_\alpha < \nu_{eL}(x_1)\nu_{eL}^T(x_2) > \gamma_\beta^T \overline{e_L}^T(x_2)\right] \times T\left(j_\alpha(x_1)j_\beta(x_2)e^{-i\int \mathcal{H}_{str}(x)dx}\right) dx_1 dx_2$$

Contraction of v-fields

$$< \nu_{eL}(x_1)\nu_{eL}{}^T(x_2) > = -\sum_k \left(U_{ek}^L\right)^2 \xi_k \frac{1+\gamma_5}{2} S_k(x_1-x_2) \frac{1+\gamma_5}{2} C$$
$$= \frac{i}{(2\pi)^4} \sum_k \left(U_{ek}^L\right)^2 \xi_k m_k \int \frac{e^{iq(x_1-x_2)} dq}{q^2+m_k^2} \frac{1+\gamma_5}{2} C$$

Effective mass of
Majorana neutrinos
$$m_{\beta\beta} = \sum_{k} \left(U_{ek}^{L} \right)^{2} \xi_{k} m_{k}$$

9/19/2007

 $0\nu\beta\beta$ -decay matrix element

$$< f|S^{(2)}|i> = m_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1) \gamma_{\alpha}(1+\gamma_5) \gamma_{\beta} C \overline{u}^T(p_2) \times \int e^{-ip_1 x_1} e^{-ip_2 x_2} \frac{-i}{(2\pi)^4} \int \frac{e^{iq(x_1-x_2)} dq}{q^2} \times A' |T[J_{\alpha}(x_1) J_{\beta}(x_2)]|A > dx_1 dx_2 - (p_1 \leftrightarrow p_2)$$

Use of completness $1=\Sigma_n |n><n|$

$$< A'|J_{\alpha}(x_1)J_{\beta}(x_2)|A> = \sum_{n} < A'|J_{\alpha}(0,\vec{x}_1)|n> < n|J_{\beta}(0,\vec{x}_2)|A> \times e^{-i(E'-E_n)x_{10}}e^{-i(E_n-E)x_{20}}$$

$$< f|S^{(2)}|i> = im_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1) \gamma_{\alpha} (1+\gamma_5) \gamma_{\beta} C \overline{u}^T(p_2) \times \int d\vec{x_1} d\vec{x_2} e^{-i\vec{p_1} \cdot \vec{x_1}} e^{-i\vec{p_2} \cdot \vec{x_2}} \frac{1}{(2\pi)^3} \int \frac{e^{i\vec{q} \cdot (\vec{x_1} - \vec{x_2})} d\vec{q}}{\vec{q}^2} \times \\\sum_n \left(\frac{\langle A'|J_{\alpha}(0, \vec{x_1})|n \rangle \langle n|J_{\beta}(0, \vec{x_2})|A \rangle}{E_n + q_0 + p_{20} - E} + \frac{\langle A'|J_{\beta}(0, \vec{x_1})|n \rangle \langle n|J_{\alpha}(0, \vec{x_2})|A \rangle}{E_n + q_0 + p_{10} - E} \right) \\\times 2\pi\delta(E' + p_{10} + p_{20} - E)$$

After integration over time variables

9/19/2007

Approximations and simplifications

 Non-relativistic impulse approx. for nuclear current
 Long-wave approximation for lepton wave functions
 Closure approximation

$$J_{\alpha}(0,\vec{x}) = \sum_{n} \tau_{n}^{+} (\delta_{\alpha 4} + ig_{A}(\vec{\sigma})_{k} \delta_{\alpha k}) \delta(\vec{x} - \vec{x}_{n})$$
$$e^{-i\vec{p}_{1}\cdot\vec{x}_{1} - i\vec{p}_{2}\cdot\vec{x}_{2}} \to 1$$

$$< f|S^{(2)}|i> = \overline{u}(p_1)\gamma_{\alpha}(1+\gamma_5)\gamma_{\beta}C\overline{u}^T(p_2)A_{\alpha\beta}, \quad A_{\alpha\beta} = A_{\beta\alpha}$$

Hadron part is symmetric $J_{\alpha}(0, \vec{x}_{1})J_{\beta}(0, \vec{x}_{2}) = J_{\beta}(0, \vec{x}_{2})J_{\alpha}(0, \vec{x}_{1})$ $\gamma_{\alpha}\gamma_{\beta} = \delta_{\alpha\beta} + \frac{1}{2}\left(\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha}\right)$

contribute

 $0\nu\beta\beta$ -decay matrix element

$$< f|S^{(2)}|i> = i m_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1)(1-\gamma_5) C \overline{u}^T(p_2) \frac{1}{R} \times \left(M_F - g_A^2 M_{GT}\right) \delta(p_{10} + p_{20} + M' - M)$$

 $E_n \rightarrow \langle E_n \rangle$

9/19/2007

Nuclear matrix elements
$$M_F = \langle A' | \sum_{n,m} \tau_n^+ \tau_m^+ h(|\vec{x}_n - \vec{x}_m|) | A \rangle$$
 $M_F = \langle A' | \sum_{n,m} \tau_n^+ \tau_m^+ h(|\vec{x}_n - \vec{x}_m|) \vec{\sigma}_n \cdot \vec{\sigma}_m | A \rangle$ Neutrino exchange potential

$$\begin{aligned} h(|\vec{x}_n - \vec{x}_m|) &= \frac{1}{2\pi^2} \int \frac{e^{i\vec{q}\cdot\vec{x}} d\vec{q}}{q_0(q_0 + \langle E_n \rangle - (E + E')/2)} \\ &\approx \frac{1}{|\vec{x}|} \end{aligned}$$

Differential 0νββ-decay rate

$$\frac{d\Gamma_{0\nu}}{F^2(Z)(\varepsilon_0 - \varepsilon + 1)^2(\varepsilon + 1)d\varepsilon\sin\theta d\theta} = \frac{1}{2} \frac{G_F^4 m_e^5}{(2\pi)^5} |m_{\beta\beta}|^2 \frac{1}{R^2} |M_F - g_A^2 M_{GT}|^2 (1 - \cos\theta)$$

$$F(Z) = \frac{2\pi\alpha(Z+2)}{1 - exp[-2\pi\alpha(Z+2)]} \qquad \varepsilon_0 = \frac{1}{m_e} \left(M - M' - 2m_e\right)$$

Full 0νββ-decay rate
9/19/2007
$$\Gamma_{0\nu} = \frac{1}{2} \frac{G_F^4 m_e^5}{(2\pi)^5} |m_{\beta\beta}|^2 \frac{1}{R^2} |M_F - g_A^2 M_{GT}|^2 F^2(Z) \times \frac{1}{15} \left(\varepsilon_0^5 + 10\varepsilon_0^4 + 40\varepsilon_0^3 + 60\varepsilon_0^2 + 30\varepsilon_0 \right)$$

Eigenvalues and eigenvectors Assumption M_R » m_D Left-right symmetric models SO(10) $W_1^{\pm} = \cos \zeta W_1^{\pm} + \sin \zeta W_R^{\pm}$ **Two-charged** vector bosons $W_2^{\pm} = -\sin \zeta W_1^{\pm} + \cos \zeta W_R^{\pm}$ -2 10⁻⁴ $\leq \zeta \leq$ 3.3 10⁻³ (superallowed β -decay) **Parameters** $M_1 = 81 \text{ GeV}, M_2 > 715 \text{ GeV}, (M_1/M_2)^2 < 10^{-2}$ See-saw scenario light heavy lightheavy $\nu_{eL} = \sum_{i=1}^{N_{el}} \frac{U_{ei} \chi_{iL}}{1} + \sum_{i=1}^{N_{el}} \frac{U_{ei} N_{iL}}{1} \qquad (\nu_{eR})^c = \sum_{i=1}^{N_{ei}} \frac{V_{ei} \chi_{iL}}{1} + \sum_{i=1}^{N_{ei}} \frac{V_{ei} N_{iL}}{1}$ 9/19/2007 large small Fedor Simkovic small large 34

qu	quark level nucleon					level
d		n			Light neutrino exchange	Heavy neutrino exchange
		→			n p	
	W	e →	$P_L \frac{\hat{q}+\hat{q}}{q^2+\hat{q}+\hat{q}}$	$\frac{im}{m^2}P_L \qquad \Rightarrow \frac{i}{m}$	<u>m</u> q ² ν	N
●L,R	v _i		<u>.</u>		n p	
	W	e	$P_L \frac{q+q}{q^2+q}$	$\frac{m}{m^2}P_R \qquad \Rightarrow \qquad$	$\frac{iq}{q^2}$ n	р ————————————————————————————————————
- t	•••	u -	Pr p-	$\frac{1}{i+iM}P_{I} \rightarrow \Rightarrow$	i two-pion exchange (heavy neutrino)	e
			- <i>L</i> , <i>R</i> _q	$^{2}+M^{2}$ L,R	M π	
						e
				Mechanisms	n	р
neutrino	lept.v.	quarkv.	hadr.m.	supp.f.	LNVp.	limit
light	LL	LL	2n		$\sum^{light} UUm$	${ m m}_{etaeta} \le 0.5 \; eV$
	LR	LR	2n	$(\mathrm{M_1}/M_2)^2$	$\sum^{light} UV$	$<\!\lambda> \le 7 \ 10^{-7}$
	LR	LL	2n	$ an\zeta$	$\sum^{light} UV$	$<\eta> \le 4 \ 10^{-9}$
heavy	LL	LL	2n	—	$\sum^{heavy} U \ U \ \mathbf{m}_p / M$	$\eta_N \leq 8 10^{-8}$
	RR	RR	2n	$(\mathrm{M_1}/M_2)^4$	$\sum^{heavy} V V m_p / M$	
	RR	LL	2n	$(an\zeta)^4$	$\sum^{heavy} V V m_p / M$	
	RR	RL	2π	$ an\zeta \ (M_1/M_2)^2$	$\sum^{heavy} V V m_p / M$	
9/19/	2007			Fedor Simkovic		35

Sterile neutrino in 0νββ-decay

Analogues of neutrinoless double beta decay

$$\mu^{-} + (A,Z) \rightarrow (A,Z-2) + e^{+}$$

$$\mu^{-} + (A,Z) \rightarrow (A,Z-2) + \mu^{+}$$

$$e^{-} + e^{-} \rightarrow W^{-} + W^{-}$$

$$K^{+} \rightarrow \pi^{-} + \mu^{+} + \mu^{+}$$

9/19/2007

Fedor Simkovic

Muon-positron conversion

Minimal Supersymmetric Standard Model

Normal particles / fields		Supersymmetric particles / fields				
		Interaction eigenstates		Mass eigenstates		
Symbol	Name	Symbol	Name	Symbol	Name	
q = d, c, b, u, s, t	quark	\tilde{q}_L, \tilde{q}_R	squark	\tilde{q}_1, \tilde{q}_2	squark	
$l = e, \mu, \tau$	lepton	\tilde{l}_L, \tilde{l}_R	slepton	\tilde{l}_1, \tilde{l}_2	slepton	
$v = v_e, v_\mu, v_\tau$	neutrino	v	sneutrino	v	sneutrino	
g	gluon	ğ	gluino	ĝ	gluino	
W^{\pm}	W-boson	\tilde{W}^{\pm}	wino	$\tilde{\mathbf{v}}_{n}^{\pm}$	charging	
H^{\mp}	Higgs boson	$\tilde{H}_{1/2}^{\mp}$	Higgsino)~¢	enargino	
В	B-field	Ř	bino)		
W^3	W ³ -field	\tilde{W}^3	wino			
H_1^0	Higgs boson	\tilde{H}^0	Higgsino	$\{\tilde{\chi}^{0}_{1,2,3,.}$	neutralino	
H_2^0	Higgs boson	\tilde{U}^0	Higgsino			
H_{31}^{0}	Higgs boson	112	08	J		
R	=+1		1)3P+1+28 R=	-1		
	K-par	ity: R=(-	$1)^{3B+L+25}$			

		0 0 (-).)1	
Superfield	spin $1/2$	${\rm spin}\ 0$	Y	T_3	Q
\hat{Q}	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \tilde{u}_L \\ \tilde{d}_L \end{pmatrix}$	$+\frac{1}{6}$	$+\frac{1}{6}$ $-\frac{1}{2}$	$+\frac{2}{3}$ $-\frac{1}{3}$
\hat{U}^{c}	\overline{u}_R	\tilde{u}_R^*	$-\frac{2}{3}$	0	$-\frac{2}{3}$
\hat{D}^{c}	\overline{d}_R	\tilde{d}_R^*	$+\frac{1}{3}$	0	$+\frac{1}{3}$
\hat{L}	$\binom{\nu_L}{e_L}$	$\begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}$	$-\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	$0 \\ -1$
\hat{E}^{c}	\overline{e}_R	\tilde{e}_R^*	+1	0	+1
\hat{H}_u	$\begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_u^0 \end{pmatrix}$	$\begin{pmatrix} H_u^+\\ H_u^0 \end{pmatrix}$	$+\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	$^{+1}_{0}$
\hat{H}_d	$\begin{pmatrix} \tilde{H}_d^+ \\ \tilde{H}_d^0 \end{pmatrix}$	$\begin{pmatrix} H_d^+ \\ H_d^0 \end{pmatrix}$	$-\frac{1}{2}$	$+\frac{1}{2}$ $-\frac{1}{2}$	$0 \\ -1$

 $G_{SM} = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

MSSM

1973 SUSY introduced as a part of extension of the special relativity

The MSSM is the simplest extension of the SM

There is no right-handed neutrino superfield !

$$\frac{N}{\nu_R} \quad \tilde{\nu}_R^* \quad 0 \quad 0 \quad 0$$

43

Minimal Supergravity Model (mSUGRA)

SUSY model with two Higgs fields in the framework of unification

All SUSY masses are unified at the grand unified scale

 $m_{1/2}$ for gaugino masses m_0 for squarks and sleptons

 $m_{1/2} = gaugino mass parameter$ $m_0(M_2) = scalar mass parameter$ for squarks and sleptons $A_0 = "Trilinear scalar coupling$ $(A_b-bottom sector$ $A_t-top sector)$ $tan \beta = <H_1 > / <H_2 >$ $\mu = Higgsino mass parameter$

SUSY broken near GUT scale

	Parameter Unit	μ GeV	M₂ GeV	<i>tan</i> β 1	m _A GeV	m₀ GeV	A₅/m₀ 1	A₁/m₀ 1
	Min	-50000	-50000	1	0	100	-3	-3
9/19/2007	Max	+50000	+50000	60	10000	30000	. 3	3

44

R-parity Breaking MSSM
(neutralino is not dark matter candidate)
$$\lambda_{ij \leq k}$$
 LLE + λ'_{ijk} LQD+ $\lambda''_{ij \leq k}$ UDD
9 + 27 + 9 = 45 coupling constantsR-parity breaking termsIn superpotential $\lambda'_{11k} * \lambda''_{11k} < 10^{-22}$ proton decay
 $\lambda < 10^{-3}$ to 10^{-1} with $\lambda_{133} < 0.003$ limit on v_e mass
 $\lambda' < 10^{-2}$ to 10^{-1}

Neutrino-Neutralino mixing matrix (see-saw structure)

$$\mathcal{M}_{\boldsymbol{\nu}} = \begin{pmatrix} 0 & m \\ m^T & M_{\chi} \end{pmatrix} \qquad \qquad \Psi_{(0)}^{T} = (\boldsymbol{\nu}_{e}, \, \boldsymbol{\nu}_{\mu}, \, \boldsymbol{\nu}_{\tau}, \, -i\lambda', \, -i\lambda_{3}, \, \tilde{H}_{1}^{0}, \, \tilde{H}_{2}^{0}),$$

Radiative corrections to neutrino mass

$$\mathcal{M}_{
u} = \mathcal{M}^{tree} + \mathcal{M}^{l} + \mathcal{M}^{q}$$

Gozdz, Kaminski, Šimkovic, PRD 70 (2004) 095005

9/19/2007

I. gluino/neutralino exchange R-parity breaking SUSY mechanism of the 0vββ–decay

quark-level diagrams $\mathbf{d}_{\mathbf{R}}$ $d+d \rightarrow u + u + e^- + e^$ d_R e_L $\tilde{\mathbf{d}}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ $\mathbf{\widetilde{u}}_{\mathrm{L}}$ $\widetilde{\mathbf{u}}_{\mathrm{L}}$ \mathbf{u}_{L} \mathbf{u}_{L} χ,ĝ χ,ĝ exchange of χ,ĝ u_L, e_L squarks, \mathbf{u}_{L} $\mathbf{\widetilde{u}}_{\mathrm{L}}$ d_R $\boldsymbol{\tilde{d}}_{R}$ **d**_R $\boldsymbol{\tilde{d}}_{R}$ neutralinos \mathbf{u}_{L} \mathbf{e}_{L} d_R \mathbf{e}_{L} and gluinos $\mathbf{d}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ $\mathbf{d}_{\mathbf{R}}$ \mathbf{u}_{L} \mathbf{u}_{L} \mathbf{u}_{L} ${\bf \widetilde{e}}_{\rm L}$ ${\bf \widetilde{e}}_{\rm L}$ $\tilde{\mathbf{e}}_{\mathrm{L}}$ $\mathbf{e}_{\mathbf{L}}$ e_T \mathbf{e}_{L} $(\lambda'_{111})^2$ mechanism χ χ χ e_L \mathbf{u}_{L} ${\widetilde{u}}_{
m L}$ \tilde{e}_{L} $\boldsymbol{\widetilde{d}}_{R}$ $\mathbf{d}_{\mathbf{R}}$ \mathbf{u}_{L} d_R d_R \mathbf{u}_{L}' \mathbf{e}_{L} • **R**-parity violation 9/19/2007 Fedor Simkovic 46

$$\mathcal{L}_{qe} = \frac{G_F^2}{2m_p} \bar{e}(1+\gamma_5) e^{c} \left[\eta^{PS} J_{PS} J_{PS} - \frac{1}{4} \eta^T J_T^{\mu\nu} J_{T\mu\nu} \right].$$

II. Squark mixing SUSY mechanism

$$M_{\tilde{d}^{k}}^{2} = \begin{pmatrix} m_{\tilde{d}^{k}_{L}}^{2} + m_{d^{k}}^{2} - \frac{1}{6}(2m_{W}^{2} + m_{Z}^{2})\cos 2\beta & -m_{d^{k}}((\mathbf{A}_{D})_{kk} + \mu \tan \beta) \\ -m_{d^{k}}((\mathbf{A}_{D})_{kk} + \mu \tan \beta) & m_{\tilde{d}^{k}_{R}}^{2} + m_{d^{k}}^{2} + \frac{1}{3}(m_{W}^{2} - m_{Z}^{2})\cos 2\beta \end{pmatrix}$$

Effective SUSY v-e Lagrangian

Neutrino vertex

$$\mathcal{L}^{LH} = \frac{G_F}{\sqrt{2}} \sum_i U_{ei} \left(\overline{e} \gamma_\alpha (1 - \gamma_5) \nu \right) \left(\overline{u} \gamma^\alpha (1 - \gamma_5) d \right) + h.c. \quad (V - A)$$

R-parity violating SUSY vertex

Hirsch,Klapdor-Kleingrothaus, Kovalenko PLB 372 (1996) 181

$$\mathcal{L}_{SUSY}^{eff} = \frac{G_F}{\sqrt{2}} \left(\frac{1}{4} \eta_{(q)LR} \sum_i U_{ei}^* \left(\overline{\nu} (1+\gamma_5) e \right) \left(\overline{u} (1+\gamma_5) d \right) \right)$$

$$+ \frac{1}{8} \eta_{(q)LR} \sum_i U_{ei}^* \left(\overline{\nu} \sigma_{\alpha\beta} (1+\gamma_5) e \right) \left(\overline{u} \sigma^{\alpha\beta} (1+\gamma_5) d \right) + h.c. \right)$$

$$(Tensor)$$

Paes, Hirsch, Klapdor-Kleingrothaus, PLB 459 (1999) 450

LN-violating parameter

$$\eta_{(q)LR} = \sum_{k} \frac{\lambda'_{11k} \lambda'_{1k1}}{8\sqrt{2}G_F} \sin 2\theta^d_{(k)} \left(\frac{1}{m^2_{\tilde{d}_1(k)}} - \frac{1}{m^2_{\tilde{d}_2(k)}}\right)$$

1

9/19/2007

Fedor Simkovic

9/19/2007

Fedor Simkovic

51

v-mass generation via $\lambda'_{111}\lambda'_{111}$ loop practially excluded due to gluino exch. mech.

Squark mixing mech. is favored

$$(T_{1/2}^{0\nu})^{-1} = \eta^{LNV} G^{0\nu} |M^{0\nu}|^2$$

NME's: which mechanism, which transition?

It is a complex task

- Medium and heavy open shell nuclei with a complicated nuclear structure
- The construction of complete set of the states of the intermediate nucleus is needed
- ➤ Many-body problem ⇒ approximations needed
- > Nuclear structure input has to be fixed

Particle physicists are interested in NME's

absolute v mass scale
CP violating Majorana phases

Uncertainties in $0\nu\beta\beta$ -decay NME?

This suggest an uncertainty of NME as much as factor 5

Is it really so bad?!

Bahcall, Murayama, Pena-Garay, Phys. Rev. D 70, 033012 (2004)

edor Simkovic

Nuclear structure approaches

 $\mathbf{H} \boldsymbol{\Psi} = \mathbf{E} \boldsymbol{\Psi}$

We can not solve the full problem in the complete

Systematical study of the $0\nu\beta\beta$ -decay NME

Projected mean field (Vampir)

•Tomoda, Faessler, Schmid, Grummer, PLB 157, 4 (1985)

Shell model: •Haxton, Stephensson, Prog. Part. Nucl. Phys. 12, 409(1984)
•Caurier, Nowacki, Poves, Retamosa, PRL 77, 1954 (1996)
• E. Caurier, E. Martinez-Pinedo, F. Nowacki, A. Poves, A. Zuker, Rev. Mod. Phys. 77, 427 (2005).

QRPA, RQRPA: About 10 papers 1987→ 2006

Other approaches: Shell Model Monte Carlo (1996), Operator Expansion Method (1988-1994)...

9/19/2007

Fedor Simkovic

Shell Model

- •Define a valence space
- Derive an effective interaction $H \Psi = E \Psi \rightarrow H_{eff} \Psi_{eff} = E \Psi_{eff}$
- •Build and diagonalize Hamiltonian matrix (10¹⁰)
- •Transition operator $< \Psi_{eff} | O_{eff} | \Psi_{eff} >$
- Some phenomenological input needed

energy of states, systematics of B(E2) and GT transitions (quenching f.)

The $0\nu\beta\beta$ -decay NME within SRQRPA

Particle number condition

i) Uncorrelated BCS ground state

Z=<BCS|Z|BCS> N=<BCS|N|BCS>

QRPA, RQRPA

ii) Correlated RPA ground state

Z=<RPA|Z|RPA> N=<BCS|N|BCS> SRQRPA

Complex numerical procedure BCS and QRPA equations are coupled 9/19/2007 Fedor Simkovic

Pauli exclusion principle

i) violated (QBA)

 $[A,A^+] = \langle BCS | [A,A^+] | BCS \rangle$

QRPA

ii) Partially restored (RQBA)

 $[A,A^+] = \langle RPA | [A,A^+] | RPA \rangle$

RQRPA, SRQRPA

59

QRPA 2νββ-decay NME

The $0\nu\beta\beta$ -decay NME (light ν exchange mech.)

1

The $0\nu\beta\beta$ -decay half-life $\frac{1}{T_{1/2}} = G^{0\nu}(E_0, Z) |M'^{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2 ,$ NME= sum of Fermi, Gamow-Teller and tensor contributions

$$M'^{0\nu} = \left(\frac{g_A}{1.25}\right)^2 \langle f| - \frac{M_F^{0\nu}}{g_A^2} + M_{GT}^{0\nu} + M_T^{0\nu}|i\rangle$$

Neutrino potential (about 1/r₁₂)

$$H_{K}(r_{12}) = \frac{2}{\pi g_{A}^{2}} R \int_{0}^{\infty} f_{K}(qr_{12}) \frac{h_{K}(q^{2})qdq}{q + E^{m} - (E_{i} + E_{f})/2}$$

$$f_{F,GT}(qr_{12}) = j_{0}(qr_{12}), \quad f_{T}(qr_{12}) = -j_{2}(qr_{12})$$
Induced pseudoscalar
form-factors:
finite nucleon
size

$$h_{F} = g_{V}^{2}(q^{2})$$

$$h_{GT} = g_{A}^{2} \left[1 - \frac{2}{3}\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} + \frac{1}{3}\left(\frac{\vec{q}^{2}}{q^{2} + m_{\pi}^{2}}\right)^{2}\right]$$
(pion exchange)

$$h_{T} = g_{A}^{2} \left[\frac{2}{3}\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}} - \frac{1}{3}\left(\frac{\vec{q}^{2}}{\vec{q}^{2} + m_{\pi}^{2}}\right)^{2}\right]$$

$$M_{K=F,GT,T} = \sum_{J^{\pi},k_{i},k_{f},\mathcal{J} pnp'n'} (-1)^{j_{n}+j_{p'}+J+\mathcal{J}}\sqrt{2\mathcal{J}+1}\left\{\begin{array}{c}j_{p} & j_{n} & J\\j_{n'} & j_{p'} & \mathcal{J}\end{array}\right\}$$

$$J^{\pi} = 0^{+},1^{+},2^{+},...$$

$$(p(1), p'(2):\mathcal{J} \parallel f(r_{12})O_{K}f(r_{12}) \parallel n(1), n'(2):\mathcal{J})$$

$$X \langle 0_{f}^{+} || [c_{p'}^{+}\tilde{c}_{n'}]_{J} || J^{\pi}k_{f}\rangle\langle J^{\pi}k_{f} |J^{\pi}k_{i}\rangle\langle J^{\pi}k_{f} || [c_{p}^{+}\tilde{c}_{n}]_{J} || 0_{i}^{+}\rangle$$

The $0\nu\beta\beta$ -decay NME: g_{pp} fixed to $2\nu\beta\beta$ -decay

Each point: (3 basis sets) x (3 forces) = 9 values

The outliers predict wrong $2\nu\beta\beta$ halflife. The matrix elements of SM and Rodin et al. are guite close.

53

Two-nucleon short range correlations: a question of physics

There is no double counting in QRPA QRPA violates Pauli exclusion principle 1/(0.2 fm) ~ 1 GeV

Finite nucleon size (formfactors) versus short range correlations.

Nuclear deformation

$$\beta = \sqrt{\frac{\pi}{5}} \frac{Q_p}{Z r_c^2}$$

Exp. I (nuclear reorientation method) Exp.II (based on measured E2 trans.) Theor. I (Rel. mean field theory) Theor. II (Microsc.-Macrosc. Model of Moeller and Nix)

Till now, in the QRPA-like calculations of the 0vββ-decay NME spherical symetry was assumed

The effect of deformation on NME has to be considered

Nucl.	Exp. I	Exp. II	Theor. I	Theor. II
⁴⁸ Ca	0.00	0.101	0.00	0.00
⁴⁸ Ti	+0.17	0.269	-0.01	0.00
⁷⁶ Ge	+0.09	0.26	0.16	0.14
⁷⁶ Se	+0.16	0.31	-0.24	-0.24
⁸² Se	+0.10	0.19	0.13	0.15
⁸² Kr	10.10	0.20	0.12	0.07
967.		0.091	0.00	0.00
⁹⁶ Mo	+0.07	0.081 0.17	0.22 0.17	0.22
100				
Mo	+0.14	0.23	0.25	0.24
¹⁰⁰ Ru	+0.14	0.22	0.19	0.16
$^{116}\mathrm{Cd}$	+0.11	0.19	-0.26	-0.24
116 Sn	+0.04	0.11	0.00	0.00
$^{128}\mathrm{Te}$	+0.01	0.14	-0.00	0.00
$^{128}\mathrm{Xe}$	·	0.18	0.16	0.14
130 Te	+0.03	0.12	0.03	0.00
¹³⁰ Xe	10.00	0.12 0.17	0.13	-0.11
¹³⁶ Xe		0.09	0.00	0.00
¹³⁶ Ba		0.12	0.00	0.00
¹⁵⁰ Nd	+0.37	0.28	0.22	0.24
150 Sm	+0.23	0.19	0.18	0.21

9/19/2007

Fedor Simkovic

New Suppression Mechanism of the DBD NME

The suppression of the NME depends on relative deformation of initial and final nuclei F.Š., Pacearescu, Faessler. NPA 733 (2004) 321

Systematic study of the deformation effect on the $2\nu\beta\beta$ -decay NME within deformed QRPA

Alvarez, Sarriguren, Moya, Pacearescu, Faessler, F.Š., Phys. Rev. C 70 (2004) 321

Neutrinoless double electron capture

Modes of the 0vECEC-decay: $e_b + e_b + (A,Z) \rightarrow (A,Z-2) + \gamma + 2\gamma + e^+e^- + M$

Theoretically, not well understood yet: • which mechanism is important? • which transition is important?

in comparison with the 0vββ-decay disfavoured due:

- process in the 3-rd (4th) order in electroweak theory
- bound electron wave functions favoured due:?

Nuclear physics mechanisms: γ from the nucleus

9/19/2007

Fedor Simkovic

$2\nu\beta\beta$ -decay: fermionic (f) or bosonic (b) ν

$$\begin{aligned} |\nu_{1} \ \nu_{2} > \ &= \ \hat{a}_{1}^{\dagger} \ \hat{a}_{2}^{\dagger} |0 > \\ \begin{bmatrix} \hat{a}_{i}, \hat{a}_{j}^{\dagger} \end{bmatrix}_{+} \ &= \ \delta_{i,j} \quad (fermionic \ \nu) \\ \begin{bmatrix} \hat{a}_{i}, \hat{a}_{j}^{\dagger} \end{bmatrix}_{-} \ &= \ \delta_{i,j} \quad (bosonic \ \nu) \end{aligned}$$

$$\mathcal{M}^{f,b}{}_{K} = \sum_{m} \left(\frac{M^{I}_{m}(1^{+})M^{F}_{m}(1^{+})}{E_{m} - E_{i} + e_{1} + \nu_{1}} \pm \frac{M^{I}_{m}(1^{+})M^{F}_{m}(1^{+})}{E_{m} - E_{i} + e_{2} + \nu_{2}} \right)$$
$$\mathcal{M}^{f,b}{}_{K} = \mathcal{M}^{f,b}{}_{L}(\nu_{1} \leftrightarrow \nu_{2})$$
Sign difference!!!
Lepton energies!!!

Dolgov, Smirnov, PLB 621, 1 (2005)

9/19/2007

dW

dW

Higher states dominance (⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe)

$$\begin{aligned} \left|\mathcal{M}^{f}{}_{K}+\mathcal{M}^{f}{}_{L}\right|^{2} &\simeq 16 \left|M_{GT}^{(1)}\right|^{2} \\ \left|\mathcal{M}^{f}{}_{K}-\mathcal{M}^{f}{}_{L}\right|^{2} &\simeq \frac{4(e_{1}-e_{2})^{2}(\nu_{1}-\nu_{2})^{2}}{\Delta^{4}} \left|M_{GT}^{(3)}\right|^{2} \\ \left|\mathcal{M}^{b}{}_{K}+\mathcal{M}^{b}{}_{L}\right|^{2} &\simeq \frac{4(\nu_{1}-\nu_{2})^{2}}{\Delta^{2}} \left|M_{GT}^{(2)}\right|^{2} \\ \left|\mathcal{M}^{b}{}_{K}-\mathcal{M}^{b}{}_{L}\right|^{2} &\simeq \frac{4(e_{1}-e_{2})^{2}}{\Delta^{2}} \left|M_{GT}^{(2)}\right|^{2} \\ \left|\mathcal{M}^{b}{}_{K}-\mathcal{M}^{b}{}_{L}\right|^{2} \\ \left|\mathcal{M}^{b}{}_{K}-$$

Looking for a signature of bosonic v

$$2\nu\beta\beta - \text{decay half-lives } (0^+ \rightarrow 0^+_{g.s.}, 0^+ \rightarrow 0^+_1, 0^+ \rightarrow 2^+_1)$$

• HSD - NME needed
• SSD - log ft_{EC}, log ft_{\beta} needed

Normalized differential characteristics The single electron energy distribution The distribution of the total energy of two electrons Angular correlations of two electrons (free of NME and log ft)

Mixed statistics for neutrinos

- Definition of
mixed state $|\nu \rangle = \hat{a}^{\dagger}|0 \rangle$ $\equiv \cos \delta \ \hat{f}^{\dagger}|0 \rangle + \sin \delta \ \hat{b}^{\dagger}|0 \rangle$ $= \cos \delta \ |f \rangle + \sin \delta \ |b \rangle$
- with commutation $\hat{f}\hat{b} = e^{i\phi}\hat{b}\hat{f}$ $\hat{f}^{\dagger}\hat{b}^{\dagger} = e^{i\phi}\hat{b}^{\dagger}\hat{f}^{\dagger}$ Relations $\hat{f}\hat{b}^{\dagger} = e^{-i\phi}\hat{b}^{\dagger}\hat{f}$ $\hat{f}^{\dagger}\hat{b} = e^{-i\phi}\hat{b}\hat{f}^{\dagger}$

 $\begin{array}{rcl} \mathbf{Amplitude \ for \ 2\nu\beta\beta} \\ A^{2\nu} &= & [\cos\delta^4 + \cos\delta^2 \sin\delta^2 (1 - \cos\phi)] A^f \ + \ [\cos\delta^4 + \cos\delta^2 \sin\delta^2 (1 + \cos\phi)] A^b \\ &= & \cos\chi^2 A^f \ + \ \sin\chi^2 A^b \end{array}$

Decay rate

$$W^{2\nu} = \cos \chi^4 W^f + \sin \chi^4 W^b$$

$$= (1 - b^2) W^f + b^2 W^b$$

Partly bosonic neutrino requires knowing NME or log ft values for HSD or SSD

(calculations coming up soon)

9/19/2007

Fedor Simkovic

Mixed v excluded for $\sin^2 \chi < 0.6$

9/

Conclusions

- If the smallness of neutrino masses is explained with see-saw mechanism there are many possible mechanisms of the $0\nu\beta\beta$ -decay.
- From the analysis of some of R-parity breaking SUSY mechanisms it follows that light neutrino mass mechanism has not be the dominant mechanism of the $0\nu\beta\beta$ -decay
- Possibilities to distinguish between $0\nu\beta\beta$ -decay mechanisms have to be studied. It should involve the most viable particle physics models and NME calculations
- There is a good agreement between the NSM and the QRPA NME. Why?
- The story about NME not finished yet. Study of further effects (deformation, overlap factor) and cross-check with other approaches required.
- Neutrinoless double electron capture is not well studied yet. Preliminary results for ³⁶Ar indicate strong suppression of this decay mode.
- 2νββ-decay of ⁷⁶Ge allows to conclude whether neutrinos obey Bose-Einstein or Fermi-Dirac statistics

Outlook

The $0\nu\beta\beta$ -decay will be observed (up to 2020)

- Neutrino is Majorana particle (Schechter-Valle theorem)
- The dominant mechanism has to be determined, i.e., further study (differential characteristics, trans. to excited states, related phenomenology, NME, GUT models)

The $0\nu\beta\beta$ -decay will be not observed (up to 2020)

- Inverted hierarchy of neutrino masses excluded
- Stronger constraints on GUT, ...
- A challenge for next generation?
- If mass spectrum already determined
 - ⇒Dirac neutrino (why small mass?)

What is the nature of neutrinos?

Only the 0vββ-decay can answer this fundamental question

