
The MATHSCOUT Development Package

Michael P. Barnett,∗

Meadow Lakes, Hightstown, NJ 08520,
Joseph F. Capitani,†

Joined Departments of Chemistry and Biochemistry,
Manhattan College/The College of Mount Saint Vincent,

Riverdale, NY 10471

May 28, 2007

Introduction

The development package msctDevelopment.tar.gz is unpacked by
tar -xvvzf msctDevelopment.tar.gz to a superset of the files that comprise
the distribution package msctDistribution.tar.gz. The content of this su-
perset and its organization in a hierarchy of directories facilitate a rapid and
rigorous test of the effect of changes to the package and to the supporting ma-
terial.

When we began to develop the mathscout package, we had to check the
effects of changes to the mathscout functions, to the test data and to the
documentation by laborious cutting and pasting into interactive mathematica
sessions that took about an hour. The material in the development package
provide a completely automated process that takes about three minutes. This
process produces a report. The final line shows that the results are unaffected
by the changes to the system, when this is the case. When the results have
been affected, the report pinpoints the effects concisely. We call the process
“validation” in accordance with software engineering terminology.

In this report,

• §1 gives a full account of the methods that we use to produce the displays
that are included in the Tutorial,

• §2 deals with the embedExtracts function that copies verbatim displays
into a LATEX file from other text files,

• §3 deals with the runTests function that evaluates files of statements that
test special cases and diagnostics of individual commands systematically,

∗michaelb@princeton.edu
†joseph.capitani@manhattan.edu
‡mathematica is a registered trademark of Wolfram Research Inc.
§gaussian is a registered trademark of Gaussian Inc.

1

2 BARNETT and CAPITANI

• §4 explains the scripts that consist of a mixture of unix and mathematica
code, that we use to invoke the processes discussed in §§1–3,

• §5 explains the validation process,

• §6 explains some of the coding of the mathscout scripts.

The topics 1–3 are discussed briefly in §4.1–§4.3 of the User’s Guide.

1 Constructing the displays for the Tutorial

The statement <<displays.in constructs most of the displays that appear in
the tutorial. The file displays.in consists of

1. some trivial housekeeping statements,

2. inputGaussianFile statements that load the output of our earlier Gaus-
sian calculations on the water molecule, the nitrogen molecule and the
zinc hydrate ion,

3. extractedLineContaining and extractedLinesContaining statements
that extract a single line and a block of consecutive lines from the log lists,

4. assignment statements that give names to short scan lists,

5. extractDataFrom statements that apply scan lists to extracted pieces of
the log lists,

6. writeListFolded[outputF ileName][listOfData] statements, that write
formated lists in accordance with the conventions described below,

7. statements that (i) abbreviate successive items of common structure within
a line, and (ii) abbreviate a block of consecutive lines that have a common
structure,

8. formating statements,

9. readFile statements, that read back the files which have just been writ-
ten, for visual assurance,

10. mathematica ListPlot and Show graphics commands that create the
graphs, and the Display command that writes the postfix representa-
tions of these.

The statements that are displayed in the Tutorial and in this User’s Guide
simply replicate the format in which they were typed. The embedExtracts
function incorporates these statements by reading them, line by line, using a
mathematica combination that is typically,

currentLine = Read["displays.in", String];

WriteString["tutorialAll.tex", currentLine];

Lines that are copied this way will not overset, because we typed them to fit
within the typeset line length, with the line breaks and the indentions that
emphasize the structure of the statements that they comprise. An evaluated
result that exceeds the allowed line length is folded under program control.
Also, the structure of some lines that would fit is emphasized by folding. For
example, the symbolic Z matrix is typeset at the start of §3.1 of the Tutorial as

MATHSCOUT DEVELOPMENT PACKAGE 3

{SymbolicZmatrix ==

{{O},

{H, 1, r},

{H, 1, r, 2, a}}}

It would be set, by default, as

{SymbolicZmatrix == {{O}, {H, 1, r}, {H, 1, r, 2, a}}}

It is broken into lines by

formattedSymbolicZmatrix =

symbolicZmatrix // toElement[1][foldNamedListFully];

This uses the foldNamedListFully operator. The action of the three other fold
operators is shown in the next statement. This formats the list of multipole
values that comprise the second display in §3.6 of the Tutorial, i.e.

{dipoles ==

{X == 0, Y == 0, Z == -1.9678, Tot == 1.9678},

quadrupoles ==

{XX == -7.2125, YY == -4.2883, ZZ == -6.0338, XY == 0,

XZ == 0, YZ == 0},

tracelessQuadrupoles ==

{XX == -1.3676, YY == 1.5566, ZZ == -0.1889, XY == 0,

XZ == 0, YZ == 0},

octapoles ==

{XXX == 0, YYY == 0, ZZZ == -1.1326, XYY == 0,

XXY == 0, XXZ == -0.2851, XZZ == 0, YZZ == 0,

YYZ == -1.2209, XYZ == 0},

hexadecapoles ==

{XXXX == -5.3379, YYYY == -6.048, ZZZZ == -6.2481, XXXY == 0,

XXXZ == 0, YYYX == 0, YYYZ == 0, ZZZX == 0,

ZZZY == 0, XXYY == -2.1694, XXZZ == -1.9818, YYZZ == -1.7308,

XXYZ == 0, YYXZ == 0, ZZXY == 0}}

The default representation cannot be displayed because it contains lines that
would overset, but the formating action is apparent from the comparison of this
display with the statement that folded the direct result of the extraction. This
action was imposed by

formattedMultipoles =

multipoles //

pipe[

toElement[1][foldAfterEqual],

toElement[2][

toTheRhs[foldAfterElements[{4}]],

foldAfterEqual],

toElement[3][

toTheRhs[foldAfterElements[{4}]],

foldAfterEqual],

toElement[4][

toTheRhs[foldAfterElements[{4,8}]],

foldAfterEqual],

toElement[5][

toTheRhs[foldAfterElements[{4,8,12}]],

foldAfterEqual],

foldListFully];

4 BARNETT and CAPITANI

Folding is performed, in all, by

1. the targetable operator foldAfterEqual,

2. the targetable operator foldListFully, (this acts recursively to depth 2),

3. the targetable operator foldNamedListFully, (this combines the action
of the two previous operators),

4. the switch foldAllListsFully (when this is set to True, each subsequent
output line that is a list is treated as if foldListFully had been applied
to it).

Abbreviation: We use a few simple tactics for abbreviation that provide more
control than the builtin mathematica Short function. The following examples
illustrate these tactics.

The first display in §3.4 of the tutorial, i.e.,

{Population analysis using the SCF density.,

...,

Condensed to atoms (all electrons):,

1 2 3 4 5 6,

1 Zn 10.413341 0.104376 -0.005140 -0.005895 0.103698 -0.005659,

<<17 lines>>,

19 H -0.005843 -0.000004 0.000000 0.000001 -0.000161 0.000004,

<<40 lines>>,

19,

1 Zn -0.005843,

<<17 lines>>,

19 H 0.322839,

Mulliken atomic charges:}

was produced from a 117–line piece of the zinc hydrate file by the statements

populationCursor =

lineNumbersOf["Population analysis"][zincHydrateLog][[1]]

condensedCursor =

lineNumbersOf["Condensed"][zincHydrateLog][[1]] -

populationCursor + 1

shortFilletedInputForPopulationAnalysis =

extractedLinesContainingAtEnds[

"Population", "Mulliken"][zincHydrateLog] //

{#[[1]],

"...",

Take[#, {condensedCursor, condensedCursor+2}],

"<<17 lines>>",

Take[#, {condensedCursor+20, condensedCursor+20}],

"<<40 lines>>",

Take[#, {condensedCursor+61, condensedCursor+62}],

"<<17 lines>>",

Take[#, {condensedCursor+80, -1}]}& //

Flatten;

MATHSCOUT DEVELOPMENT PACKAGE 5

The 4th display in §6.1 of the tutorial, i.e.

{{{0.6, -106.851}, <<24 pairs>>, {3.1, -108.914}}}

was produced by shortening a list of 26 pairs of coordinates called energy[r].
This was done by executing the following statement, that uses the mathemat-
ica #. . . & notation for a “pure function”.

energy[r] // {#[[1]], "<<24 pairs>>", #[[-1]]}&

The 2nd display in §6.2 of the tutorial, i.e.

{distanceMatrix[1] ==

{{{0.}, {2.5445, 0.}, {3.0579, 1.01338, 0.}},

<<15 rows>>,

{3.05488, 4.47683, 4.2581, <<12 items>>, 4.97422, 4.97422, 1.63588, 0.}},

<<28 matrices>>,

distanceMatrix[30] ==

{{{0.}, {2.11744, 0.}, {2.7904, 0.977739, 0.}},

<<15 rows>>,

{2.78308, 3.50259, 3.3594, <<12 items>>, 4.46074, 4.46074, 1.6095, 0.}}}

was produced in a slightly more elaborate way. The entire list of 30 unfolded
matrices, called allDistanceMatrices, extracted by the statement comprising
the first display in §6.2 of the tutorial, was abbreviated by

filletedAllDistances =

allDistanceMatrices //

pipe[

{#[[1]], "<<28 matrices>>", #[[-1]]}&,

toElements[{1, -1}][

toTheRhs[

{#[[{1,2,3}]], "<<15 rows>>",

({#[[19, {1,2,3}]], "<<12 items>>",

#[[19, {-4, -4, -2, -1}]]} // Flatten) }&]]]

As mentioned in §3.5 of the User’s Guide, the pipe function performs right-to-
left composition, i.e.,

x // pipe[f1, f2, . . . , fn] −→ fn(. . . f2(f1(x)) . . .).

The successive items in this expression act as follows.

1. The first item in the pipe expression uses the tactic described for the
energy[r] example to reduce the entire list of 30 Equal statements with
a matrix on the right hand side, to a list of 3 items, in which the middle
item is the abbreviation <<28 matrices>>.

2. The targeting function toElements[{1, -1}] focuses action on the first
and final elements of the abbreviated list, i.e., the Equal statements con-
taining the first and final matrices.

3. The targeting function toTheRhs focuses action on the right hand side of
each.

4. An elementary combination of the mathematica #. . . & and [[{. . . }]]
notations for a pure functions and a lists of parts then performs the fur-
ther abbreviation in the same way that step 1 performed the outermost
abbreviation.

6 BARNETT and CAPITANI

2 Embedding the displays in the Tutorial

The mathscout statement embedExtracts[inRoot, outRoot] reads the LATEX
file inRoot.tex that contains lines of the forms

1. \\!!externalF ileName!!\\,

2. \\!!externalF ileName, startLineNumber!!\\,

3. \\!!externalF ileName, startKey!!\\,

4. \\!!externalF ileName, startLineNumber, lineCount!!\\,

5. \\!!externalF ileName, startKey, lineCount!!\\,

6. \\!!externalF ileName, startKey, offset, lineCount!!\\,

7. \\!!externalF ileName, n[startKey]!!\\,

8. \\!!externalF ileName, n[startKey], lineCount!!\\,

9. \\!!externalF ileName, n[startKey], offset, lineCount!!\\.

Each of these lines is replaced by

\small\begin{verbatim}
. . .
\end{verbatim}\normalsize

where the . . . stand for lines extracted from the specified external file for the
five cases as follows:

1. the entire file,

2. from the starting line number to the end of the file,

3. from the first line that starts with the specified key to the end of the file,

4. the specified number of lines beginning at the specified line number,

5. the specified number of lines beginning with the first line that starts with
the specified key,

6. the specified number of lines beginning at the specified offset from the first
line which starts with the specified key,

7. from the n’th line that starts with the specified key to the end of the file,

8. the specified number of lines beginning at the n’th line which starts with
the specified key,

9. the specified number of lines beginning at the specified offset from the
n’th line which starts with the specified key.

The rest of this section provides readers with prototypes and tests all the embed
commands exhaustively.

Case 1 is illustrated by the line \\!!"forThermal"!!\\which follows the present
line in usersGuideRaw.tex.

MATHSCOUT DEVELOPMENT PACKAGE 7

{Thermal correction to Energy = 0.024185,

Thermal correction to Enthalpy = 0.025129,

Thermal correction to Gibbs Free Energy = 0.003701,

Sum of electronic and zero-point Energies = -76.427488,

Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,

Sum of electronic and thermal Free Energies = -76.445137}

Case 2 is illustrated by the line \\!!"forThermal", 6!!\\ which follows the
present line in usersGuideRaw.tex.

Sum of electronic and thermal Enthalpies = -76.423709,

Sum of electronic and thermal Free Energies = -76.445137}

Case 3 is illustrated by the line \\!!"forThermal", "Sum"!!\\ which follows
the present line in usersGuideRaw.tex.

Sum of electronic and zero-point Energies = -76.427488,

Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,

Sum of electronic and thermal Free Energies = -76.445137}

Case 4 is illustrated by the line \\!!"forThermal", 3, 2!!\\ which follows
the present line in usersGuideRaw.tex.

Thermal correction to Gibbs Free Energy = 0.003701,

Sum of electronic and zero-point Energies = -76.427488,

Case 5 is illustrated by the line \\!!"forThermal", "Sum", 1!!\\ which fol-
lows the present line in usersGuideRaw.tex.

Sum of electronic and zero-point Energies = -76.427488,

Case 6 is illustrated by the line \\!!"forThermal", "Sum", 1, 2!!\\ which
follows the present line in usersGuideRaw.tex.

Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,

and, for negative offset, by the line \\!!"forThermal", "Sum", -1, 2!!\\
which follows the present line in usersGuideRaw.tex.

Thermal correction to Gibbs Free Energy = 0.003701,

Sum of electronic and zero-point Energies = -76.427488,

The subsidiary case of a null item implying zero offset is illustrated by the
line \\!!"forThermal", "Sum", , 2!!\\ which follows the present line in
usersGuideRaw.tex.

Sum of electronic and zero-point Energies = -76.427488,

Sum of electronic and thermal Energies = -76.424653,

Case 7 is illustrated by the line \\!!"forThermal", 2["Sum"]!!\\ which fol-
lows the present line in usersGuideRaw.tex.

Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,

Sum of electronic and thermal Free Energies = -76.445137}

8 BARNETT and CAPITANI

Case 8 is illustrated by the line \\!!"forThermal", 2["Sum"], 2!!\\ which
follows the present line in usersGuideRaw.tex.

Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,

Case 9 is illustrated by the line \\!!"forThermal", 2["Sum"], 1, 2!!\\which
follows the present line in usersGuideRaw.tex.

Sum of electronic and thermal Enthalpies = -76.423709,

Sum of electronic and thermal Free Energies = -76.445137}

The diagnostic for a request containing too many commas is triggered by

!!”water.log”, ”(5D, 7F)”, 1, 3!!

Note that the \\ line break codes are not typeset. This is because they have
taken effect, to typeset the unexecuted statement on a line by itself — the reason
for their inclusion in the raw LATEX file. The diagnostic for an embed request
containing a mathematica syntax error is triggered by

!!”forThermal”, 2[”Sum], 2!!

The diagnostic for an embed request containing a file that is not found is trig-
gered by

!!”ForThermal”!!

The diagnostic for an embed request containing a key that is not found is trig-
gered by

!!”forThermal”, ”vibrational”!!

The diagnostic for an embed request specifying the n’th occurrence of a key
with invalid n is triggered by

!!”forThermal”, 7[”Sum”], 2!!

and for negative n by

!!”forThermal”, -3[”Sum”], 2!!

The diagnostic for an embed request with second argument neither integer nor
string is triggered by

!!”forThermal”, Sum, 2!!

The diagnostic for a request with positive offset out of range is triggered by

!!”forThermal”, ”Sum”, 7, 1!!

The diagnostic for an embed request excessively negative offset is triggered by

!!”forThermal”, ”Sum”, -7, 1!!

The embedExtracts script collects the diagnostic messages, if any occur, and
displays them after the output from the LATEX and dvips steps. Thus, when
the present section was run independently, it produced the following list

Error messages from invalid embed commands.

FullForm used in 1st line of each message.

record number: 1110, too many arguments (commas)

record: \\!!"water.log", "(5D, 7F)", 1, 3!!\\

MATHSCOUT DEVELOPMENT PACKAGE 9

record number 1119: Mathematica syntax error

record: \\!!"forThermal", 2["Sum], 2!!\\

record number 1119: file "forThermal" not found

record: \\!!"forThermal", 2["Sum], 2!!\\

record number 1125: file ForThermal not found

record: \\!!"ForThermal"!!\\

record number 1131: key "vibrational" not found in file "forThermal"

record: \\!!"forThermal", "vibrational"!!\\

record number: 1138, invalid number of lines starting "Sum"

requested in "forThermal"

record: \\!!"forThermal", 7["Sum"], 2!!\\

record number 1144, invalid 2nd argument Times[-1, 3["Sum"]]

record: \\!!"forThermal", -3["Sum"], 2!!\\

record number 1151, invalid 2nd argument Sum

record: \\!!"forThermal", Sum, 2!!\\

record number: 1158, offset 7 out of range

record: \\!!"forThermal", "Sum", 7, 1!!\\

record number: 1165, offset -7 out of range

record: \\!!"forThermal", "Sum", -7, 1!!\\

3 Production of usage examples

The file usage.in consists of statements that exercize different paths through
the individual functions of mathscout. A typical item in this file is

test[keepWords, oneLine, makeName] =

extractDataFrom[{"abra cadabra", "double double toil and trouble"},

using[{makeNameFromCurrentLine, extractCurrentLine, keepWords[{1, 3}]}]]

When this test is interpreted by runTests[mode, infile, outfile], the following
is written into the output file if the mode is "all" or "valid".

test[keepWords, oneLine, makeName] =

extractDataFrom[{"abra cadabra", "double double toil and trouble"},

using[{makeNameFromCurrentLine, extractCurrentLine, keepWords[{1, 3}]}]]

=>

{abraCadabra == {"double", "toil"}}

The procedure runTests treats a statement of the form test[id] = . . . as fol-
lows.

1. The test is written to the output file

(a) if the mode is "all",

10 BARNETT and CAPITANI

(b) if the mode is "valid" and the name of the test is not of the form
test[. . .,"d"],

(c) if the mode is "invalid’’ and the name of the test is of the form
test[. . .,"d"].

2. If the test is written to the output file (because its id is consistent with
the mode), and it is evaluated and the value is displayed (because the test
is not followed by a semicolon) , an arrow => is written, followed by the
output of the test. This is displayed in FullForm when it is Null and in
an abbreviated form when it is long and repetitive.

3. If the test expression is written to the output file, and it generates diag-
nostic messages that are coded within mathscout, these messages are
written to the output file.

4. If the test expression is written to the output file, and it generates math-
ematica diagnostic messages, these are saved and written to the output
file at the end of the run.

Also,

1. The date and the time at which the run started are written at the start of
the output file, followed by the model and identification of the hardware
platform and the version of mathematica that are used.

2. A comment of the form (*!. . .!*) is written in the all and valid modes.

3. A comment of the form (**. . .**) is written in the all and invalid
modes.

4. All other comments (*. . .*) are written in all three modes.

5. An executable mathematica statement or sequence of statements with a
single ! symbol at left and right, e.g.
!waterLog = inputGaussianFile["GaussOut/water/water.log"];!

is executed in the "all" and "valid" modes.

6. An executable mathematica statement or sequence of statements with a
single * symbol at left and right, e.g.
*fourthCouplet =

{"Here’s but three, come one more;",

"two of both kinds make up four"}*

is executed in the "all" and "invalid" modes.

7. The command stop ends the run immediately.

4 The hybrid Mathematica–Unix scripts

These are run from the working directory. runDisplays is typical of the unix
scripts. It cleans out the subdirectory displaysOut if this contains files from
a previous run, and then runs the mathematica kernel on the file of mathe-
matica statements forRunDisplays. The runDisplays script is

MATHSCOUT DEVELOPMENT PACKAGE 11

cd msctSupport

rm -fR displaysOut

math < hybrid/forRunDisplays

cd ..

To invoke this, execute msctSupport/hybrid/runDisplays from the working
directory. Control returns to the working directory. The mathematica script
that is input by the 3rd line

1. loads the mathscout package,

2. changes directory to displaysOut, and

3. interprets the control file displays.in in the manner that is explained
in §3. The displays are concatenated into the single file displaysAll for
easy inspection of a printout.

<<"../msct.m";

Run["mkdir displaysOut"];

<<"displays.in";

concatenateFiles["displaysAll"]["*"];

Exit[]

In principle, the mathematica statements could be included directly in runDisplays
by

cd msctSupport

rm -fR displaysOut

math -run ’<<"../msct.m"; Run["mkdir displaysOut"]; \

<<"displays.in"; concatenateFiles["displaysAll"]["*"]; \

Exit[];’

Although this works when cut and paste, it triggers diagnostic messages and
does not work when it is used as an executable.

The scripts in the hybrid directory write files to several other directories
that are described in §5. In particular

1. runDisplays reconstructs the displays in displaysOut,

2. runUsage reconstructs the .out files in usageOut and usageMore,

3. runScan reconstructs the piece and split files in water and zincHydrate,

4. runDocumentation reconstructs the complete tex and ps files from the
skeletal versions in documentation, for further conversion to the pdf files
for the Tutorial, the User’s Guide, this Development Guide and the short
prototype document in the distribution file,

5. regenerate runs the four scripts just listed,

6. compare compares the files in preserved with the files that have been
regenerated,

7. cleanout deletes the files produced by regenerate,

8. preserve writes the regenerated files into preserved, replacing its prior
contents,

12 BARNETT and CAPITANI

9. update reindexes the msct.m file after it has been modified,

10. forCompare, . . . , forUpdate are very short files of mathematica state-
ments that are used by some of the executable scripts which have just
been listed.

5 Installation and validation

The command tar -xvvzf msctDevelopment.tar.gzunpacks the development
package msctDevelopment.tar.gz into a hierarchy of directories and files in the
working directory where it was downloaded. These support the following vali-
dation process that was mentioned in the Introduction.

A complete set of the files produced by the most recent succesful automated
validation comprises the directory preserved. The validation reruns the steps
that created these files and writes these new files in the directory regenerated.
Then the files in these two directories are compared, and the matches and mis-
matches are recorded. In the following tabulation of the unpacked files, direc-
tories are typeset in boldface and underlined. The working directory is where
where the development file was downloaded and unpacked.

working directory
msct.m, README, validate,
referenceReport [for comparison with output of validate],
msctSupport
displays.in [reconstructs displays embedded in tutorial, see §1],
displaysOut [receives output of displays.in],
usage.in [reconstructs major demonstrations of usage, see §3],
documentation [contains files to reconstruct LATEX files for the documentation]
cbFig01.ps, table01.tex [diagram and table for C4H4 example in Tutorial],
tutorialRaw.tex, userGuideRaw.tex,
developmentRaw.tex, docDemoRaw.tex [unembedded LATEX files],
tex [LATEXfiles with displays embedded]
tutorial.tex. . . docDemo.tex,

GaussOut [files from Gaussian runs used in examples]
full.auto [scan lists to extract all data from water and zinc hydrate],
nitrogen
n2scan.log,

water
water.chkpt, water.log,

zincHydrate
zincHydrate.log,

usageOut [to hold output produced from usage.in]
usageMore
usageShort.in, usageStop.in, usageTrap.in [show conventions of runUsage],

preserved [results for comparison with regenerated files]
displaysOut
dipoles2, . . . , zeroPoint [41 files written by displays.in],
displaysAll [concatenation of these],

documentation
tutorial.tex, userGuide.tex, development.tex, docDemo.tex,

usageMore
usageShort.in, usageShortAll.out, . . . , usageTrap.out,
usageSmallFiles.out [concatenation of the 8 other files],

MATHSCOUT DEVELOPMENT PACKAGE 13

usageOut
usageAll.out, usageCorrect.out, usageIncorrect.out [produced from usage.in],

water [from full extraction of water log]
piece1, . . . , piece2.3, piece3_01, . . . , piece3_03, piece4, . . . , piece5.4,
split1, . . . , split2.3, split3_01, . . . , split3_03, split4, . . . , split5.4,

zincHydrate [from full extration of zinc hydrate log]
piece1, . . . , piece2.3, piece3_01, . . . , piece3_57, piece4, . . . , piece5.4,
split1, . . . , split2.3, split3_01, . . . , split3_57, split4, . . . , split5.4,
split3_01mod,

hybrid [about 30 scripts to test and modify the package].

The executable validate in the working directory begins with a statement that
is redundant when validate is used for the first time after downloading. The
statement permits subsequent reruns by deleting all the files that regenerate
constructs.

msctSupport/hybrid/cleanout;

Next, the validationReport is begun. The header is written by

echo ’ ’ > validationReport;

echo ’VALIDATION REPORT’ >> validationReport;

date >> validationReport;

echo ’==========’ >> validationReport;

echo ’ ’ >> validationReport;

Next, an explanatory remark is written into validationReport followed by the
output of the following unix pipe.

msctSupport/hybrid/compare | tail | grep matches >> validationReport;

The output of compare ends with a two-line summary of the comparisons, and
the pipe extracts this. None of the new files have been generated yet, so the com-
parison shows that none of the reference files are matched. Then regenerate is
run, followed by compare. This time there should be a match between many or
all of the reference files and the regenerated files. The comparison pinpoints the
mismatches, that can be checked to make sure that they reflect valid changes.
The new results are preserved. The directory is copied into the report before and
after this action, to show that the preservation did occur. Within regenerate,
the script runDocumentation

1. copies the “raw” LATEX files and the other files which provide some of
the embedded displays from several directories into displaysOut, which
contains most of the displays,

2. runs embedExtracts in this directory,

3. copies the .tex and .ps files into documentation,

4. deletes the other redundant files from displaysOut.

The validation can be cut and paste up to the second compare action, to avoid
wiping out the old preserved files prematurely.

14 BARNETT and CAPITANI

6 Internal operation

6.1 Input and output

Gaussian output files are loaded by ReadList[. . ., String] statements. Ele-
mentary character string operations remove the trailing carriage return charac-
ter \r, remove leadinga and trailing spaces, and regularize the internal spacing.
The display.in control file, the usage.in and related control files, and the
“raw” tex files are read by Read[. . ., String] statements, in cycles that use
string operations to identify

1. special records, such as the \\!!. . .!!\\ lines that specify external sources
of displays,

2. the breaks between successive items, and

3. the characteristics of individual items, such as whether a statement in a
usage input file is to be considered in the mode that was specified in the
runTests statement that is being executed.

These operations are also applied to the elements of the lists of strings loaded
by ReadList.

Output is written by

1. Write statements, when it is assumed that the PageWidth option provides
sufficent format control for the complete output expressions,

2. WriteString, when

(a) successive lines of an input file are simply copied without change into
an output file, e.g. in the embed process that converts a “raw” tex
file into the complete version,

(b) tighter control is needed, e.g., to force line breaks between successive
items in a list, in the files constructed by interpreting displays.in.

The two styles are alternated in the interpretation of usage files. WriteString
records the input, the diagnostic messages, the => connectives, and the lines of
hyphens. Write records the evaluated expressions.

6.2 Scan control cycle

The design of processors to interpret lists of specialized commands is a com-
monplace elementary programming exercize. Usually, it is handled by a case
statement that switches to a separate coding sequence or subprogram for each
command. This requires expansion of the case statement when the command
set is expanded. We avoid the use of case statements that branch on different
commands. The extractDataFrom function operates on the entirety of a list
that has been loaded from a Gaussian output file, or on a piece that has been
extracted from it, as follows.

In each cycle, the script

1. increments scanStatementNumber, that points to the command under
current attention in the scan list,

MATHSCOUT DEVELOPMENT PACKAGE 15

2. sets currentAction to this command,

3. tranfers material from the list being scanned to currentExtract when
the command performs an extraction,

4. increases the variable currentLineNumber, that points to the line under
current attention in the file that is being scanned, when a skip or extraction
is performed,

5. appends the result of the command to the associationList when com-
mands such as useEmbeddedSpaces are interpreted.

The interpretation of skipNextLine is typical. The script that interprets the
scan list

1. uses ToString to convert the command skipNextLine, which has the
syntactic status of a symbol, to "skipNextLine", which has the status of
a string,

2. converts this to the string "$skipNextLine",

3. uses ToExpression to convert this string to the symbol $skipNextLine.

The mathscout package includes the SetDelayed statement

$skipNextLine := currentLineNumber = currentLineNumber + 2

The system evaluates the right hand side automatically, thereby increasing the
line cursor by 2.

In a similar manner, useEmbeddedSpaces, unfold and other commands that
have no explicit arguments are converted to function names by prepending a $.
The command callTheResidue[name] is converted to $callTheResidue. This
is the name of the function

$callTheResidue :=

(AppendTo[

associationList,

If[Length[currentAction] >= 1,

currentAction[[1]], nullName] ==

Take[currentTarget, {currentLineNumber, -1}]];

currentLineNumber = Length[currentTarget] + 1;)

Although this does not have an explicit argument, the main control script has
assigned the actual command to currentAction. The name to be assigned to
the residue is available, accordingly, as currentAction[[1]].

Every scanning command f[v] is converted to $f , and its argument is ob-
tained as currentAction[[1]]. Every command f[v][w] is converted to $f ,
v is obtained as currentAction[[0,1]] and w as currentAction[[1]]. Users
can introduce new commands with 0, 1 or 2 arguments without altering the
control program. All that is needed is the definition of a function to perform the
required operation, that is named by prepending $ to the keyword comprising
or beginning the new command.

The methodology that has just been described allows the accommodation of
further commands by very localized insertions that do not alter any statements
that are already present.

16 BARNETT and CAPITANI

The control mechanism uses a list of executable scan functions, i.e. the
left hand sides of the := statements that begin with a single $. The procedure
listExecutables constructs this, whenever the package is loaded, by

1. using Save["executables", "$*"] to save these statements in whatever
directory is currently in use. (This was done to avoid making the func-
tion listExecutables search the package on disk when the command
is executed in a subdirectory of the working directory where the pack-
age resides. It may be possible to simplify the process by addressing the
supernode with the "../" notation.)

2. using FindList["executables", "$", AnchoredSearch -> True] to list
the first lines of all SetDelayed statements currently available that have
names which begin with a $ symbol,

3. eliminating the mathematica commands that begin with a $ symbol,
and eliminating the mathscout commands that begin $$, by requiring
the 2nd character to be a lower case letter,

4. running the procedure after the package has been loaded, so that the
usage message assignments have taken effect. (This refers to the mathe-
matica functionName::usage="" statements, and not to our usage.in
and related files.)

The incorporation of the putSpacesInCoalescedNumbers, mentioned at the
end of §5.3 of the Tutorial, into msct.m provides experience of modifying the
package. It takes the following steps.

1. Make a backup copy of the current version of the package.

2. Cut and paste the procedure from full.auto into msct.m.

3. Change the name of the procedure to $putSpacesInCoalescedNumbers,
just by typing a $ symbol.

4. Type usage::$putSpacesInCoalescedNumbers=""; in the usage section
at the beginning of msctBeingModified.m.

5. Run indexTheScripts["msctBeingModified.m", "msct.m"].

6. Revalidate.

6.3 Trapping diagnostic messages

To detect expressions that generate diagnostics when evaluated, even though
they are syntactically correct, without disrupting the output by their immedi-
ate display, we use a tactic that is embodied in the code
$Messages = {messageFile = OpenWrite["mathDiagnostics"]};

. . .

If[FileByteCount["mathDiagnostics"] == 0,normal action, error action];

where . . . stands for an expression that the user expects to be evaluable, but
which may generate diagnostic messages in unforseen circumstances. This con-
struction is used in runTests. Variations are used in the functions $unfold and
$unfoldTriangular.

MATHSCOUT DEVELOPMENT PACKAGE 17

6.4 Indexing the package mechanically

The mathscout package consists of

1. the statement Begin[msct], in accordance with the standard convention
for beginning a package,

2. a date and time stamp,

3. a mechanically constructed index to the scripts, that lists the identifiers
that begin all the SetDelayed (i.e. :=) in the package, with numbers that
show their respective positions in the package,

4. the usage statements for the names that are used externally,

5. the body of the package and the closing End statements,

6. the statement listExecutables that constructs a list which is essential
to the control mechanism described in §6.2.

A comment containing the sequence number appears above each SetDelayed
statement. We first wrote a file that did not contain items 2 and 3 and did not
contain the sequence numbers. These are incorporated, if absent, and updated,
if present, by the procedure indexTheScripts[oldName, newName].

7 Future developments

We will be glad to cooperate in the application and, if necessary, extension
and adaptation of mathscout in further work on computational chemistry and
other fields.

