MATHSCOUT Background and Tutorial

Michael P. Barnett®*and Joseph F. Capitani®

*Meadow Lakes, Hightstown, NJ 08520,
bJoined Departments of Chemistry and Biochemistry,
Manhattan College/The College of Mount Saint Vincent,
Riverdale, NY 10471

May 28, 2007

Abstract

MATHSCOUT is a MATHEMATICAY package to postprocess the output of other pro-
grams for scientific calculations. We wrote MATHSCOUT to import data from a major
program for ab initio computational chemistry into MATHEMATICA, so that we could
postprocess the chemical results. It can be used to import the output of many other
packages that are used, e.g. in molecular dynamics, crystallography, spectroscopic
analysis, metabolic and physiological modeling, meteorology and other areas of envi-
ronmental science, cosmology and particle physics. MATHSCOUT assigns a name to each
table and non-tabular datum that it extracts. This name is constructed mechanically
from the identifier or phrase that precedes or follows or embeds the item in the output
that MATHSCOUT processes. A selection of non-contiguous items, or all the items in a
section of the file, or in the entire file are extracted using simple commands. So far,
we have focused on our immediate needs to postprocess the output of the Gaussian®
program. Calculations on several molecules that illustrate the usage of the package
are presented here. MATHSCOUT is shortened to msct in the software.

1 Introduction

Recently, we used Gaussian 03 [4] to compute structural properties of a series of
molecules containing 4-atom rings, and ran MATHEMATICA [18] scripts to compute
puckering angles from data in the output [3]. The electronic cutting and pasting from
Gaussian output to MATHEMATICA input was tedious but routine enough for mecha-
nization to seem possible. We have taken time out from the substantive calculations
to explore this issue.

Several authors have written programs over the past decade that act on the output
of successive versions of the Gaussian package. The programs include

1. APOST-MS, APEX4, BO-VIR and other programs of Mayer and his associates that
are discussed in [9, 10, 11] and papers cited therein. These programs can be
downloaded from occam.chemres.hu/programs.

2. FREQCHK included in the Gaussian 03 distribution [4], see www.gaussian.com.

*michaelb@princeton.edu

fjoseph.capitani@manhattan.edu

fMATHEMATICA is a registered trademark of Wolfram Research Inc.
8GAUSSIAN is a registered trademark of Gaussian Inc.

© PN w

10.

Some

3.
4.
5.

BARNETT and CAPITANI

the associated GAUSSVIEW of Gaussian Inc. [5], see www.gaussian.com,
GOPENMOL, maintained by Laaksonen [7], see www.csc.fi/gopenmol,
HYPERCHEM 7.5 for Windows, a product of Hypercube, Inc. [6], see www.hyper. com.
MOLDEN of Schaftenaar and Noordik [15], see www.cmbi.ru.nl/molden.

MOLEKEL of Fliikiger, Portmann, and Liithi[13] see www.cscs.ch/molekel,
PCMODEL, Serena Software [17], see www.serenasoft.com.

WEBMO version 6.0 of Polik and Schmidt [16], see www.webmo.net, and

JUMBO of Murray-Rust and his associates[12], see www.ch.ic.ac.uk/omf/cml/doc.

of these programs draw and render

. ball, stick, wire, and CPK models (4-9),

electronic densities and electrostatic potentials (4-9),
potential energy surfaces and animations (4-9).
perform further calculations

. to compute bond orders [9, 11], exact energy decomposition [8], decomposition

for fuzzy atoms [14], and mass spectrometric cleavages [10],

to compute electron densities and, from these, electrostatic potential, distributed
multipoles, and Laplacians [15],

to compute vibrational frequencies (3-9),
for bond order and multipole moment analysis (3-9),

in demonstrations of convergence behaviour (10).

The packages 1, 3 and 4 import Gaussian data from the “formatted checkpoint file”
(FPCHK) whilst the packages 5, 7 and 9 import data from both the FPCHK and the LOG
files. The package 6 uses the LOG file. Murray-Rust is developing a virtual consortium
for quantum chemistry programs and “where possible will collaborate with the program
author(s) to add cML as an output format” [12].

We have written MATHEMATICA scripts to extract data from the abundant infor-
mation that is contained in the Gaussian output file as well as from the FPCHK file to
meet a variety of needs. For example, whilst the checkpoint file provides the data for
rendering many properties, data in the main output file of the scanning job is needed
to render the plots of energy and the virial versus bond length in nitrogen shown in
Figures 1 and 2.

energy

-108.2

-108.4 1

-108.6

-108.8

-109 r

-109.2

-109.4 1

-109.6 - L L L L L r

Figure 1. Energy vs internuclear distance in Na.

MATHSCOUT TUTORIAL 3

virial

2.015

2.005

1.995

1.985 ¢

Figure 2. Virial vs internuclear distance in Na.

The log file is needed, too, for the data that shows the convergence of the average
zinc-oxygen distance in a calculation on Zn(HQO)éFJr. Table 1 lists these averages and
the spreads i.e. (max-min)/average.

iteration 1 2 3 4 5 6 7 8 9 10
average 2.544 | 2.509 | 2.461 2.414 | 2.369 2.327 | 2.280 | 2.214 | 2.148 | 2.121
spread 0.001 | 0.007 | 0.015 | 0.023 | 0.029 | 0.033 | 0.036 | 0.041 0.043 | 0.027
iteration 11 12 13 14 15 16 17 18 19 20
average 2.115 | 2.113 | 2.122 2.133 | 2.145 2.147 | 2.139 | 2.125 2.117 | 2.113
spread 0.014 | 0.018 | 0.012 | 0.009 | 0.021 0.029 | 0.040 | 0.029 | 0.012 | 0.008
iteration 21 22 23 24 25 26 27 28 29 30
average 2.116 | 2.119 | 2.122 2.122 | 2.120 | 2.115 | 2.118 | 2.117 | 2.117 | 2.117
spread 0.005 | 0.011 0.014 | 0.011 0.004 | 0.006 | 0.003 | 0.003 | 0.003 | 0.003

Table 1. Convergence of Zn-O distance in Zn(H2O)¢ " iteration.

The Gaussian output files contain a considerable variety of tables and individ-
ual data that are identified in several different styles. We have written some
scanning utilities in MATHEMATICA to deal with this diversity. These comprise
the MATHSCOUT package in the Computer Physics Communications Program
Library. The scanning commands for a particular application are based on the
structure of the lines that contain the data to be extracted. The keywords and
phrases that accompany the data in the Gaussian (or other) output are coa-
leseced and cosmeticized mechanically into identifiers that conform to MATHE-
MATICA syntax. These identifiers are associated with the data and the tables in
lists of MATHEMATICA Equal statements. Typical statements in these lists are

nuclearRepulsionEnergy == 9.2635178625

StandardBasis == "6-311G(2d,p) (5D, 7F)"
symbolicZmatrix == {{0}, {H, 1, r}, {H, 1, r, 2, a}}
initialValuesOfVariables == {r == 0.95, a == 105}

Several simple MATHEMATICA language devices are used to extract individual
results from these lists. The full range of MATHEMATICA resources that perform
mathematical operations and deal with character strings, files and graphics then

4 BARNETT and CAPITANI

can be brought to bear on this imported information. The == (Equal) symbol is
used instead of the = (Set) symbol to connect an identifier and its value. This
allows multiple uses of the same identifier that can be distinguished by context,
e.g. the lists in which they occur, or by tagging.

Other authors have incorporated the output of Gaussian runs in hundreds
of research reports and in numerous teaching documents. Whilst some of these
incorporations were made with the help of postprocessors, as mentioned above,
it seems likely that electronic cutting and pasting was used for most. The white
papers by Cheeseman, Frisch, Ochterski and unnamed authors on the Gaussian
website http://www.gaussian.com/g_whitepap/white_pap.htmillustrate the
use of Gaussian output to teach many chemical topics. Whilst the existing post-
processors render Gaussian output, and derive further electronic and molecular
properties that are of common interest, the scope is circumscribed by the post-
processor design. In contrast, MATHSCOUT enables the interactive and batch
production of an open-ended variety of conflations, combinations and derived
quantities. These can be inspected on the screen, and rendered and typeset in
publishable quality for distribution electronically and in print. Potential appli-
cations of MATHSCOUT include

1. mechanized documentation for teaching and research,

2. studies of convergence acceleration,

3. other systematic analyses of the behaviour of individual and related runs,
4. graphic display of numerical output,

5. exploration of models of molecular structure and behaviour that require
further mathematical manipulation of the Gaussian results,

6. analysis of log and scan files that are archived in individual laboratories
and in depositories.

Because all users of Gaussian are acquainted with items in the log file, we use
examples of these to introduce the usage of MATHSCOUT. Successive sections of
this tutorial cover the following material

e §2 describes the basic working procedure and some simple examples,

83 describes the extraction of data from lists and tables,

84 shows how multiple occurrences are extracted and distinguished, when
(1) the number of occurrences does not vary and (2) when this number
depends on the convergence of an iterative process,

85 explains the mechanical incorporation of verbatim displays of portions
of text files in a I¥TEX coded document, without manual cutting and
pasting,

86 explains the scripts that produced Figures 1 and 2 and Table 1, to show
how MATHSCOUT is used to render diagrams, and to typeset Gaussian
output in tabular formats,

MATHSCOUT TUTORIAL 5

e §7 describes the component of our cyclobutane calculation that shows how
a selection of data from Gaussian runs for several different molecules are
combined,

e 68 describes the extraction of data from the checkpoint file using MATH-
SCOUT.

The accompanying User’s Guide
1. provides a systematic description of the MATHSCOUT scanning commands,
2. describes the mechanized documentation in more detail than given here,

3. summarizes the extraction of all the data from the Gaussian log files for
the water and zinc hydrate calculations,

MATHSCOUT scripts are written in a functional programming style that we have
evolved for other applications of MATHEMATICA to computational chemistry and
other fields [2]. The accompanying Development Guide

1. explains the implementation of MATHSCOUT,
2. shows how the command language can be extended very easily,
3. lists auxiliary files of test and demonstration material,

4. explains how these are used to ensure backward compatibility when the
package is extended.

2 Some short examples

An extraction run begins by loading the MATHSCOUT package in a MATHEMAT-
ICA session. For simplicity, the input/output statements in the present tutorial
refer to Gaussian output files in subdirectories of the directory containing the
MATHSCOUT package msct.m. The setup stage for the water calculation is typ-
ical. The statement

waterLog = inputGaussianFile["water/water.log"];
1. stores the successive lines of the specified file as a list of character strings,
2. ensures that each “=" symbol in these is flanked by spaces,

removes leading, trailing and redundant spaces in each line,

removes periods from the ends of lines, and

oo W

removes null lines.

The displays in this tutorial show the lines of Gaussian files in the trimmed form
that inputGaussianFile produces.

Note that when working directly with the unpacked MATHSCOUT package,
the appropriately qualified file names are "scanDem/water/water.log" and
"scanDem/zincHydrate/zincHydrate.log".

Our first example shows the extraction of the single datum in the line that
comprises the single element of the list

6 BARNETT and CAPITANI

{Sum of electronic and thermal Free Energies = -76.445137}

The quote marks at the ends of each input line that has been loaded as a string
are implied throughout this tutorial. A succession of lines of input is displayed
as a list. The line that has just been displayed is converted to

{SumOfElectronicAndThermalFreeEnergies == -76.4451}
by the MATHSCOUT statement

extractDataFrom[waterLog,
using[

{skipTo["Free Energies"],
extractCurrentLine,
useEmbeddedEquall}]];

A preliminary inspection had shown that the free energy only appears in the
one line of the log file that contains the character string “Free Energies”. This
kind of observation is needed to write all the scanning statements. Because the
input line contains a single = symbol, MATHSCOUT coalesces the words before
this symbol to form the name. Also, the = (Set) is changed to == (Equal).
Correspondingly, the consecutive lines

{Thermal correction to Energy = 0.024185,

Thermal correction to Enthalpy = 0.025129,

Thermal correction to Gibbs Free Energy = 0.003701,

Sum of electronic and zero-point Energies = -76.427488,
Sum of electronic and thermal Energies = -76.424653,

Sum of electronic and thermal Enthalpies = -76.423709,
Sum of electronic and thermal Free Energies = -76.445137}

are converted to

{ThermalCorrectionToEnergy == 0.024185,
ThermalCorrectionToEnthalpy == 0.025129,
ThermalCorrectionToGibbsFreeEnergy == 0.003701,

SumOfElectronicAndZeroDashpointEnergies == -76.4275,
Sum0fElectronicAndThermalEnergies == -76.4247,
Sum0fElectronicAndThermalEnthalpies == -76.4237,
SumOfElectronicAndThermalFreeEnergies == -76.4451}

by the MATHSCOUT statements

extractDataFrom[waterLog,
using[

{skipTo["Thermal"],
extract[7 lines],
useEmbeddedEquall}]];

The line
{Zero-point vibrational energy 56053.4 (Joules/Mol)}

needs a more detailed specification of the extraction than the earlier examples.
An obvious description enumerates

1. the words that are coalesced to construct the name, and

MATHSCOUT TUTORIAL 7

2. the word that constitutes the value (or the words that constitutes the
values when the named object is a list).

Once we had decided to use this convention, the coding to support the mnemonic
pairWords([{...}, ...] was trivial. The complete MATHSCOUT statement is

zeroPoint =

extractDataFrom[waterLog,

using[

{skipTo["Zero-point vibrational"],
extractCurrentLine,
pairWords[{1,2,3,5},41}1];

This produces

{ZeroDashpointVibrationalEnergyJoulesSlashMol == 56053.4}

3 Lists and tables

Gaussian output contains many lists and tables. The styles that occur most
often are typifed by

1. the Z-matrix, which is delimited by (i) its title and (ii) the identifier in
the line that always follows the final line of the table,

2. the input orientation, that contains column headings set apart by lines of
hyphens, with a line of hyphens at the end,

3. the optimized parameters, boxed by lines of hyphens and ! marks,

4. the population analysis that is, essentially, a rectangular matrix that is
folded to six items per line,

5. the distance matrix that is, essentially, a triangular matrix that is folded
to five items per line,

6. the collection of multipole moments, that are free-format lists.

3.1 Extracting the Z-matrix

The Z-matrix is headed Symbolic Z-matrix: and it is followed by Variables:.
For water, the relevant lines of the log file are

{Symbolic Z-matrix:,

Charge = 0 Multiplicity = 1,
o,

H1lr,

Hi1ir 2 a,

Variables:}

The matrix is converted to

{SymbolicZmatrix ==
{{03,
{41, 1, r},

{H, 1, r, 2, a}}}

8 BARNETT and CAPITANI

by

symbolicZmatrix =
extractDataFrom[waterLog,
using[scanList[extractSymbolicZmatrix]]];

where

scanList [extractSymbolicZmatrix] =
{skipTo["Symbolic Z-matrix:"],
makeNameFromCurrentLine,
skipToNextLine,
extractSuccessiveLinesBeforeNext["Variables:"],
splitOnSpaces};

Lines 14 in this scan list are self-explanatory. The splitOnSpaces command
constructs a MATHEMATICA list that consists of the items that are separated by
spaces in the string that is split. Each item is converted to the MATHEMATICA
representation of an integer, real number (preserving the accuracy) or symbol
if it has the appropriate syntax. Otherwise, it is kept as a character string.
The conversion of real numbers is suppressed for documentation, at times, by
preventConversion=True. This suppresses lengthy strings of noise digits and
built up powers of 10. Another use is mentioned at the end of §3.6.

3.2 Extracting the input orientation table

The following lines of data for the initial input orientation in the water file typify
a tabular style that is used repeatedly in Gaussian output.

{Input orientation:,

Center Atomic Atomic Coordinates (Angstroms),
Number Number Type X Y Z,

00000 0.000000 0.000000,

00000 0.000000 0.950000,

17630 0.000000 -0.245878,

180 0.
2100.
3100

© O O

These lines are converted to

{InputOrientation ==

{{1, 8, 0, 0.000000, 0.000000, 0.000000},

{2, 1, 0, 0.000000, 0.000000, 0.950000},
0, 0.9

{3, 1, 0, 17630, 0.000000, -0.245878}}}
by
inputOrientation =

extractDataFrom[waterLog,
using[scanList [extractInputOrientation]]];

where

scanlList [extractInputOrientation] =
{skipTo["Input orientation:"],
makeNameFromCurrentLine,

MATHSCOUT TUTORIAL 9

skip[4 lines],
extractSuccessivelLinesBeforeNext["-——-"],
splitOnSpaces,

skipToNextLine};

The final command advances the scanning cursor for consistency with the needs
of further commands when this scan list is incorporated in a longer list for a
more extensive extraction.

3.3 Extracting the optimized parameter table

The optimized parameters in the water file typify another tabular style that is
used in Gaussian output.

! Optimized Parameters !,
! (Angstroms and Degrees) !,

! R1 R(1,2) 0.9627 -DE/DX = 0.
! R2 R(1,3) 0.9627 -DE/DX
! A1 A(2,1,3) 103.9148 -DE/DX

1]
o
o o

This is converted to

{OptimizedParameters ==

{{r1, R(1,2), 0.9627, -DE/DX, 0},

{R2, R(1,3), 0.9627, -DE/DX, 0},

{A1, A(2,1,3), 103.915, -DE/DX, 0.0001}}}

by

optimizedParameters =
extractDataFrom[waterLog,
using[scanList [extractOptimizedParameters]]];

where

scanList [extractOptimizedParameters] =
{skipTo["Optimized Parameters"]
makeNameFromCurrentLine,
skip[4 lines],
extractSuccessivelLinesBeforeNext["-——-"],
deleteWords[{1, 6, -1}1};

The commands in this scan list are largely self-explanatory. The deleteWords
command in this script deletes the ! and = symbols, and returns the input line
as a list of strings. Further commands that coalesce descriptive phrases will
be used, largely without comment, in the examples that follow in this section
and in later sections. Whilst a list of these is needed to use MATHSCOUT to full
advantage, scripts can be read without a glossary and the examples here can be
used as prototypes for further work.

10 BARNETT and CAPITANI

3.4 Extracting the population analysis

The population analysis illustrates the unfolding of a rectangular matrix. The
relevant part of the log file for Zn(H2O){ ™ is

{Population analysis using the SCF density.,

Condensed to atoms (all electroms):,

12345686,

1 Zn 10.413341 0.104376 -0.005140 -0.005895 0.103698 -0.005659,
<<17 lines>>,

19 H -0.005843 -0.000004 0.000000 0.000001 -0.000161 0.000004,
<<40 lines>>,

19,

1 Zn -0.005843,

<<17 lines>>,

19 H 0.322839,

Mulliken atomic charges:}

The 40 lines that are omitted from this display contain the data for the 19 atoms
coordinated with atoms 7, ..., 12 and then with atoms 13, ..., 18. The input
table is converted to

{populationAnalysisCondensedToAtoms ==

{{1, Zn, 10.413341, 0.104376, ..., -0.005159, -0.005843%},
<<17 lines>>,

{19, H, -0.005843, -0.000004, ..., -0.021359, 0.322839}}}
by

unfilletedOutputForPopulationAnalysis =
extractDataFrom[
zincHydrateLog, using[scanList[populationAnalysis]]];

where

scanList [populationAnalysis] =
{skipTo["Population analysis"] R
skipToNext ["Condensed to atoms"],
skipToNextLine,
extractSuccessiveLinesBeforeNext [
"Mulliken atomic charges"] ,
unfold,
callTheResults[populationAnalysisCondensedToAtoms]};

3.5 Extracting the distance matrix

The extraction of a distance matrix shows how a triangular matrix is unfolded.
In the zinc hydrate file, the matrix is

{Distance matrix (angstroms):,

12345,

1 Zn 0.000000,

2 0 2.544496 0.000000,

3 H 3.057904 1.013377 0.000000,

4 H 3.057592 1.011392 1.639501 0.000000,

5 0 2.544353 3.612396 4.058512 3.398881 0.000000,

MATHSCOUT TUTORIAL 11

6 H 3.058750 3.707898 3.918671 3.456905 1.012637,
<<12 lines>>,

19 H 3.054884 4.476826 4.258097 5.006885 3.705885,
<<25 lines>>,

19 H 3.401702 3.668385 4.337178 4.218934 4.765916,
16 17 18 19,

16 H 0.000000,

17 0 4.415231 0.000000,

18 H 4.163579 1.013083 0.000000,

19 H 4.974219 1.012715 1.635881 0.000000,
Stoichiometry H1206Zn(2+)}

The sequence of 25 lines that are omitted from this display consist of 15 lines that

coordinate atoms 6,..., 10 with atoms 6, ..., 19, and 10 lines that coordinate
atoms 11,..., 15 with atoms 11, ..., 19. The input matrix is converted to
{distanceMatrix ==

{{0.3,

{2.5445, 0.},

{3.0579, 1.01338, 0.},

{3.05759, 1.01139, 1.6395, 0.},

{2.54435, 3.6124, 4.05851, 3.39888, 0.},

{3.05875, 3.7079, 3.91867, 3.45691, 1.01264, 0.},

{3.05567, 4.55317, 5.00138, 4.3901, 1.0122, 1.63995, 0.},

<<11 rows>>,

{3.05488, 4.47683, 4.2581, 5.00689, 3.70589, <<12 items>>, 3.48454, 0.}}}

by

unfilletedOutputForDistanceMatrix =
extractDataFrom[
zincHydrateLog, using[scanList[distanceMatrix]]];

where

scanList[distanceMatrix] =
{skipTo["Distance matrix"]
skipToNextLine,
extractSuccessivelLinesBeforeNext [
"Stoichiometry"],
unfoldTriangular,
callTheResults[distanceMatrix]};

3.6 Extracting the multipoles
Multipoles comprise a quasi-tabular body of data. The lines

{Dipole moment (field-independent basis, Debye):,

X = 0.0000 Y = 0.0000 Z = -1.9678 Tot = 1.9678,

Quadrupole moment (field-independent basis, Debye-Ang):,

XX = -7.2125 YY = -4.2883 ZZ = -6.0338,

XY = 0.0000 XZ = 0.0000 YZ = 0.0000,

<<7 lines>>,

Hexadecapole moment (field-independent basis, Debye-Ang**3):,
XXXX = -5.3379 YYYY = -6.0480 ZZZZ = -6.2481 XXXY = 0.0000,
<<2 lines>>,

XXYZ = 0.0000 YYXZ = 0.0000 ZZXY = 0.0000}

12 BARNETT and CAPITANI

are converted to

{dipoles ==

{X ==0, Y==0, Z==-1.9678, Tot == 1.967},
quadrupoles ==

{XX == -7.2125, YY == -4.2883, ZZ == -6.0338, XY == 0,

XZ == 0, YZ == 0},
tracelessQuadrupoles =

{XX == -1.3676, YY == 1.5566, ZZ == -0.1889, XY == 0,
XZ == 0, YZ == 0},
octapoles ==
{XXX == 0, YYY == 0, ZZZ == -1.1326, XYY == O,
XXY == 0, XXZ == -0.2851, XZZ == 0, YZZ == 0,
YYZ == -1.2209, XYZ == 0},
hexadecapoles ==
{XXXX == -5.3379, YYYY == -6.048, ZZZZ == -6.2481, XXXY == 0,
XXXz == 0, YYYX == 0, YYYZ == 0, ZZZX == 0,
ZZZY == 0, XXYY == -2.1694, XXZZ == -1.9818, YYZZ == -1.7308,

XXYZ == 0, YYXZ == 0, ZZXY == 0}}
by the MATHSCOUT statements

scanList [extractMultipoles] =

{skipTo["Dipole"], extractNextLine, concatenateTheExtract,
useEmbeddedEqual, callTheResults[dipoles],
skipToNextLine, extract[2 lines], concatenateTheExtract,
useEmbeddedEqual, callTheResults[quadrupoles],
skipToNextLine, extract[2 lines], concatenateTheExtract,
useEmbeddedEqual, callTheResults[tracelessQuadrupoles],
skipToNextLine, extract[3 lines], concatenateTheExtract,
useEmbeddedEqual, callTheResults[octapoles],
skipToNextLine, extract[4 lines], concatenateTheExtract,
useEmbeddedEqual, callTheResults[hexadecapoles]};

The displayed values of the multipoles were produced using the preventConversion
action mentioned at the end of §3.1. The zero values would have appeared as
10~° otherwise.

4 Repetitive data

4.1 Fixed number of repetitions

The word “dipoles” actually occurs 5 times in the log file when jobs are run
with a commonly used set of options. The lines that follow the first and second
lines containing Dipoles are converted to

{dipoles[1] == {X == 0, Y == 0, Z == -1.9678, Tot == 1.9678%},
dipoles[2] == {X == 0, Y == 0, Z == -1.989, Tot == 1.989}}
by

dipoles2 =

extractDataFrom[waterLog,

using[

{skipToNext ["Dipole"],

MATHSCOUT TUTORIAL 13

extractNextLine, useEmbeddedEqual,
callTheResults[dipoles[1]],
skipToNext ["Dipole"],
extractNextLine, useEmbeddedEqual,
callTheResults[dipoles[2]]1}]]

The line that follows the final line containing Dipoles is converted to

{dipoles[-1] == {X == 0, Y == 0, Z == -1.9678, Tot == 1.9678}}
by

dipoles3 =

extractDataFrom[waterLog,

using[

{skipToFinal["Dipole moment"],
extractNextLine, useEmbeddedEqual,
callTheResults[dipoles[-1]1]}]]

4.2 TIterative data

The major part of a typical log file consists of successive iterations headed
“Berny [Schlegel] optimization” followed, 3 lines later, by the iteration number
in the context that

{Step number 1 out of a maximum of 20}

typifies. Gaussian writes a considerable amount of data in each iteration, and
the analysis of trends in many of these data is useful. The extraction is very
simple. For example, the value, threshold and convergence of the maximum
and RMS force and displacement are written in each iteration and the final
triple is displayed again in the summary at the end of the log file. The first line
containing maximum force data in the water file is

{Maximum Force 0.012670 0.000450 NO}
This is extracted by

maxForceOne =
extractDataFrom[waterLog,
using[{skipToNext ["Maximum Force"],
extractCurrentLine, pairWords[{1,2}, {3,4,5}]1}]1]

Hence
{MaximumForce == {0.01267, 0.00045, NO}}
The statement

maximumForcesVerbose =
extractDataFrom[waterLog,
using[
{exhaustively[
{skipToNext ["Maximum Force"],
extractCurrentLine, pairWords([{1,2}, {3,4,5}]1}1}]1]

extracts all the lines containing “Maximum Force” from the log of the water
calculation. This went through 3 iterations. Hence

14 BARNETT and CAPITANI

{MaximumForce == {0.01267, 0.00045, NO},
MaximumForce == {0.001376, 0.00045, NO},
MaximumForce == {0.000091, 0.00045, YES},
MaximumForce == {0.000091, 0.00045, YES}}

This is condensed to

{MaximumForce ==
{{0.01267, 0.00045, NO},
{0.001376, 0.00045, NO},
{0.000091, 0.00045, YES}}}

by

maximumForcesConcise =
maximumForcesVerbose //
drop[-1] // coalesceUnderCommonName

In MATHEMATICA, the postfix notation x // £ is synonymous with f [x].

5 Embedding pieces of text files

To produce this tutorial, we typed a INTEX file tutorialRaw.tex that contains a
line of the form \\!!speci fication of display! '\\ wherever a verbatim display
is needed. This file can be typeset and proofed for overall content. Each specifi-
cation conforms to ITEX syntax, and is set on a separate line. Then executing
embedExtracts["tutorialRaw", "tutorial"] converts tutorialRaw.tex to
tutorial.tex that contains the appopriate verbatim sequence in place of each
specification. An embed specification contains

1. the name of the file to be extracted,
2. either

(a) the line number at which the extract begins, or

(b) a string that starts the first line of the extract, or a string that starts
a line which is close to the first line of the extract,

(c) the notation n[key] when the extract begins with the n-th line that
starts with the given key,

3. the offset from the line specified by a key, that can be omitted when zero
(though the comma must be kept if there is a line count),

4. the number of lines to be extracted, unless these lines extend to the end
of the file, in which case the number is omitted.
The direct use of these conventions is shown by the action of
\\!!"water/water.log", " Thermal", 6, 1!!\\

This extracts the same information as the first example in §2. The specifica-
tion follows the line of tutorialRaw.tex that contains the end of the present
sentence.

Sum of electronic and thermal Free Energies= -76.445137

MATHSCOUT TUTORIAL 15

This does not contain the braces or commas that occur in the pieces of input dis-
played in earlier sections. Also, the spacing is different, and the line is specified
by offset from the first line that begins ” Thermal” | instead of being specified as
the first line that contains ”Free Energies”. Correspondingly, the specification

\\!!"water/water.log", " Thermal", 7!!\\

embeds
Thermal correction to Energy= 0.024185
Thermal correction to Enthalpy= 0.025129
Thermal correction to Gibbs Free Energy= 0.003701
Sum of electronic and zero-point Energies= -76.427488
Sum of electronic and thermal Energies= -76.424653
Sum of electronic and thermal Enthalpies= -76.423709
Sum of electronic and thermal Free Energies= -76.445137

The earlier displays were introduced by the following multi-step process.

1.

6
6.1

Each piece of an input file that is needed is extracted from the list of strings
returned by the function inputGaussianFile in the manner described at
the start of §2. Elementary MATHSCOUT utilities extract the requisite
line(s) as element(s) of a list.

. The transformed information is constructed by an extractDataFromstate-

ment, containing an explicit scan list or the name of a scan list that is
defined separately.

When the input and / or output contains a long sequence of lines with
similar structure, this is abbreviated, as in the population analysis of §3.4
and distance matrix of §3.5 by notations such as <<n lines>>. The User’s
Guide explains how this is done. The input lines and the transformed
result are written as separate files. All of this information is referenced in
tutorialRaw.tex by \\!!...!!1\\ statements. Each of these statements
contains

(a) the name of a small individual file of the kind just mentioned, or

(b) displays.in, the name of the file that produced these.

Rendering and tabular typesetting

Constructing Figures 1 and 2

The data for Figure 1 is extracted from the nitrogen scan file by

energylriples =
extractDataFrom[nitrogenScan,
using[

{skipTo["Summary"], makeNameFromCurrentLine,
skip[2 lines],
extractSuccessiveLinesBeforeNext["-—-"],
splitOnSpaces}]] // First

The extractDataFrom function returns its results in the form of a MATHEMAT-
ICA list, as mentioned earlier, even when the list contains just a single element,
which happens here. The First function extracts this element. Hence

16 BARNETT and CAPITANI

{SummaryOfThePotentialSurfaceScan ==
{{1, 0.6, -106.851},

{2, 0.7, -108.316},

<<23 triples>>,

{26, 3.1, -108.914}}}

The energy-radius pairs are extracted by
energy[r] = energyTriples // extractPart[2] // toEachElement [drop[1]]

The functions in this example have self-explanatory names, and they are covered
systematically, with other related commands, in the User’s Guide. Hence

{{{0.6, -106.851}, <<24 pairs>>, {3.1, -108.914}}}
The data is plotted and the points are joined by the MATHEMATICA statement
curvel = ListPlot[energy[r], PlotJoined -> Truel]

The axes are provided as arguments of the Show function that constructs a
“graphics object” from the code for one or more plots.

figl=
Show[curvel, AxesOrigin -> {0.5, -109.6}, AxesLabel -> {"r", "energy"l}]

Then the PostScript* encoding of Figure 1 is written by
Display["!psfix > " <> resultsDirectory <> "nitrogenOl.ps", figll

The virial data is dispersed through the successive scan cycles, in lines that
are typified by

{Convg = 0.1076D-08 -V/T = 1.9047}
The complete set is extracted by

viriallLines =
extractDataFrom[nitrogenScan,
using[{exhaustively[
{skipToNext["-V"], extractCurrentLine, pairWords[4, 61}1}11 //
tagConsecutively

Hence

{DashVSlashT[1] == 1.9047,
<<24 lines>>,
DashVSlashT[26] == 2.0078%}

The r values in the energy[r] list are combined with the —v/t values by

virial[r] =
{energy[r] // toEachElement [extractPart[1]],
viriallLines // toEachElement[extractPart[2]]} // Transpose

Hence
{{{0.6, 1.9047}, <<24 pairs>>, {3.1, 2.0078}}}

The plot is constructed and saved in PostScript by statements that are com-
pletely analogous to those for the energy plot. These new statements are con-
structed mechanically from the earlier statements by changing 1 to 2 in figl,
curvel, and .01, and energy to virial.

*POSTSCRIPT is a registered trademark of Adobe Inc.

MATHSCOUT TUTORIAL 17

6.2 Constructing Table 1

The distance matrices that are computed in the successive Berny iterations for
zinc hydrate are found by

allDistanceMatrices =
extractDataFrom[zincHydrateLog,
using[
{exhaustively[
{skipToNext["Distance matrix"]
skipToNextLine,
extractSuccessivelinesBeforeNext [
"Stoichiometry"],
unfoldTriangular,
callTheResults[distanceMatrix]}
1y 11 //
tagConsecutively // drop[-2];

The drop[-2] drops the two repetitions of the final distance matrix in the
summaries that follow the iteration at the end of the log file. Hence

{distanceMatrix[1] ==

{{{0.}, {2.5445, 0.}, {3.0579, 1.01338, 0.}},

<<15 rows>>,

{3.05488, 4.47683, 4.2581, <<12 items>>, 4.97422, 4.97422, 1.63588, 0.}},
<<28 matrices>>,

distanceMatrix[30] ==

{{{0.}, {2.11744, 0.}, {2.7904, 0.977739, 0.1}},

<<15 rows>>,

{2.78308, 3.50259, 3.3594, <<12 items>>, 4.46074, 4.46074, 1.6095, 0.}}}

Data for zinc oxygen distances are extracted by

zincOxygenDistances =
allDistanceMatrices //
toEachElement [
extractPart[2],
extractParts[{2, 5, 8, 11, 14, 17}],
toEachElement [extractPart[1]]];

Hence

{{2.5445, 2.54435, 2.5429, 2.5445, 2.54458, 2.54359},
<<28 sets>>,
{2.11744, 2.12005, 2.11419, 2.11516, 2.11575, 2.12012}}

Averages and spreads found using two simple utilities

averages =
zincOxygenDistances //
toEachElement [average, roundToDecimalPlace[3]]

spreads =
zincOxygenDistances //
toEachElement [percentageSpread, times[100], roundToDecimalPlace[3]]

Other statistics are computed by further simple procedures. The ETEX coded
table is constructed and saved as igmTablel.tex by another simple utility that
acts on a list of formating items and data that are provided mnemonically.

18 BARNETT and CAPITANI

writeLaTeXtable["igmTablel.tex",

columnSpecification["[1]|", 11 "r|"]

hline, tabbedLine["iteration", integerList[1 - 10]] ,

hline, tabbedLine["average", averages // extractParts[1 - 10] 1,
hline, tabbedLine["spread", spreads // extractParts[1 - 10]],
hline,

hline, tabbedLine["iteration", integerList[11 - 20]],

hline, tabbedLine["average", averages // extractParts[11 - 20]],
hline, tabbedLine["spread", spreads // extractParts[11 - 20]],
hline,

hline, tabbedLine["iteration", integerList[21 - 30]],

hline, tabbedLine["average", averages // extractParts[21 - 30]],
hline, tabbedLine["spread", spreads // extractParts[21 - 30]],
hline, hline]

This writes the file that is imported by
\input{igmTablel.tex}

in §1. The readability of expressions such as 3 "x" for {"x", "x", "x"} and
integers[1 - 3] for {"1", "2", "3"} that breach the default MATHEMATICA
conventions are easy to code — see Users’ Guide.

7 A stereochemical example — puckering in cy-
clobutane and its analogues

Recently, we reported some formulas that relate the puckering angles in 4-atom
ring molecules, that we refer to collectively as cyclobutanes (CBs) [3]. We use
Gaussian 03 to compute the molecular geometry and dipole moments of several
CBs with and without substitutents and hetero-atoms in the ring. The new
formulas give the puckering angles on the diagonals PR and Q.S in rings with
the atomic labels shown in Figure 3.

P d o)

Figure 3. Notation for four-membered rings.

The final Z-matrices, tables of internal coordinates and dipole moments were

MATHSCOUT TUTORIAL

19

cut and paste from the output of the separate Gaussian runs into a working file.
MATHEMATICA scripts were written that

1. extracted the relevant bond lengths and bond angles from a final Z-matrix,
using a list that associated the labels P, @, R, S in Figure 1 with the nu-
merical labels in the Z-matrix and other tables in the Gaussian output,

2. applied the new formulas to compute the puckering angles,

3. computed the puckering angles directly from the internal coordinates,

4. compared the puckering angles found by these two routes, showing identity

in all cases,

5. converted the numerical bond lengths, bond angles, puckering angles, and
dipole moments to character strings expressing the required precision,and
wrote the ITEX code containg these that was typeset as Table 2.

dig| do3| d3a| dig t1 to t3 ta| P12 ¢23| p D
CB 1.55[1.55|1.55| 1.55| 88.57 | 88.57 [88.57 | 88.57 | 25.48 | 25.48 | 0.00
cis1,3-CloCB 1.54(1.54]1.54|1.54]86.78 | 89.70 [86.78 [89.70 | 27.94 | 28.65 | 2.07
transl,3-CloCB 1.54|1.55]|1.55|1.54]88.11 | 89.27 [88.11 [89.67 | 23.33 | 23.60 | 1.14
cis1,3-BroCB 1.54|1.54|1.54|1.54|86.33 | 89.90 | 86.33 | 89.90 | 28.78 | 29.68 | 1.96
transl,3-BroCB 1.54|1.55|1.55|1.54 | 87.85|89.32 | 87.85 | 89.81 | 24.09 | 24.45 | 1.15
silaCB 2.3812.38(2.38(2.38|87.72|87.72|87.72|87.72 [32.09 | 32.09 | 0.00
cts1,3-ClasilaCB 2.3812.38(2.38(2.38|87.89|89.80|87.89 | 89.80|22.74 | 23.11 | 2.69
transl,3-ClasilaCB | 2.38 | 2.38 | 2.38 | 2.38 | 86.26 | 89.53 | 86.26 | 89.62 | 30.28 | 31.15 | 0.84
azetane 1.49(1.55|1.55]1.49 | 88.85 | 86.01 | 88.85 | 90.43 | 25.87 | 25.75 | 1.22
phosphetane 1.90(1.54]1.54]1.90]90.95|96.91 [90.95 [74.99 | 26.85 | 26.18 | 1.34
oxetane 1.45(1.541.541.45]191.81|84.76(91.80(91.64| 0.11| 0.11]1.87
thietane 1.86|1.54|1.54|1.86]91.28 | 96.83|91.27 | 76.58 | 21.70 | 21.18 | 2.03

Table 2. Geometry and dipole moments of cyclobutanes

The cutting and pasting was tedious. Now, we start with a directory cbAll
that contains the entire set of CB output files.
.L0OG. Then the following steps serve as a prototype for many other tabulations
of data from the output of Gaussian runs that pertain to sets of related molecules
or variations of externally determined parameters.

fullFileNames = FileNames["cbAll/*.L0OG"]

fileNames =

directoryNames = fileNames

fullFileNames // toEachElement [stringDrop[5]]

// toEachElement [stringDrop[-4]]

directoryNames // toEachElement[stringPrepend["mkdir "], Run]

fileCount = fileNames // Length

{fileCount

toEachElement [StringJoin, Run]

These, respectively

* "mv cbAll/", fileNames,
directoryNames, fileCount * "/. ", } // Transpose //

fileCount * "

n
)

These have the extension

20 BARNETT and CAPITANI

1. extract the list of names in the directory cbAll that have the extension
.LOG, (actually FileNames["cbAll/*"] is adequate since the .LOG files
are the only files in cbAll),

2. lop off the extension .LO0G,

3. create subdirectories with these names, by using Run to play through to
the Unix command line,

4. move each output file into the appropriate subdirectory — e.g. move
s$11aCB.L0OG to silaCB/silaCB.L0G, by playing through to the UNIX com-
mand line again, using Run.

Then

{directoryNames, fileCount * "/", fileNames} // Transpose //
toEachElement [StringJoin, splitGaussianOutput]

extracts the data from each of the CB files, writing the output in the directory
that contains the entire file. If necessary, the assignment of fullFileNames can
be restricted to a subset of the files. splitGaussianOutput wraps a short script
of MATHSCOUT primitives.

8 Using formated checkpoint files

Data is extracted from FPCHK files using the principles that have been applied
to log and scan files in the preceding sections. After splitting an input line into
a list of items that are separated by spaces, the MATHSCOUT utilities determine
which have the syntax of numbers and convert these automatically. The I and
R flags in the checkpoint files are redundant in this context. They are removed
by deleteIandRflags, as in

waterCheckpoint =
inputGaussianFile["GaussOut/water/water.chkpt"] // deletelandRflags;

Then, for example

fromWaterCheckpoint =
extractDataFrom[
waterCheckpoint,
using[{skipTo["atoms"],
extractSuccessivelLinesIncludingNext ["vectors"],
putEqualAtSpace[-11}]1]

produces

{NumberOfAtoms == 3,

Charge == 0,

Multiplicity == 1,
NumberOfElectrons == 10,
NumberOfAlphaElectrons == 5,

NumberOfBetaElectrons == 5,
NumberOfBasisFunctions == 30,
NumberOfIndependantFunctions == 30,
NumberOfPointChargesInSlashMolSlash == O,
NumberOfTranslationVectors == 0}

The methods of the earlier sections of this tutorial cover all the contingencies
that arise in the checkpoint files.

MATHSCOUT TUTORIAL 21

References

M. P. Barnett, Transformation of harmonics for molecular calculations. J. Chem. Inf. Sci.
43 (4) 1158-1165, 2003.

M. P. Barnett, Mathscape amd molecular integrals, J. Symb. Comp. 42 (3) 265-289, 2007.

M. P. Barnett; J. F. Capitani, Modular chemical geometry and symbolic calculation. Int.
J. Quant. Chem. 106 (1) 215-227, 2006.

M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman;
J. A. Montgomery; Jr.; T. Vreven; K. N. Kudin; J. C. Burant; J. M. Millam; S. S. Iyengar;
J. Tomasi; V. Barone; B. Mennucci; M. Cossi; G. Scalmani; N. Rega; G. A. Petersson;
H. Nakatsuji; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T.
Nakajima; Y. Honda; O. Kitao; H. Nakai; M. Klene; X. Li; J. E. Knox; H. P. Hratchian;
J. B. Cross; C. Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann; O. Yazyev; A. J.
Austin; R. Cammi; C. Pomelli; J. W. Ochterski; P. Y. Ayala; K. Morokuma; G. A. Voth;
P. Salvador; J. J. Dannenberg; V. G. Zakrzewski; S. Dapprich; A. D. Daniels; M. C. Strain;
O. Farkas; D. K. Malick; A. D. Rabuck; K. Raghavachari; J. B. Foresman; J. V. Ortiz;
Q. Cui; A. G. Baboul; S. Clifford; J. Cioslowski; B. B. Stefanov; G. Liu; A. Liashenko; P.
Piskorz; I. Komaromi; R. L. Martin; D. J. Fox; T. Keith; M. A. Al-Laham; C. Y. Peng;
A. Nanayakkara; M. Challacombe; P. M. W. Gill; B. Johnson; W. Chen; M. W. Wong; C.
Gonzalez; J. A. Pople, Gaussian 03, Revision B.04. Gaussian, Inc. Pittsburgh, PA, 2003.

Gaussian Inc. Carnegie Office Park Building 6, Pittsburgh, PA 15106 USA.
www.gaussian.com

Hypercube, Inc. 1115 NW 4th Street, Gainesville, FL, 32601 USA. www.hypercube.com.
L. Laaksonen, Center for Scientific Computing, Espoo, Finland. www.csc.fi/gopenmol.

1. Mayer, An exact chemical decomposition scheme for the molecular energy. Chem. Phys.
Letters 382 (3) 265-269, 2003.

I. Mayer, Charge, bond order and valence in the ab initio SCF theory. Chem. Phys. Letters,
97, 270-274, 1983.

[10] I. Mayer; A. Gomory, Predicting primary mass spectrometric cleavages: a ‘quasi—

Koopmans’ ab initio approach. Chem. Phys. Letters, 344, 543, 2001.

[11] I. Mayer; P. Salvador, Overlap populations, bond orders and valences for “fuzzy” atoms.

Chem. Phys. Letters, 383, 368, 2004.

[12] P. Murray-Rust, Quantum Chemical Calculations

www.ch.ic.ac.uk/omf/cml/doc/examples/qchem.html.

[13] S. Portmann; H. P. Luthi, Chimia 54, 766-770, 2000.
[14] P. Salvador; I. Mayer, Energy partitioning for “fuzzy” atoms. J. Chem. Phys. 120 (11)

5046-5052, 2004.

[15] G. Schaftenaar; J.H. Noordik, J. Comp. Aided Mol. Design, 14, 123-134, 2000.

[16] J. R. Schmidt; W. F., Polik, WebMO, version 6.0. WebMO, Holland, MI 49423 USA.
[17] Serena Software, Box 3076, Bloomington IN, 47402 USA.

[18] Wolfram, S. The Mathematica Book, 5th ed. Wolfram Media, 2003.

