
MATHSCOUT User’s Guide

Michael P. Barnett,∗

Meadow Lakes, Hightstown, NJ 08520,
Joseph F. Capitani,†

Joined Departments of Chemistry and Biochemistry,
Manhattan College/The College of Mount Saint Vincent,

Riverdale, NY 10471,

May 31, 2007

The software described in this User’s Guide supports the extraction of data
from the output of many programs besides the Gaussian package. The meth-
ods that we used to develop, to test and to document this software have po-
tential uses in other applications of mathematica. The accompanying file
msctDevelopment.tar.gz contains the development software and full informa-
tion on how to use it.

In this User’s Guide,

• §1 describes the input commands,

• §2 describes the scanning commands,

• §3 describes some further commands that support auxiliary operations,

• §4 describes the major commands for mechanized documentation.

• §5 describes the extraction of all the data from the log files of the water
and zinc hydrate calculations — these provide most of the examples in
the published paper, in the Tutorial and in this Guide,

• §6 lists the files that comprise the distribution package.

1 The input commands

loadFileAsListOfStrings[fileName] saves each line of the specified file as
a character string and returns the list of strings that it has saved.

inputGaussianFile[fileName] cosmeticizes this list by

1. ensuring that each = symbol is flanked by spaces,

2. removing \r return codes,
∗michaelb@princeton.edu
†joseph.capitani@manhattan.edu
‡mathematica is a registered trademark of Wolfram Research Inc.
§gaussian is a registered trademark of Gaussian Inc.

1

2 BARNETT and CAPITANI

3. removing redundant, leading and trailing spaces,

4. removing null records.

This list is called a log list in the description of mathscout and the individual
elements are called lines.

2 The scanning commands

2.1 The extractionCycle

extractDataFrom[logList,using[scanList]] extracts data from the specified
log list using the specified scan list. Successive commands in the scan list are
interpreted by successive cycles in the execution of extractDataFrom. The
following variables and lists are updated by the commands in the scan list.

1. scanStatementNumber is initialized to 0. It is increased by 1 in each cycle.

2. currentLineNumber points to the line in the log list that is the starting
point for the action of the next command to be executed. Commands
that extract data increase this to point to the line following the last to be
extracted. Other commands skip to specified lines.

3. currentExtract consists of a single line or a list of lines extracted from
the log list.

4. associationList returns the results of the extraction process. It is ini-
tialized to {}.

5. nameForNextItem is constructed by makeNameFromCurrentLine. It is as-
sociated with the result of the command that operates on an extract.

6. currentTarget is the internal name for the log list being scanned.

We refer to the value currentExtract interchangeably as current extract and
currentExtract, and to the values of the other variables in roman and italic
type, too.

2.2 Extraction commands

extract[n lines] assigns currentExtract to the list of n successive lines
starting at the current line number. It increases the value of currentLineNumber
by n.

extractCurrentLine assigns currentExtract to the current line. It increases
currentLineNumber by 1.

extractNextLine assigns currentExtract to the line in currentTarget that
is specified by currentLineNumber + 1. It increases currentLineNumber by 2.

extractSuccessiveLinesBeforeNext[key] assigns currentExtract to the list
of lines that

1. starts at the current line number and
2. ends with the line preceding the next occurrence of key.

The cursor currentLineNumber is reset to point to the line containing key.

extractSuccessiveLinesBeginning[key] assigns currentExtract to the list
consisting of lines m to n where

MATHSCOUT USER’S GUIDE 3

1. m is the current line number,
2. each of the m’th through n’th lines begins with key, and
3. the n’th line ends the target file or line n + 1 does not contain key.

The cursor currentLineNumber is increased to n + 1. If the m’th line does not
begin with key then currentExtract is assigned to a null list.

extractSuccessiveLinesIncludingNext[key]assigns currentExtract to the
list of lines that

1. starts at the current line number and
2. ends with the line containing the next occurrence of key.

The cursor currentLineNumber is reset to point to the line that follows.

extractSuccessiveLinesIncluding[second[key]] assigns currentExtract
to the list of lines that

1. starts at the current line number and
2. ends with the line containing the second next occurrence of key.

The cursor currentLineNumber is reset to point to the line that follows.

extractSuccessiveLinesIncludingNextNot[key] assigns currentExtract to
the list of lines that

1. starts at the current line number and
2. ends with the next line that does not contain key.

The cursor currentLineNumber is reset to point to the line that follows.

extractTheResidue assigns currentExtract to the list of lines that
1. starts at the current line number and
2. ends with the final line of currentTarget.

The cursor currentLineNumber is set to the length of currentTarget plus 1.

2.3 Skip commands

skip[n lines] adds n to currentLineNumber. n can be positive, negative or
zero.

skipToEnd sets currentLineNumber to point to the final line in currentTarget.

skipNextLine increases currentLineNumber by 2.

skipTo[key] sets currentLineNumber to the line number of the first line in
currentTarget that contains key.

skipTo[key, offset[n]] sets currentLineNumber to n plus the line number
of the first line in currentTarget that contains key. The offset can be positive,
zero or negative, consistent with the length of the target and the position of
key.

skipToFinal[key] sets currentLineNumber to the line number of the line in
currentTarget that contains the final occurrence of key. The offset argument
can be included with the effect corresponding to its use in skipTo[. . .]. Here,
n cannot be positive.

skipToNext[key] sets currentLineNumber to the line number of the next line in
currentTarget that contains key, i.e. the first line containing key after the line
specified by the current value of currentLineNumber. The offset argument
can be included with the effect corresponding to its use in skipTo[. . .].

skipToNextLine increases currentLineNumber by 1.

4 BARNETT and CAPITANI

2.4 Naming selected lines

callIt[name] appends name==valueOfCurrentExtract to the association
list.

callThem[name] is an alias for callIt[name] for mnemonic use when the
current extract is a list.

callCurrentLine[name] coalesces extractCurrentLine and callIt[name].

callSuccessive[lineCount lines][name] coalesces the pair of commands
extractSuccessive[lineCount lines] and callThem[name].

callTheResidue[name] coalesces extractTheResidue and callIt[name].

callTheResult[name] changes the top element v in the association list to the
expression name == v. If the extract consists of more than one line, v is the
list of these.

callTheResults[name] is an alias for callTheResult[name] for mnemonic
use when the top item in the association list is a list.

callSuccessiveLinesBeforeNext[key][name] coalesces the pair of commands
extractSuccessiveLinesBeforeNext[key] and callThem[name].

callSuccessiveLinesBeforeNextNot[key][name] coalesces of commands
extractSuccessiveLinesBeforeNextNot[key] and callThem[name].

callSuccessiveLinesIncluding[key][name] coalesces the pair of commands
extractSuccessiveLinesIncluding[key] and callThem[name].

callSuccessiveLinesIncludingNext[key][name] coalesces of commands
extractSuccessiveLinesIncludingNext[key] and callThem[name].

callSuccessiveLinesIncludingNextNot[key][name] coalesces of commands
extractSuccessiveLinesIncludingNextNot[key] and callThem[name].

makeNameFromCurrentLine converts the current line into a name that is asso-
ciated with the result of operating on the next currentExtract with any of the
commands in the next subsection. The name is constructed by the makeName
function.

makeName constructs a name from a character string as follows:

1. the characters . , : ; () [] < > ? ! are deleted,

2. any string of 5 asterisks is deleted,

3. the symbols +, -, /, **, = are replaced by plus, Dash, Slash, toPower
and eq, respectively,

4. each letter immediately after a space is capitalized,

5. spaces are then elided.

2.5 Operating on extracted lines

Each of the commands in the present subsection produces a list of results that
is treated as follows.

MATHSCOUT USER’S GUIDE 5

1. If makeNameFromCurrentLine occurred immediately before the extraction,
it is associated with the result by the Equal symbol ==. If more than one
item is extracted from a line in the extract, then the items from that line
are held together as a list. If the extract consists of more than one line,
then the results from the individual lines are held together as a list.

2. If makeNameFromCurrentLine did not occur immediately before the ex-
traction, but callTheResult[name]occurs immediately after the com-
mand has acted on currentExtract, then the specified name is associated
with the results in the corresponding manner.

3. If neither naming action occurred, the list status of the set of items from
the operation is removed at the end of the scan, because the association
list is flattened at that time.

4. In the syntactically acceptable case that both naming actions occur, the re-
sult is nameFromCall == {nameFromEarlierLine == {results}}, but
no application has yet arisen.

Proceeding to the individual operations:

useEmbeddedEqual["w1 = v1 w2 = v2 . . .wn = vn"] appends {ϕ1==v̄1, ϕ2==v̄2,
. . . , ϕn−1==v̄n−1, ϕn==v̂n} to the association list, where

1. each wi consists of one or more strings separated by spaces,

2. the corresponding ϕi are formed from these by makeName, as described at
the end of §2.4,

3. each vi, i = 1, . . . n − 1 contains no embedded spaces,

4. each v̄i, i = 1, . . . n − 1 is

(a) the value of vi if this is a number,
(b) the symbol or longer expression obtained by removing the quote

marks from vi, if (a) this conforms to mathematica syntax and
(b) it is not evaluated automatically,

(c) the value of the expression, if removing the quote marks leads to
automatic evaluation,

(d) the string vi in all other cases.

5. the object v̂n is

(a) v̄n if vn is free of embedded spaces and
(b) {v̄n,1 . . . , v̄n,m} when vn consists of substrings vn,1, . . . , vn,m sepa-

rated by spaces.

keepWords[{n1, . . . , nk}] returns {wn1 , . . . , wnk
} if currentExtract is a single

string that splits into the list of strings {w1 . . . , w�}. If currentExtract is a list
of strings, keepWords returns the list of lists formed by applying the function
to these strings individually.

deleteWords[{n1, . . . nk}] peforms the complementary action.

pairWords[m, n] accepts a single integer or a list of integers in place of m
and/or in place of n.

6 BARNETT and CAPITANI

1. When m is an integer, a name is formed from the m’th word.

2. When m is a list of integers, a name is formed by coalescing the words to
which these point, in accordance with the conventions described above.

3. When n is an integer, the n’th word is converted to a number, or a symbol,
or a value, or it is kept as a string, in accordance with the conventions
described above.

4. When n is a list of integers, the words to which these point are treated in
the same way individually.

5. The function returns name==result, where name and result are the items
formed by consideration of the arguments m and n, respectively.

6. When the current extract is a list of strings, the function returns the
list of == statements formed from these individually, in the manner just
described.

pairWords[{{m1, n1}, . . . , {m�, n�}}] generalizes this action as follows.

1. When the current extract is a single string, the function returns the list
of items formed by pairWords[m1, n1], . . ., pairWords[m�, n�].

2. When the current extract is a list of strings, the function returns the list
consisting of the the lists just described, for these successive strings.

putEqualAtSpace[n] acts as follows.

1. When the current extract is a single string, the function returns w==v̄,
where w is the name formed from words 1 to n, and v is the value from
the remaining word(s) in the line, in accordance with the conventions
described for earlier functions in this section.

2. When the current extract is a list of strings, the function returns the list
of items that it forms from these individually.

rejoinRhs acts on the top element of the association list when this is of the
form name=={w1, w2, . . . , wn}, where the wi are strings, and returns the Equal
expression name==w1w2 . . . wn, where the right hand side is the concatenation
of the wi.

splitOnSpaces splits the current extract into the list of words (substrings) that
are separated by spaces when the current extract is a single string. When the
current extract is a list of strings, the function constructs the list of word lists
that it would form separately from these.

toEachLine[f1, f2, . . . , fn] changes currentExtract, when this is a single string
s, to fn[. . . f2[f1[s]]. . .]. When currentExtract is a list, each element si is
replaced by fn[. . . f2[f1[si]]. . .].

unfold converts the folded representation of a rectangular matrix to the form

MATHSCOUT USER’S GUIDE 7

of a simple list of lists.

unfoldTriangular converts the folded representation of the triangular abbre-
viation of a symmetric matrix to the form of a simple rectangular list of lists.

2.6 Flow of control

if[criterion][{innerScanList}] applies the inner scan list to the current residue.
The criteria that are coded at present are
currentLineContains[key],
currentLineDoesNotContain[key],
residueContains[key],
residueDoesNotContain[key].

exhaustively[{innerScanList}] tries to apply the inner scan list to the cur-
rent residue. If the attempt is successful, e.g. if the inner scan list begins with
skipToNext[key] and the current residue contains key, then the program tries
to apply the inner scan list to the residue that is left. This process is repeated
until the attempt to apply the inner scan list to the diminishing residue has no
effect.

break ends the action of extractDataFrom immediately and gracefully. It helps
debug a long scan list.

2.7 Miscellaneous scan list commands

math[Hold[mathematicaExpression]] executes the mathematica expression
that it contains. §5.3 describes a substantial example. The pipe and other
unary functions described in §3.5 are very useful in the math command.

The following commands are applied to lists of items extracted from a data file
by the methods described above or by the methods in the section that follows.

tagConsecutively[{a1==b1, . . . an==vn}] −→ {a1[1]==b1, . . . an[n]==vn}].

coalesceUnderCommonName[{x==v1, x==v2, . . . , x==vn}] is applied to a list of
items selected from the output. It returns x=={v1, v2, . . . , vn}.

3 Auxiliary commands

The mathscout package contains several more commands that are useful in
mechanized documentation and in the math command mentioned above.

3.1 Finding and extracting lines

Documentation sometimes requires the extraction of a line or several lines of a
log file. The following commands address this need.

lineNumbersOf[key][listOfStrings] returns the list of pointers to the lines
that contain the key as a substring.

extractedLines[n1, n2][listOfStrings] returns the list consisting of lines n1

through n2.

8 BARNETT and CAPITANI

extractedLinesContaining[key][listOfStrings] returns the list of lines that
contain the key.

extractedLineContaining[key][listOfStrings] returns the first member of
this list.

extractedLinesBeginning[key, n][listOfStrings] returns the list of n lines
starting with the first that contains the key.

extractedLinesContainingAtEnds[key1, key2][listOfStrings] returns the list
of lines that begins with the first that contains key1 and ends with the first sub-
sequent line that contains key2.

3.2 Operating on strings

Operations on strings are needed in documentation and, at times, in the operand
of the scanning command math. The following commands address these needs.

The formal product n ∗ s or simply n s, where n is an explit integer and s is a
string, returns the concatenation of n copies of s.

despaced[s] elides all spaces from a string.

deleteIandRflags[s] deletes isolated letters I and R. It is used delete these
when they occur as flags in a checkpoint file.

embedIn[l, r][s] returns the concatenation of l, s and r.

spaceEvenly[s] removes carriage return characters \r, ensures a space before
and after each = symbol, then removes redundant spaces.

spacedStringToStringList[s] separates the substrings bounded by spaces
into the successive elements of a list of strings.

spacedStringToList[s] further converts the elements of this list that have the
syntax of mathematica numbers and symbols into these, and retains the other
elements as strings.

stringJoin[v1, v2, . . .] converts any arguments v1 that are not strings into
strings, and then applies StringJoin.

3.3 Operating on numbers

Operations on numbers are needed in documentation and, at times, in the
operand of the scanning command math. The following commands address this
need.

average and percentageSpread perform trivial arithmetical operations for the
table that shows the convergence of the zinc oxide calculation in the Introduc-
tion of the Tutorial.

integerList[n1 − n2] returns the list of integers n1, n1 + 1, . . . , n2 when n1

and n2 are explicit integers.

The mathscout function makeNumber converts an input datum that has the
syntax of an integer, real or floating point number to the corresponding math-
ematica representation, by default. For tabular display, as in Table 1 in §1 of
the Tutorial,

MATHSCOUT USER’S GUIDE 9

1. the function roundToDecimalPlace[n] rounds the number to the speci-
fied precision and converts the result to a string,

2. the switch preventConversion = True forces makeNumber to return a
number as a string.

linearizeReal converts a number from the mathematica Real format to a
character string, containing *10^n if necessary.

3.4 LATEX tabular output

The function writeLaTeXtable[fileName, data] writes the
\begin{tabular} . . . \end{tabular}

representation of the table to disc with the specified file name. The data includes

1. columnSpecifications[colSpecs], where colSpecs gives the argument
denoted cols in the LATEX literature, using the mathscout abbreviation
typified by 3*"r|" for "r|r|r|",

2. tabbedLine[items], that constructs the appropriate representation with
interspersed & tab symbols and a final \\ return code,

3. hline and vline, that introduce \hline and \vline, respectively.

The introduction of further features of the tabular environment is easy and
circumscribed.

3.5 Composition

The pipe function performs right-to-left composition, i.e.,
x // pipe[f1, f2, . . . , fn] −→ fn(. . . f2(f1(x)) . . .).

toTheLhs[s] and toTheRhs[s] perform the corresponding composition on the
left and right hand sides of the Equal expression s in situ. For example,
x == y // toTheRhs[f, g] −→ x == g[f[y]].
These functions can be used in a pipe expression. For example,
x == y // pipe[toTheLhs[f], toTheRhs[g]] −→ f[x] == g[y].

toEachElement[action][s] performs the composition on each element of the
list s and, in general, to each argument of s if its full form is h[args].

toElement[n][action][s] performs it on the n’th element (argument).

toElements[{n1, n2, . . .}][action][s] performs it on the elements (arguments)
at positions n1, n2,

The functions toTheLhs, . . . , toElements are examples of “targeting functions”
that target specified subexpressions of the overall argument. The function
pipe and the principle of targeting are important components of mathscape,
which includes many more targeting functions (M. P. Barnett, Mathscape and
Molecular Integrals, Journal of Symbolic Computation, 42 (2007) 265–289 and
http://www.princeton.edu/~allengrp/ms/mmi).

10 BARNETT and CAPITANI

The mathscout package replicates several mathscape functions for self-
sufficiency. A simple example of elementary mathematica usage introduces
a key feature of these. The expression StringReplace["Hello","ll"->""]
returns "Heo". We define the unary function stringDelete by

stringDelete[t_String][s_String] := StringReplace[s, t-> ""]

Then the “ll” is deleted from any string by the parameterized unary function
(operator) stringDelete["ll"]. Thus, stringDelete["ll"]["Hello"] re-
turns "Heo", stringDelete["ll"]["all"] returns "a", and so on. Besides
those already mentioned in this subsection, there are unary wrappers for about
20 builtin mathematica functions of two arguments, to facilitate composi-
tion. Typically, apply[f][s] wraps Apply[f, s] and delete[n][s] wraps
Delete[s, n]. Similarly,
deleteCases, drop, extractPart and extractParts, fixedPoint,
insert, map, partition, plus, stringAppend, stringDelete, stringDrop,
stringPosition, stringReplace, stringTake, take, times
wrap the mathematica functions that have the corresponding names that be-
gin with a capital letter. Their actions are obvious from the defining statements
in the actual package.

extractLhs and extractRhs extract the sides of an Equal expression.

4 Mechanized documentation

Three further commands perform major documentation functions. This section
describes them briefly. Full details are given in the Development Guide in the
development package.

4.1 Constructing the displays for the Tutorial

The line breaks and indention in the examples of mathscout commands in
the Tutorial and in this User’s Guide simply replicate what we typed. The
embedExtracts function incorporates these statements by reading them, line
by line, using a mathematica combination that is, typically,

currentLine = Read["displays.in", String];

WriteString["tutorialAll.tex", currentLine];

Lines that are copied this way will not overset, because we typed them to fit
within the typeset line length, with the line breaks and the indentions that
emphasize the structure of the statements that they comprise. An evaluated
result that exceeds the allowed line length is folded under program control.
Also, the structure of some lines that would fit is emphasized by folding. For
example, the symbolic Z matrix is typeset at the start of §3.1 of the Tutorial as

{SymbolicZmatrix ==

{{O},

{H, 1, r},

{H, 1, r, 2, a}}}

It would be set, by default, as

{SymbolicZmatrix == {{O}, {H, 1, r}, {H, 1, r, 2, a}}}

MATHSCOUT USER’S GUIDE 11

It is broken into lines by

formattedSymbolicZmatrix =

symbolicZmatrix // toElement[1][foldNamedListFully];

This uses the targetable operator foldNamedListFully, that folds after the ==
symbol and at the end of each list element. We also use the targetable opera-
tors foldListFully, which acts recursively to depth 2, and foldAfterEqual,
and the switch foldAllListsFully. The development package contains several
examples of the usage of these operators, and examples of a few simple tactics
to abbreviate displays that are repetitive.

4.2 Embedding the displays in the Tutorial

The mathscout statement embedExtracts[inRoot, outRoot] reads the LATEX
file inRoot.tex that contains lines of the forms

1. \\!!externalF ileName!!\\,

2. \\!!externalF ileName, startLineNumber!!\\,

3. \\!!externalF ileName, startKey!!\\,

4. \\!!externalF ileName, startLineNumber, lineCount!!\\,

5. \\!!externalF ileName, startKey, lineCount!!\\,

6. \\!!externalF ileName, startKey, offset, lineCount!!\\,

7. \\!!externalF ileName, n[startKey]!!\\,

8. \\!!externalF ileName, n[startKey], lineCount!!\\,

9. \\!!externalF ileName, n[startKey], offset, lineCount!!\\.

Each of these lines is replaced by

\small\begin{verbatim}
. . .
\end{verbatim}\normalsize

where the . . . stand for lines extracted from the specified external file. for the
five cases as follows:

1. the entire file,

2. from the starting line number to the end of the file,

3. from the first line that starts with the specified key to the end of the file,

4. the specified number of lines beginning at the specified line number,

5. the specified number of lines beginning with the first line that starts with
the specified key,

6. the specified number of lines beginning at the specified offset from the first
line which starts with the specified key,

12 BARNETT and CAPITANI

7. from the n’th line that starts with the specified key to the end of the file,

8. the specified number of lines beginning at the n’th line which starts with
the specified key,

9. the specified number of lines beginning at the specified offset from the
n’th line which starts with the specified key.

4.3 The usage files

Testing the many special cases that can occur in the execution of a function
is a major chore in the development of a software package. The mathscout
function runTests[mode, inF ile, outF ile] addresses this need. A typical item
in a file that it processes is

test[keepWords, oneLine, makeName] =

extractDataFrom[{"abra cadabra", "double double toil and trouble"},

using[{makeNameFromCurrentLine, extractCurrentLine, keepWords[{1, 3}]}]]

The corresponding item in the output file, in the default mode, is

test[keepWords, oneLine, makeName] =

extractDataFrom[{"abra cadabra", "double double toil and trouble"},

using[{makeNameFromCurrentLine, extractCurrentLine, keepWords[{1, 3}]}]]

=>

{abraCadabra == {"double", "toil"}}

The input file consists of (1) statements of the form test[id] = . . . and (2)
comments. Full details are given in the development package.

4.4 Miscellaneous housekeeping

indexTheScripts[oldName, newName] is used to put a date and time stamp
and an index to the scripts at the beginning of the mathscout package when
it is updated.

concatenateFiles[listSpecification] constructs a single file that consists of
the specified files, each under an identifying header. We wrote it to help print
collections of short files compactly.

compareFiles[f1, f2] compares the files with the specified names, ignoring lines
that specify the date and time of the run and the hardware and software plat-
form.

compareDirectories[d1, d2, listSpecification] compares the specified files in
directory d1 with the files with the same names in directory d2. Any further
files in either directory are ignored. The output reports the number of files that
match and the number that do not match. Mismatches of postscript and
other files are reported separately.

compareDirectories[{{a1, b1},{a2, b2},. . .}}] compares all the files in direc-
tories a1, a2, . . . with the corresponding files in directories a2, b2, . . ., respectively,
and reports the individual and total numbers of matches and mismatches.

MATHSCOUT USER’S GUIDE 13

5 The extraction of data for water and zinc hy-

drate

5.1 Splitting the file into major pieces

The file full.auto extracts all the data from the Gaussian log files from calcu-
lations on water and zinc hydrate. Each file is split into five main pieces by the
statement

majorSplit = extractDataFrom[waterLog, using[scanList[0]]];

where

scanList[0] =

{skipTo["Gaussian, Inc., Pittsburgh PA, 2003"],

skip[2 lines],

callSuccessiveLinesIncluding[second["GradGrad"]][piece[1]],

callSuccessiveLinesIncludingNext["GradGrad"][piece[2]],

callSuccessiveLinesIncludingNext["Optimization completed"][piece[3][all]],

callSuccessiveLinesIncludingNext["Normal termination "][piece[4]],

callSuccessiveLinesIncludingNext["Normal termination "][piece[5]]};

The action on the water file is typical. The name majorSplit is assigned to the
following list.

{piece[1] ==

{Gaussian 03: x86-Win32-G03RevB.04 2-Jun-2003,

05-Jun-2005,

<<48 lines>>,

Number of steps in this run = 20 maximum allowed number of steps = 100.,

GradGradGradGradGradGradGradGradGradGradGradGrad},

piece[2] ==

{Input orientation:,

---,

<<127 lines>>,

Cartesian Forces: Max 0.013276618 RMS 0.008181775,

GradGradGradGradGradGradGradGradGradGradGradGrad},

piece[3][all] ==

{Berny optimization.,

Internal Forces: Max 0.012670009 RMS 0.010380286,

<<222 lines>>,

Predicted change in Energy = -2.522250D-08,

Optimization completed.},

piece[4] ==

{-- Stationary point found.,

----------------------------,

<<111 lines>>,

File lengths (MBytes): RWF = 12 Int = 0 D2E = 0 Chk = 7 Scr = 1,

Normal termination of Gaussian 03 at Sun Jun 05 17:43:01 2005.},

piece[5] ==

{Link1: Proceeding to internal job step number 2.,

---,

<<14 lines>>,

File lengths (MBytes): RWF = 12 Int = 0 D2E = 0 Chk = 7 Scr = 1,

Normal termination of Gaussian 03 at Sun Jun 05 17:43:42 2005.}}

14 BARNETT and CAPITANI

The names piece[1], . . . , piece[5] are assigned to the five subsidiary lists by

majorSplit /. Equal -> Set;

The 2nd, 3rd and 5th are split into still smaller pieces. Piece 2 is split by

split[2] = extractDataFrom[piece[2], using[scanList[2]]];

where

scanList[2] =

{callSuccessiveLinesIncludingNext["NBsUse"][piece[2.1]],

callSuccessiveLinesIncludingNext["******"][piece[2.2]] ,

callTheResidue[piece[2.3]] } ;

Piece 3 is split into separate pieces that contain data for the successive Berny
iterations by

iterationCount =

piece[3] // lineNumbersOf["Step number"] // Length

iterationSplitter =

{Table[

callSuccessiveLinesIncludingNext[

"GradGradGradGradGradGrad"][piece[3[ii]]],

{ii, 2 * iterationCount - 4}],

callTheResidue[piece[3[2* iterationCount - 3]]]} //

Flatten;

split[3] =

extractDataFrom[piece[3], using[iterationSplitter]];

split[3] /. Equal -> Set;

Piece 5 is split by

split[5] = extractDataFrom[piece[5], using[scanList[5]]];

where

scanList[5] =

{callSuccessiveLinesBeforeNext["Exact polarizability"][piece[5.1]],

callSuccessiveLinesBeforeNext["- Thermochemistry -"][piece[5.2]],

callSuccessiveLinesIncludingNext["GradGrad"][piece[5.3]],

callTheResidue[piece[5.4]]};

5.2 Extracting data from the major pieces

The individual data are extracted from piece1, piece2.1, . . . , piece5.4, by
scanList[id], where id is 1, 2.1, 2.2, 2.3, 3[1], 3[even] and 3[odd](which
act in alternation on all the subsidiary pieces of piece3 except the first and
last), 3[-1], which acts on the last, and 4, . . . , 5.4. These scan lists consist
largely of modules scanList[A], . . . , scanList[M], that act on sequences of
lines in the successive pieces as follows. The lines are numbered to facilitate
inspection in the files piece1, . . . , piece5.4.

scanList[A]:

MATHSCOUT USER’S GUIDE 15

piece1: water 40–50, zinc hydrate 108–318,

piece4: water 1–10, zinc hydrate 1–211

piece5.1: water 29–39, zinc hydrate 45–255.

scanList[B]:

piece2.1: water 1–30, zinc hydrate 1–108,

piece3[even]: water 1–30, zinc hydrate 1–108,

piece3[-1]: water 31–60, 225–333,

piece4: water 13–42, 213–320,

piece5.1: water 43–72, zinc hydrate 259–366.

scanList[C]:

piece2.1: water 31–45, zinc hydrate 109–124,

piece3[even]: water 31–45,

piece3[-1]: water 41–75,

piece5.1: water 73–83,

scanList[D]:

piece2.2: water 5–9, zinc hydrate 5–14,

piece3[even]: 47–51,

piece3[-1]: 77–81,

piece5.1: water 90–94,

scanList[E]:

piece2.2: water 11–20, zinc hydrate 16–25,

piece3[even]: water 52–59,

piece3[-1]: water 83–89,

piece5.1: water 95–102,

scanList[F]:

piece2.3: water 1–32, zinc hydrate 1–158,

piece4: water 44–75,

piece5.1 water 128–159,

scanList[G]:

piece2.3: water 33–56, zinc hydrate 159–182,

piece4: water 76–99,

piece5.1: water 172–195,

scanList[H]:

piece2.3: water 57–66, zinc hydrate 183–209,

piece3[even]: water 60–69,

piece3[-1]: water 90–99,

piece5.3: water 45–54,

scanList[I]:

piece3[1]: water 1–4, zinc hydrate 1–4,

piece3[-1]: water 1–4, 101–104, zinc hydrate 1-4, 400–403,

scanList[J]:

piece3[1]: water 7–11,

piece3[-1]: water 8–12, 108–112,

scanList[K]:

piece3[1]: water 12, zinc hydrate 7–47,

16 BARNETT and CAPITANI

piece3[-1]: water 13, 115,

scanList[L]:

piece3[1]: water 15–28, zinc hydrate 52–265,

piece3[-1]: water 16–29, 118–128, 409–629,

scanList[M]: (this subsumes several of the preceding lists):

piece3[-1]: water 1–29, zinc hydrate 1–629.

5.3 Using explicit Mathematica in a scan

The extraction of the eigenvalues at the start of piece3[1] and piece3[-1]
uses the math command. This provides a way of using explicit mathematica
code in a scan. For zinc hydrate, the relevant lines of piece3[1] are

Berny optimization.

...

Second derivative matrix not updated -- first step.

Eigenvalues --- 0.00436 0.00798 0.01010 0.01090 0.01860

...

Eigenvalues --- 0.38249 0.38780 0.38896 0.39265 0.41129

Eigenvalues --- 0.415291000.000001000.000001000.000001000.00000

Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000

Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000

...

Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000

Eigenvalues --- 1000.000001000.000001000.00000

RFO step: Lambda = -4.61406065D-02.

The extraction of the eigenvalues from the water file is handled adequately by

scanList[K] =

{extractSuccessiveLinesBeginning["Eigenvalues"],

deleteWords[{1, 2}], callTheResult[eigenvalues]};

For zinc hydrate, this works for the first few lines, but then leaves the coalesced
lines that run the values 1000.00000 together, without intervening spaces, as
character strings. To accommodate this, we wrote a short mathematica script
called putSpacesInCoalescedNumbers, and we modified scanList[K] to

scanList[K, modified] =

{extractSuccessiveLinesBeginning["Eigenvalues"],

math[Hold[putSpacesInCoalescedNumbers]],

splitOnSpaces,

callTheResult[eigenvalues]};

The procedure putSpacesInCoalescedNumbers is included in full.auto, with-
out any need to alter the actual mathscout package. The way that this, and
any further procedures, can be incorporated in the package, is explained in the
distribution package. This would allow the omissionof the math[Hold[. . .]]
wrapping.

6 The distribution package

The distribution package msctDistribution.tar.gz is 1.36 MB long. It un-
packs to 2.38 MB. The unpacked files include

MATHSCOUT USER’S GUIDE 17

1. The mascout package. This has the file name msct.m (.96 MB).

2. The pdf files of the Tutorial (.58 MB) and the User’s Guide (.53 MB).

3. The directory scanDem (1.13 MB). This contains

(a) the Gaussian log files for the water molecule and the zinc hydrate
ion, and

(b) the control file full.auto that contains the scanning commands to
extract data from these and from the corresponding files for other
chemical species.

4. The directory docDem (.56 MB). This contains a prototype for using the
automated documentation component of mathscout

The README file contains scripts that can be cut and paste to run the data
extraction and the documentation prototype.

