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A FORTRAN 77 program for calculating energy values, reflection and transmission matrices,
and corresponding wave functions in a coupled-channel approximation of the adiabatic approach
is presented. In this approach, a multidimensional Schrédinger equation is reduced to a system of
the coupled second-order ordinary differential equations on a finite interval with the homogeneous
boundary conditions of the third type at the left- and right-boundary points for continuous spec-
trum problem, or a set of first, second and third type boundary conditions for discrete spectrum
problem. The resulting system of these equations containing the potential matrix elements and
first-derivative coupling terms is solved using high-order accuracy approximations of the finite el-
ement method. Efficiency of the schemes proposed is demonstrated on an example of solution of
quantum transmittance problem for a pair of coupled ions through the repulsive Coulomb barriers.
As a test desk, the program is applied to the calculation of the reflection and transmission matrices
and corresponding wave functions for the two-dimensional problem with different barrier potentials.

I. INTRODUCTION

In our previous paper [1] we have described the finite element method procedure based on the use of high-order
accuracy approximations for calculating approximate eigensolutions of the discrete and continuous spectrum for
systems of coupled differential equations on a finite interval of the variable z € [zmin, Zmax] With the homogeneous
boundary conditions: the Dirichlet, Neumann at z = zyi,; the Dirichlet, Neumann and the third-type at z = 2z ax-

In the next paper [2] we applied a general homogeneous boundary conditions of the third-type at z = zpy, > 0 for
calculating approximate eigensolutions of the continuous spectrum problem. The third-type boundary conditions at
Z = Zmin > 0 are formulated by using known asymptotics for a set of linear independent regular solutions for problems
under consideration.

The purpose of this work is to extend the framework of papers [1, 2] for calculating approximate eigensolutions of
the continuous spectrum for systems of coupled differential equations on finite intervals of the variable z € [zmin, Zmax)
using a general homogeneous boundary condition of the third-type at z = zy;, < 0 and 2z = zpax > 0. The third-
type boundary conditions are formulated for problems under consideration by using known asymptotics for a set of
linear independent asymptotic regular and irregular solutions in the open channels, and a set of linear independent
regular asymptotic solutions in the closed channels, respectively. This approach can be used in calculations of effects
of electron screening on low-energy fusion cross sections [3-6], channeling processes [7, 8|, threshold phenomena in
the formation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps [9, 10], scattering problem for
quantum dots and quantum wires in magnetic field [11-14], potential scattering with confinement potentials [15],
penetration through a two-dimensional fission barrier [16, 17|, tunneling from false vacuum of two interacted particles
[18, 19] and three-dimensional tunneling of a diatomic molecule incident upon a potential barrier [20].

In this work we analyze an effect of quantum transparency consisting of nonmonotonical dependence of transmis-
sion coefficient at resonance tunneling of a pair of particles connected by oscillator interaction potential throughout
Coulomb-like barriers [21].

The paper is organized as follows. In Section II we give a brief overview of the problem. A description of the new
version of the KANTBP program is given in Section III. Benchmark calculations are given in Section V. Test desk
is discussed in Section VI.
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FIG. 1: Schematic diagrams of the continuous spectrum waves having the asymptotic form: (a) “incident wave + outgoing

waves”, (b) “incident waves + ingoing wave”.

II. STATEMENT OF THE PROBLEM

In the Kantorovich approach [1, 22|, the multidimensional Schrédinger equation is reduced to a finite set of
N ordinary second-order differential equations on the finite interval [zmin, Zmax] for the partial solution X(])(z) =
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Here I, V(z) and Q(z) are the unit, symmetric and antisymmetric N x N matrices, respectively. We assume that
d =1, and V(z) and Q(z) matrices have the following asymptotic behaviour at large z = 2o+ — +oo
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where €; < ... < ey are the threshold values, and ¢;; is the Kronecker symbol.
In the present work, scattering problem is solved using the homogeneous third-type boundary conditions at z =
Zmin < 0 and z = zpax > 0:
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where R(z) is a unknown N x N matrix-function, ®(z) = {X(j)(z)}j:1 is the required N x N, matrix-solution and

N, is the number of open channels, N, = maxy E>¢; J < N. From this we obtain the quadratic functional at d = 1
(similar to Eq. (23) in [1] and Eq. (5) in [2])

Z(®, F, 2min; Zman) = / Tot(2) (L - 2ET) ®(2)dz = TI(®, E, Zmin, 2max)

Zmin

_QT(Zmax)G(ZmaX)Q(Zmax) + QT (Zmin)G(Zmin)@(Zmin)a (4)

where II(®, F, Zmin, Zmax) 1s the symmetric functional
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and G(z) = R(z) — Q(z) is the N x N matrix-function which should be symmetric according to the conventual
R-matrix theory [23]. Here the symbol 1 denotes the transjugate of a matrix.



A. The physical scattering asymptotic forms of solutions in longitudinal coordinates and scattering matrix

Matrix-solution ®,(z) = ®(z) describing the incidence of the particle and its scattering, which has the asymptotic
form “incident wave + outgoing waves” (see Figure la), is

X () (Z)Tva 2> 0, v =—
X(+)(z) (Z)RU7 z < O’ B ’

P,(z = £o0) X (2) + X(+)(Z)Rv7 z>0, v =4 Y
X( )(Z) z < 0, N ’

where R, and T, are the reflection and transmission N, x N, matrices, v =— and v =< denote the initial direction
of the particle motion along the z axis. Here the leading term of the asymptotic rectangle-matrix functions X&) (z)
has the form [9, 10]

_ 7.
Xi(ji)(z) —p; 1/2 exp (j:z (pjz - p—J ln(2pj|z|))> ijs (7)
j
= V2E—¢ i=1,...,N, j=1,...,N,,

where Z; = Z;r at z>0and Z; = Z; at z < 0. The matrix-solution ®,(z, £) is normalized by

/ ®!, (2, E)®,(z, E)dz = 276(E' — E)dyuTo0, (8)

— 00

where I, is the unit N, x N, matrix.
Let us rewrite Eq. (6) in the matrix form at z; — +o00 and z_ — —o0 as

(gig?; iigj ) _ ((}){(H(Z_) ())((7)(z+) ) n (())(()(Z_) 3{(+)(z+) ) S, 9)

where the scattering matrix S

s:(f;: ﬁ:) (10)

is composed of the reflection and transmission matrices. In addition, it should be noted that functions X(*)(z) satisfy
relations

Wr(Q(2); X (2), XH)(2)) = +2L,5, Wr(Q(2); XH)(2), XH)(2)) = 0, (11)

where Wr(e;a(z),b(z)) is a generalized Wronskian with a long derivative defined as

Wr(e;a(2), b(2)) = a(2) <d}jl(z) ob(z)> - <d";(;) - .a(z)>Tb(z). (12)

This Wronskian will be used to estimate a desirable accuracy of the asymptotic expansions (7) and (17). Here the
symbol T' denotes the transpose of a matrix.

Let us show that the scattering matriz (10) is symmetric and unitary. Using Egs. (6) and (11), we have following
relations

T, z >0,
+2u(I,, —RLR,), 2 <0,

2sz TH, 2 <0,

2RI T, 2 <0,

+2ZRJ{_T_>, z >0,
-2TI R, 2 <0,



Wr(Q(2);®(2),P(2)) = { 2T, 2> 0,

21T<_, z <0,

Wr(Q(z2); ®,(2),®,(2)) = { Ig;(Rg -R.), i z 8:

Wi(Q(e): @ (2). 8 () = { o/ TR 220

where the asterisk denotes the conjugate of a matrix. From here, we obtain the following properties of the reflection
and transmission matrices:
T T, +R R, =1,=TI T_+Rl R_,
TLR. +RL,T. =0=RI T, +TI R, (14)
™ =T., RL=R,, RT =R_.
This means that the scattering matrix (10) is symmetric and unitary.

Also matrix-solution @, (z) = ®(z) describing the incidence of the particle and its scattering, which has the inverse
asymptotic form “incident waves + ingoing wave” (see Figure 1b), is

X (2 )+X< ()R], z>0,
& oy ) UXOeT 2<0, VT s
oz = Fo0) = X ()T z >0, (15)
{X( )(Z)+X(+)( RE, z<0, "7

Note, that an equality @*z(z) = & (2) should be fulfilled from which we obtain R.=R..R_.=R_, T,=T,.
Therefore we consider below only matrix-solution ®,(z).

B. Calculation of matrices G(zmin) at v =< and G(zmax) at v =—

Suppose that a set of linear independent regular square-solutions ®;°%(z) = {Xgé( ) ?;1 for a problem under

consideration is known at z < 0, v =< and at z > 0, v =—, i.e.,

P8(2) =X (2), 2<0,v=¢, and ®"5(z)=XD(2), 2>0,v=—,

XP ) =xT), i=1,...,N, j=1,.. N, (16)
In the case of some channels are closed, we use additional linear independent regular asymptotic functions:

~ _ 7
Xi(j )(z) —q; 1/2 exp (-i— <qu + q—] ln(2q]—|z|)>> 0ij, 2<0, v=4,

J

~ _ 7.
X(2) = ¢ VP exp ( (qu + qJ 1n(2qj|z|))> 6ij, 2>0, v=-, (17)
J

q]':\/ﬁj—QE, 7;:1,...7N7 j:No+17...,N.

Then as shown in [2], the G(z) matrix at z = zymin < 0, v =¢ and at z = zpax > 0, v =— can be found via the
known set of linear independent regular solutions ®;°8(z):

d®8(2) e _
= B (@)t - Q(a) = (R() + RT ()2 (18)

C. Calculation of matrix-solution ®,(z)

After using the high-order accuracy approximations of the finite element method [1, 2, 24|, the solution of a
multichannel scattering problem at a fixed value of energy F in open channels is reduced to a solution of the following

algebraic problem with respect to matrix-solution ®" = ((x(M)", ..., (x(N))")
Gro" = (A? —2EBP)®" = (M2, — MP, ) ®" (19)

h
B (@) + QD). 2= i = e 20)



where AP and BP? are the symmetric (L N) x (L N) matrices, L is the number of the nodes of the finite element grid
on interval [Zmin, Zmax), M2, and anin are matrices with zero elements except the right-lower and left-upper N x N
matrices equal to G(zmax) and G(zmin), respectively.

First, we consider the numerical algorithm for the calculation of matrix-solution " = <I>}f_. In this case Eq. (19)

can be rewritten in the following form

PH? Gaa Gab H? 00 H?
oM (57 ) = (G5 &) (82) = (8 G ) (51) g
( ) o Gl g% )\ &% 0 G(zmax) ) \ @2 (21)

where ®¢  and @lj_ = P, (zmax) are the matrix-solutions of dimension (LN — N) x N, and N x N,, respectively.
From here, we obtain explicit expressions
o7 = _<Ggl>_1Gab(I)b G(ZmaX) = Gﬁ - G@(Gaea)_lc'ib- (22)

— — E

From Eqgs. (20) and (22) we can obtain the relation between ®” and its derivative

e b
e = R(Zmax)éﬁ, R(Zmax) = G(Zmax) + Q(Zmax)' (23)

Note, that matrix G(zmax) is determined via the inverse of submatrix G2 calculation of which requires substantial
computer resources. For evaluating Eq. (23) without such calculation of the inverse of submatrix G¢%, let’s consider
the following auxiliary system of algebraic equations

Gae Gab Fae 0
(5 ) (3)-()
“— —

As the determinant of the matrix GP + MP? . is nonzero, the above equation has a unique solution

a aa\— a a aa\— aby 1
FL =—-(GY) 1G<—bFl<)—a Flf— = (Gﬁ - G?—(Cﬂ—) 1G<—b) . (25)

+—

Taking this into account, the required R(zmax) matrix is equal to

R(zmas) = (FL) " + Q(zma). (26)

Using Egs. (23) and (6), we obtain the following matrix equation for the reflection R, matrix:

dX &)
YO ()R = =Y (za), Y (2) = === () _ R(z)x@®)(2). (27)
Then the required solution ®/ is calculated by formulae (6), (22) and (25)
- a a -1
®° = X (zmax) + X (2max) R, @7 =F2 (FL) @b (28)

The transmission T matrix is determined from the matrix equation
X(i)(zmin)T% == q’i(zmin)~

Note that, when some channels are closed, the Y{*)(z) and X(7)(z) are rectangular N x N, matrices. Therefore,
using the pseudoinverse matrices of Y{*)(z) and X(~)(z), we obtain the following formulae:

R =- <(Yg>(zmx>)TYg><zW>>_1 (Y )} YO ) (29)
T = (X)) X ) (X i) @ (i)

Now we will describe briefly a calculational scheme for matrix-solution ®" = @i. The required R(zmin) matrix is
equal to

R(zmin) = (Fa*))il + Q(zmin)a (30)



and required solution @i is calculated as
i’b_> = Fb_> (Fi)_l ‘I’a_>, @i == X(+) (Zmin) + X(i)(zmin)R—)- (31)

Here ®%, = ®_, (z1in) and i’i are the matrix-solutions of dimension N x N, and (LN — N) x N,. F%, and F°, are
the matrices of dimension N x N and (LN — N) x N which are the solutions of the auxiliary system of algebraic

equations
Fe Gaa Gab Fe I
P _ MP = | = — — -\ _
oo () = (& &) () - (0) .

Finally, we obtain the following matrix equations for the reflection R_, and transmission T_, matrices:

dX &) (2)

YS)<Zmin)R% = _YS_)<Zmin)’ Yg)(Z') - dz

—R(2)XF)(2), (33)
X(+) (Zmax)T% = (I’i(zmax)-

The reflection R_, and transmission T_, matrices are evaluated using the pseudoinverse matrices of Y(;)(zmin) and
X (Zmax):

T -1 T
R—) = - ((Y(_,) (Zmin)> Y(_:) (Zmin)> (Y(_:) (Zmin)) Y(_J{) (Zmin)7 (34)

T, — ((X(Jr)(zmax))T X(H(zmax)) -1 (X(H(zmax))T ®" (Zmax)-

D. Asymptotic forms of regular and irregular solutions in the longitudinal coordinates

We calculate the asymptotic solution to a set of N coupled ordinary differential equations (ODE) at large values of
independent variable |z| > 1

( L d — 24 152 + Vii(z) — 2E> Xiir(2) = — Z (Vij(z) + Qij(z)% + zd1*1 j 1Q,4(2 )) X;ir (2). (35)

z4=1 dz i
j=1,j#1

Here d > 1 is the dimension of configuration space of a general scattering problem [2]. For the considered case (77),
we put d = 1 and calculate asymptotic solution on two intervals —oo < z < zpin and zpmax < 2 < 400. We assume
that coefficients of Eqgs. (35) can be represented in the general asymptotic form as

kmax+1 17 l) Emax+1 Q(l)
Vij(z) = (”’ >5w+ Z — Qul)= ) : (36)

Zl
=1

Note that in general case coefficients 65-1), Vig»l) and Q%) are different for z > 0 and z < 0. Below we will consider
only case of z > 0.
Step 1. We construct the solution of Egs. (35) in the form:

X30(2) = b () Ra(2) i () ), (37)

where ¢;;/(z) and 1, (z) are unknown functions, R;/(z) is a known function. We choose R;/(z) as solutions of the
auxiliary problem treated like etalon equation (Zi(,kd) =27, (b>Fmax) _ O):

1 d g, d Cwez®
~ g dz+zz——pl, Ri(2) = 0. (38)
k=1



Remark 1. If Zi(,kz?’) = 0 then solutions to the last equation are presented via the hypergeometric functions,
exponential, trigonometric, Bessel, Coulomb functions, etc. For example, if the leading terms of the asymptotic
solutions are given by formula

o) = e (1 (s - 2] ) (39)

the coefficients of potential in the etalon equation (38) have the form:

— — -/ 2,
72N =2z, 7= _@d=3d-1  Zv _ ZT
4 yZu pi/

(40)

Step 2. At this step we compute the coefficients ¢;,/(2) and 1}, (2) of the expansion (37) in the form of series over
inverse powers of z:

kmax Qs(’?//) Kmax ¢ g
K3 K3
bjir(2) = E zj’f y o Y (2) = E ij, . (41)
k'—=0 k=0

After substitution of Eq. (37), (41) into (35) with the use of Eq. (38) and equating the coefficients at 2~ Ry (z) and
,k dR ’ (Z)

=, we arrive to a set of recurrent relations at k' < kpax:

(=28 +p2) ot + (V= 207) 0l ™V = 2p2 (b = 1wl T = 117, (42)

( (0 2E+p1/) 1111(5) 2k’ — 1)¢§§/_1) + (61(»1) Z(1)> ﬂiz(lk,/_l _ 7955/)7

where the right hand sides fi(ilf/) and gff,/) are defined by relations

kl
1 = <’—2><k'—d>¢§§*2’+2(m5 = 2P) ol ™

Z(Z(k) 2k’ By 1(113 —k—1) _|_ Z (Z QQ(k)Z (k") 1/)](16/ =k

j=1,3#1 k'"=1

k) (K —k k K —k— k) (K —k
_2p,‘f}Q§.j Ik Q§j>(—2k’ Yktdot 1)¢§i/ D Vel ), (43)

k) (k' —k k Kk k ¥ k)
R
k=1

j=1,j#i

with initial conditions p? = 2E — 6(9), (O) = 61/, w”,) =0, at 9/ = i, span over the open channels ¢, = 1,..., N, and

pir =1qir, qiv > 0, g% = e( ) _2F at i’ = = 4. span over the closed channels i. = N, + 1,..., N that followed from (7)
and (17). AlsofromEq ( 2)at k' =1and i =7,

(€ = ZP) ol =0, (= 20) ulf) =0, (44)

) _

we obtain condition Z;, € -

Step 3. Here we perform calculation of the coefficients ¢§f,l) and wl(f,,) by a step—by—step procedure of solving Egs.
(42) for 2E # €0 i # i and K = 1,. .., kmax:

¢§f,') - [650) - 61(9)}*1 {_fi(i]f/) _ (61(_1) _ Zi(,l)) (bl(f”—l) LR (K )w(k 71)}

%Z/ _ [ 0) _ 61(9)} ! [_gi(z(c/’) oK — 1)¢§§’71) _ (651) _ Zi(,l)) wi(z(i’fl)} ’ (45)
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FIG. 2: Flow diagram of the new version of the KANTBP program.

and for 2F # 659), i=4and ¥ =2,... knax:

ol =~k — 1)t gk, (46)

’ _1 ’
el = 20 =) (2B - )] A

Algorithm described above has been implemented in the MAPLE and FORTRAN (see description of SLAS program

in section IV). Resulting output provided evaluation of the x;i(z) and X’é%(z) This algorithm has been examined

with the results from [25]. ’
Remark 2. The choice of appropriate values zyin and zyax for the constructed expansions of the linearly indepen-
dent solutions for p;, > 0 is controlled by the fulfillment of the Wronskian condition (11), (12)

WI'(Q(Z);X*(Z),X(Z)) = +2l,, (47)

up to the prescribed precision ey,

IIT. DESCRIPTION OF THE NEW VERSION OF THE KANTBP PROGRAM

Figure 3 presents a flow diagram for the new version of the KANTBP program. KANTBP program is called from
the main routine (supplied by a user) which sets dimensions of the arrays and is responsible for the input data. The
KANTBP program needs no installation. The description of all subroutines can be found in comments in the program
source code. Also users can find instructions on how to compile the KANTBP in the README file.

The calling sequence for the subroutine KANTBP is:
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FIG. 3: Flow diagram of the new version of the KANTBP program.

CALL KANTBP(TITLE,IPTYPE,ISC,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,

1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
2 THRSHL , IBOUND, FNOUT, I0UT,POTEN, IOUP,FMATR, IOUM,
3 EVWFN, IOUF,TOT,ITOT,ZTOT,MTOT,MITOT,MZTOT)

In the present code each array declarator is written in terms of the symbolic names of constants. These constants
are defined in the following PARAMETER statement in the main routine:
PARAMETER (MTOT=10000,MITOT=30000,MZTOT=90000,NMESH=7, MDIM=4)
Here

e MTOT is the dimension of the working DOUBLE PRECISION array TOT, The last address ILAST of array
TOT is calculated and then compared with the given value of MTOT. If ILAST > MTOT the message about an
error is printed and the execution of the program is aborted. In the last case, in order to carry out the required
calculation it is necessary to increase the dimension MTOT of array TOT to the quantity ILAST taken from
the message.

e MITOT is the dimension of the working INTEGER array ITOT. The last address ILAST of array ITOT is
calculated and then compared with the given value of MITOT. If ILAST > MITOT the message about an error
is printed and the execution of the program is aborted. In the last case, in order to carry out the required
calculation it is necessary to increase the dimension MITOT of array ITOT to the quantity ILAST taken from
the message.

e MZTOT is the dimension of the DOUBLE COMPLEX working array ZTOT, The last address ILAST of array
ZTOT is calculated and then compared with the given value of MZTOT. If ILAST > MZTOT the message
about an error is printed and the execution of the program is aborted. In the last case, in order to carry out the
required calculation it is necessary to increase the dimension MZTOT of array ZTOT to the quantity ILAST
taken from the message.
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e NMESH is the dimension of the DOUBLE PRECISION array RMESH containing the information about the
subdivision of the longitudinal interval [Zmin, 2max] On subintervals and number of elements on each one of them.
NMESH is always odd and > 3.

e MDIM is the dimension of the DOUBLE PRECISION array THRSHL and INTEGER array NDIL containing
information about a set of threshold values and numbers of coupled differential equations, respectively.

In order to change the dimensions of the code, all one has to do is to modify the single PARAMETER statement
defined above in the main program unit.
We have added a new flag ISC for performing the calculation of the reflection and transmission matrices:

e = 1 — calculation of the reflection and transmission matrices is carried out only with direction v =+;
= 2 — calculation of the reflection and transmission matrices is carried out only with direction v =—;
= 3 — calculation of the reflection and transmission matrices is carried out with both directions v =< and
v =—. Also the properties (IID) of the reflection and transmission matrices are verified.

The meaning of the all arguments except above are presented in [1].
New output data

The results of the calculation of the reflection and transmission matrices and corresponding wave functions are
written using unformatted segmented records into file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NOPEN,NGRID, ((RR(I,J),I=1,NOPEN),J=1,NOPEN),
1 ((TT(1,J),I=1,NOPEN),J=1,NOPEN),
1 (XGRID(I),I=1,NGRID), ((R(I,J),I=1,NN),J=1,NOPEN)

In the above, parameters presented in the WRITE statement have the following meaning:

e NDIM is the number of coupled equations,

e NGRID is the number of finite-element grid points,

e NN = NGRID x NDIM,

e NOPEN is the number of open channels,

e Arrays RR and TT contain the reflection and transmission matrices values calculated,
e Array XGRID contains the values of the finite-element grid points,

e Array R contains NOPEN eigenfunctions each per NN elements in length stored (see the scheme in [1]).

New user-supplied subroutines

e ASYMSL is the name of the new user-supplied subroutine for the scattering problem, ®. (z), which calculates
the regular X(7)(2), irregular X(t)(z) asymptotic rectangle-solutions and their derivatives at z = zpay, and
regular X(’)(z) asymptotic square-solution and its derivative at z = zpyin. It should be written as follows:

SUBROUTINE ASYMSL(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT,THRSHL,
1 PREGL,DREGL ,PREGR,PIRRR ,DREGR,DIRRR, I0UT)

PROGRAM
TO CALCULATE THE REGULAR, IRREGULAR
ASYMPTOTIC MATRIX SOLUTIONS PREGR, PIRRR
AND THEIR DERIVATIVES DREGR, DIRRR AT ZMAX,
THE REGULAR MATRIX SOLOTION PREGL AND ITS
DERIVATIVE DREGL AT ZMIN

ecNo NN EE N NN NS!

IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION QR(NOPEN) ,THRSHL(NDIM)

COMPLEX*16 PREGL (NDIM,NDIM) ,DREGL(NDIM,NDIM),

1 PREGR (NDIM,NOPEN) ,PIRRR (NDIM,NOPEN),
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1 DREGR (NDIM,NOPEN) ,DIRRR (NDIM, NOPEN)
RETURN
END

e ASYMSR is the name of the new user-supplied subroutine for the scattering problem, ®_,(z), which calculates
the regular X()(2), irregular X(~)(z) asymptotic rectangle-solutions and their derivatives at z = zpi,, and
regular X(+)(z) asymptotic square-solution and its derivative at z = zyax. It should be written as follows:

SUBROUTINE ASYMSR(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT,THRSHL,
1 PREGR,DREGR, PREGL, PIRRL,DREGL ,DIRRL, I0UT)

PROGRAM
TO CALCULATE THE REGULAR, IRREGULAR
ASYMPTOTIC MATRIX SOLUTIONS PREGL, PIRRL
AND THEIR DERIVATIVES DREGL, DIRRL AT ZMIN,
THE REGULAR MATRIX SOLOTION PREGR AND ITS
DERIVATIVE DREGR AT ZMAX

oNoNoNoNoNONONONO N

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION QR(NOPEN) , THRSHL(NDIM)

COMPLEX#*16 PREGR(NDIM,NDIM),DREGR(NDIM,NDIM),

1 PREGL (NDIM,NOPEN) ,PIRRL(NDIM,NOPEN),
1 DREGL (NDIM,NOPEN) ,DIRRL (NDIM,NOPEN)
RETURN

END

Here arrays QR and THRSHL contain a set of momentum and threshold values, respectively; SHIFT contains
the given double energy spectrum value; NDIM is the number of coupled equations; NOPEN is the number of open
channels; IOUT is number of the output logical device for printing out the results of the calculation. To set the
third-type boundary conditions at both points zmin < 0 and zmax > 0, flags IBOUND and IDIM always should be 8
and 1. Here IBOUND is parameter defining the type of boundary conditions, and IDIM is dimension of the envelope
space [1].

A. Description of new subprogram units

The function of each new subroutine is briefly described below. Additional details may be found in COMMENT
cards within the program.

e Subroutine ADDVEK assembles the element into the corresponding global complex vector using a compact
storage form. This is modified version of subroutine ADDVEC [1] for complex arithmetics.

e Subroutine ASSMBC controls the calculation of element complex stiffness matrix and assembles them into
the corresponding global complex matrix. This is modified version of subroutine ASSMBL [1]| for complex
arithmetics.

e Subroutine CHECRT controls the properties (IID) of calculated reflection R, , R_, and transmission T, T_,
matrices.

e Subroutine CHECKN prints error messages when input data are incorrect and stops the execution of program
KANTBP.

e Subroutine DECOMC calculates L D LT factorization of matrix. This factorization is used in subroutine RED-
BAC to reduce and back-substitute the iteration vectors. They are modified versions of subroutines DECOMP
and REDBAK |[24] for complex arithmetics.

e Subroutine GAUSSC calculates linear equation solution by the Gauss-Jordan matrix inversion method. This is
a modified version of subroutine GAUSSJ [26] for complex arithmetics.
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e Subroutine HQPOTN calculates potential matrix elements of coupling in the Gaussian nodes of the finite-
element mesh. This is a modified version of subroutine HQPOT [1] which calculates potential matrix elements
of coupling in the z = zpy;y.

e Subroutine SCSOLC calculates the reflection and transmission matrices and corresponding wave functions, and
writes them into file EVWFN, if necessary.

IV. DESCRIPTION OF THE AUXILIARY SLAS PROGRAM

The calling sequence for the subroutine SLAS is:

CALL SLAS(XS,SHIFT,THRSHL,IDIM,NDIM,NOPEN,NMAX,KMAX,
MAXZ,ZPREGR, ZDREGR ,FXSAS,ZAS0)

1

where arguments have the following type and meaning:

Input data

XS
SHIFT
THRSHL

IDIM
NDIM
NOPEN
NMAX
KMAX

MAXZ
ZPREGR

ZDREGR

FXSAS

REAL*8
REAL*8
REAL*S

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

INTEGER
COMPLEX*16

COMPLEX*16

LOGICAL*8

value of Zmin O Zmax-

the given double energy spectrum.

array THRSHL of dimension NDIM containing values of the thresh-
olds 6@(0)'

dimension of the envelope space.

number of coupled differential equations.

number of open channels.

number of required linear independent solutions and always NMAX
< NDIM.

maximal order of asymptotic expansions of matrix elements V(z)
and Q(z) at large |z|.

value of k] .. in etalon equation (38).

array ZPREGR of dimension NDIM x NMAX. In input
ZPREGR(LI) contains value of regular/irregular solution of I-th
etalon equation (38), while on output ZPREGR contains asymp-
totic regular/irregular matrix-solution of Eq. (35).

array ZDREGR of dimension NDIM x NMAX. On input
ZDREGR(LI) contains first derivative of regular/irregular solution
of I-th etalon equation (38), while on output ZDREGR contains
first derivative of asymptotic regular /irregular matrix-solution of Eq.
(35).

if FXSAS = .TRUE. then calculates only recommended value of
boundary points. In othercase calculates ZPREGR and ZDREGR.

e ZASO0 is the name of the external user-supplied subroutine for evaluating coefficients Zi(k) of the etalon equation
(38), and should be written as follows:

SUBROUTINE ZASO(ZAS,MAXZ,SHIFT,THRSHL,NDIM,NOPEN,ABSB)

[oNoNoNoNO NN

IMPLICIT REAL*8 (A-H,0-2)
COMPLEX*16 ZAS(NDIM,MAXZ)

RETURN
END

PROGRAM

TO CALCULATE THE COEFFICIENTS OF ETALON

EQUATION
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e VQASO is the name of the new user-supplied subroutine for the evaluate the coefficients Vig-l) (2 <1 < Emax)

and QE? (1 <1 < kmax) of the asymptotic expansion (36) of matrix element V(z) and Q(z) at large |z|, and
should be written as follows:

SUBROUTINE VQASO(VAS,QAS,KMAX,NDIM, ABSB)

PROGRAM
TO CALCULATE THE COEFFICIENTS OF THE ASYMPTOTIC
MATRIX ELEMENTS V(z) and Q(z) WITH ORDER KMAX
AT LARGE |z|

[oNoNoNoNONONONS]

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION VAS(NDIM,NDIM,2:KMAX),QAS(NDIM,NDIM,KMAX)
RETURN

END

Here as followed from (44), on output ZAS(I,1) should be equal 651)7 and on input the parameter ABSB = sign(XS).
Subroutine SLAS in program KANTBP, is called as needed via subroutines ASYMSL and ASYMSR.

V. BENCHMARK CALCULATION OF PENETRATION COEFFICIENT

Wave function \i/(:%, g) of two particles (or ions) labeled by ¢ = 1,2 connected with oscillator potential penetra-
tion through repulsive (Coulomb) barriers U(Z;) in the center-mass-system satisfies the two-dimensional Schrédinger
equation [21]:

0% R 9% uge o~ = ~\ =
<_2.M§g]2 T 2,052 + W + Ui(Z1) + Ua(Z2) — E) ¥(z,9) =0, (48)

where @ is the oscillator frequency, F is the energy, &1 = § + $12, 2 = § — s3% are variables in the laboratory system
of coordinates. The parameters s; = 7, s3 = 7} are defined via masses of particles m; and mg, and their total
M = m; + mgy and reduced p = "7 masses.

Using the transformation of variables
1 M
T = ‘xoslcxv Yy = ;xoslcyv (49)

with the oscillator units of length x,s. = ;%’ the corresponding Eq. (48) leads to the following dimensionless
equation
—8—2—8—2+x2+V(x Y= &) U(z,y) =0 (50)
8y2 axz ’ y 9 y ]
where £ = 2F = E]i - and V(z,y) are the dimensionless energy and barrier potential in units of energy E,s. = %@
1 - = .
V(w,y) = Un(ar) + Ua(ez) = —— (01 (@1) + 02 (32)) - (51)

where 1 = soy + s1x and xy = soy — s3x with so = 1/%.
Model A. We choose barrier potentials U;(x;) with effective charges ZAl > 0 in the form of the repulsive truncated
Coulomb potential cut off on small 0 < Zyui, < 1 and large Tpax > 1 distances from z; = 0 as [18, 19]

% — %, |xz‘ < Tmin,
Uz(xz) = \2TZ71\ o EQmZ:Xa ZTmin < ‘xl‘ < Zmax; (52)

O, |.’£1‘ > Tmax-
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Model B. We define the Coulomb-like potentials U;(z;) that depend on the integer parameter s > 2 and truncation
parameter T, > 0 [21]:

27,
\/ |x | + xmln

The asymptotic boundary conditions for the solution ¥(y, z) = {¥;_(y, )} ° , with direction v =— can be written
in the obvious form

exp (z (pioy sign(y) 212 In(2p;, Iyl)))

bi,
S (=2 (ps — sien(y) 22 n(2p;y1) ) )

(0)
+ B; (I Rjioa
=7 VP
Yo o) eXP( (pgy—&g (y )L (2p]\y|))>
U, (y = +00,7) = Y _ B} (x) N Ty, (54)
=1

]:
U, (y,x — +oo) = 0.

Here N, is the number of open channels at fixed energy 2F = p2—|—553) > 0; Z12 = 0 for model A and Z15 = (21+22)/52
for model B; R

oscillator corresponding to energy 5;-0) =2j—latj>1

ji, and T);  are unknown reflection and transmission amplitudes; B](-O) (x) are the basis functions of

o 0 pO T )\ p(0)
( W + l‘ - E ) Bj (l‘) = O7 Bi (l‘)BJ (J?)dl‘ = 51']'. (55)

— 0o

A. Kantorovich expansion
We construct a desired solution of the boundary-value problem (BVP) (50), (54) in the form of Kantorovich
expansion:

N

W (z,y) = D Bj(w;9)x50 (y). (56)

j=1

The basis functions B;(z;y) in the fast variable « and the potential curves ¢;(y) that depend continuously on slow
variable y as a parameter are chosen as solutions of the BVPs for the equation on grid Q;{Zmin(y), Zmax(¥)}

d2
<_d2 +a% +V(,y) - Ej(?/)) Bj(z;y) =0, (57)
which are subject to the boundary, normalization and orthogonality conditions

Bj(xmin(y); ) = Bj(¥max(y);y) = 0,
Tmax (Y)
Bi(as y) By (s y)da = 6. (59)
Tmin (Y)
By substituting (56) into (50), (54) and by taking average over (58), we obtain the BVP for a set of N coupled
ODEs that describes the slow subsystem for the partial solutions x/)(y) = (ng)(y), . ,XS\],)( ))

12 aQ(y) ) (y) =
(-4 + Vo) + Qg + “X 2m1) x00) ~0, (59)



15

Here I is the unit N x N matrix, V(y) and Q(y) are the effective potential N x N matrices:

ImaX(y)
OB;i(z;y) 0B;(x;y)
Vij(y) = ;(y)di; + Zay jay dz, (60)
Zmiu(y)
ajmax(y) aB ( )
Qij(y) = — / Bi(x;y)]aiyydx.
Zmin (Y)

The eigenvalue problem (57), (58) was solved by the ODPEVP program [27] for y € [Ymin, Ymax] good separated
eigenvalues |e;(y) — ;-1(y)| > € > 0 where € ~ 0.05 for the double precision arithmetic. This condition is valid for
accepted values of parameters of considered models. In the case of non-good separated eigenvalues, i.e. if 0 < |g;(y.) —
€i—1(y+)| < €, one should generate a more dense grid in vicinity v, = |y —ys| < €, of avoided crossing points y, and/or
use multi-precision arithmetic. For long-range potentials one should construct appropriate asymptotic expansion for
eigenvalues and corresponding eigenfunctions y € (—00, +00)\ [Ymins Ymax| t0 build up asymptotic effective potentials
with leading terms

97 Kmax (k +)
Vi) = (7 + sen() 222 ) 3+ !
Y s y
kmax Q(k ,£)
Qij(y) = Z + Oy Fmeh), (61)
k=3
where the sign “+” is for y > 0 and “—" is for y < 0.

For given number N of Eq. (59), the values zpmin and Zmax of grid Qu{Tmin, Tmax} were chosen in the region
|z| > z9 = /2N — 1, where the Hermite polynomial [29] (or basis function Bj(x;y) in a general case) has no zeros.
These values are computed with prescribed precision eps > 0 from the condition

x
exp (—/ dry/x? — x%) < eps, (62)
zo

which in the given case leads to inequality

3 /2
exp (—x x? — x%/2> <x +1/2? - x%) x /2 < eps. (63)

To find an approximate solution, at the first step we choose initial approximation xya.x = xg, after which it is increased
with step 1 until condition (63) is satisfied. Values ymin < Tmin and Ymax > Tmax Were chosen from the condition that
potential (53) is negligible on the interval Zyin < < Zmax-

The matching points y"**“" and y5***“"* of the numerical (60) and asymptotic (61) effective potential were calculated
as follows:
ymatch V match yﬁg’ y+ (64)
max ;1) Fmax, £
4@ = & o |QNN 1 | _ e |V1$/N
ye = = [y EREL E—
since |Q£fm‘“’i)\ < |Q§51‘“\“,‘"1 l, |V "‘“"i)| < |V]£[]§\,‘“‘“"i)|. The values ymin and ymax were satisfied by inequalities
Ymin < yma“h < Tmin and Ymax > ym‘mh > Tmax that should be calculated from conditions

|¢(kmax7_)| |,¢)(kmax7_)|

match - kmax Jio . kmax o

Ymin = min | y"*" min | — —Fe—— | min | — —re—— 1,
Jrio eps Jeio eps

. W(}}cmax,ﬂ‘ . |w(kmax, |
Ymax = max | Yo" max | f) —Le—o | jmax | () —L—n0o | | . (65)

Jrto eps Jrlo eps



16

1.0 —— 1.0
_21—22—0.5 | zl=22=1

0.8{m=1 0.8{m,=1
-m2=1 -m2:1

0.6_Xmin=0'l 0.6'X . :01

— x = — 1 _

0.4 ma=> 0.4 %=

0.2 0.2

0.0 M T M T 'kl T T T T T T T T T T T T T 0.0 M T M T M T M T M M T L‘L—_Alﬂ_d
3 5 7 9 11 13 15 17 19 21 23 3 5 7 9 11 13 15 17 19 21 23

2E 2E

1.0 1.0
Z=2,=05 z=27~1

0.8{M=1 084 mz=1
m,=1 m_=1

0.6 Xmin:O'l 0.6 Xmm:O'l

~ —

0.4 0.4-

0.2 0.2- )J

0.0 T T T T T T T T 0.0 T T L T A T T T
5 7 9 11 13 15 17 19 21 23 5 7 9 11 13 15 17 19 21 23

2E 2E

FIG. 4: The total probabilities P = T of penetration vs energy £ = 2E through truncated Coulomb (52) (upper panel) and
Coulomb-like (53) (lower panel) potential barriers.

For the calculation of asymptotic solutions of model B, we have used etalon equation (38) at d =1, k., = 1 and

Zi(,l) = 2sign(y)Z12, which corresponds to known solutions in the open channels

- Go(pi,, +y) £1Fo(pi,, +y)) exp(F0;,)/2, y >0,
Ri ' — 1/2 ( 0\Pio» N ° 3 66
i (Piasy) = i, (Go(pi,, —y) F 1Fo(pi,, —y)) exp(+2d;,)/2, y <0, (66)

and in the closed channels
Ri(qi,,y) = ;. *texp(—t/2)U(L + Z12/qi,, 2,1), t=24q;.]yl. (67)

Here Fy(ps,,y) and Go(p;,,y) are the regular and irregular continuum zero order Coulomb functions calculated by
subroutine RCWFNN [25] which is a modified version of the subroutine RCWFN [28] for the DOUBLE PRECISION
accuracy, o;, = argl (14 1Z12/p;,) is the Coulomb phase shift [29], and U(a,b,c) is the confluent hypergeometric
function of second kind calculated by subroutine CHGU [30]. Note that, for the numerical calculation we have neglected
the exponentially small factor exp(—t/2) in R; (qi.,y) and its first derivative, since this factor is canceled during
evaluation of R(y) matriz in Eq. (18). The coeflicients Vigk’i), Vigk’i), ¢§f’i) and d}ﬁ’i) have been implemented in
MAPLE and FORTRAN up to order kmax = 11 using an algorithm described in [21] and Section IID.

Below we have used values of parameters: m; = mo = 1, Zpyin = 0.1, Zl = ZQ = 0.5 and Zl = ZQ =1. AlsO Tpax = 5
for model A, and s = 8 for model B. In the considered examples we used grids Q,{Zmin, Tmax} = {—10(768)10} and
Qy{Ymin, Ymax} = {—125(200) — 25(100) — 6(200)6(100)25(200)125} with the Lagrange elements of the order p = 4
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between the nodes. In the above, the number of grid elements for grids 2, and €, is shown in the parentheses. At
the boundary points ymin and Ymax the absolute accuracy ey, of calculated Wronskian (12) was less then 10711,

The total probabilities P = Ty, = Z;V:D1 |Tj]? of penetration through truncated Coulomb (52) and Coulomb-like
(53) potential barriers of models A and B are shown in Figure 4. These pictures illustrate the important peculiarity
that a more realistic nontruncated Coulomb-like barrier, being more wide than truncated one, leads to a set of the
probability maximums having a bigger half-width. It can be used for verification of the models of type A and B and
quantum transparency effect.

VI. TEST DESK

We consider the BVP (50) with parameters m; = 1, mg = 3, Tmin = 0.1, Z1 = Zo = 0.1, s = 8 and N = 4.
The corresponding BVP (??) and the matrix elements V(z), Q(z) have been solved on grid Q,{Zmin, Tmax} =
{—Zmin(64)Zmax } With accuracy 1071°. Boundary points Zimax = —Tmin ~ 8.8 were defined by the inequality (63).
All calculation details of this problem were written into file ODPEVP.LPR.

The following values of numerical parameters and characters have been used in the test run via the supplied input
file SQRTBT.INP:

&PARAS TITLE=’ REFLECTION AND TRANSMISSION MATRICES 7,
IPTYPE=1,ISC=3,IDIM=1,NPOL=4,
SHIFT= 4D0,IPRINT=1,IPRSTP=120,
RMESH=-25D0, 100D0O, -6D0,100D0, 6D0, 100D0, 25D0,
NDIR=1, NDIL=4, NMDIL=1,THRSHL= 1.D0,3DO,5D0,7D0O,IBOUND=8,
FNOUT="KANTBP.LPR’,I0UT=7,POTEN=’0DPEVP.PTN’,I0UP=10,
FMATR="KANTBP.MAT’ ,I0UM=11,EVWFN="KANTBP.WFN’ , I0UF=0

&END

Acknowledgments

Authors thank Prof. F.M. Pen’kov and Dr. P.M. Krassovitskiy for collaboration in the field. A.A.G., O.C. and
S.I.V. acknowledge financial support from RFBR Grants Nos. 11-01-00523 and 10-01-00200, and the theme 09-6-
1060-2005,/2013 “Mathematical support of experimental and theoretical studies conducted by JINR”.

TEST RUN OUTPUT

PROBLEM: REFLECTION AND TRANSMISSION MATRICES
sk ok sk ok ok

CONTROL INFORMATION

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 4
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 300
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 1201
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 1
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 4.00000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:

*okkok stk sk s ok ok sk sk ok ok sk sk ok ok ok sk sk sk ok ok sk ok ok sk sk ok ok
NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL  ELEMENT STEP INTERVAL

1 100 -25.000 0.19000 0.04750 -6.000
2 100 -6.000 0.12000 0.03000 6.000
3 100 6.000 0.19000 0.04750 25.000

ok koK Kok ok ook oK oK K oK oK ook oK oK oK oK oK o oK oK oK K oK K o oK o oK oK K ok oK ok oK ook K oK o ok oK ook oK oK o ok oK ok ok ook oK oK K ok ok ook oK oK

NDIM, MDIM= 4 4



TOTAL SYSTEM DATA

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) =

TOTAL NUMBER OF MATRIX ELEMENTS.

MAXIMUM HALF BANDWIDTH .

MEAN

HALF BANDWIDTH .

(NWK) =
(MK )
(MMK)

4804
60010
20

12

kKoK Kok oK ook KoK KoK K oK oK ook oK oK K oK oK o oK oK oK K oK K ok oK ook oK K oK oK ok oK ook oK oK K ok oK ook oK oK oK K ok ok ook oK oK K ok ok ook ok oK

CALCULATION OF WAVE FUNCTION WITH DIRECTION <--

NUMBER OF OPEN CHANNELS.
VALUE OF I-TH MOMENTUM .
VALUE OF I-TH MOMENTUM .

(NOPEN)
(I,QR )
(I,QR )

IM PART OF WRONSKIAN

-2.00000
-.179667E-08 -2.00000

RE PART OF RR

-.179667E-08

-.194759
-.591176E-03 -.485403E-01

IM PART OF RR

-.591176E-03

.124681

0.172716

o

RE PART OF TT

0.172716
0.931470

.600459

-.317926E-01

0.317926E-01 -.276469

-25.
-19.
-13.
.9000
.6000
.0000
.6000
.9000
.6000
.3000
.0000

-25.
-19.
-13.
.9000
.6000
.0000
.6000
.9000
.6000
.3000
.0000

IM PART OF TT

-.729781
-.150167

Z
0000
3000
6000

Z
0000
3000
6000

0.6664D+00 -.1165D+00 O
-.7209D+00 0.1045D+00 O.
0.6802D+00 -.7978D-01 0O
-.5802D+00 0.5077D-01 -
0.1490D-01 -.5461D-01 -
-.8416D+00 0.7861D-01 0
-.4115D+00 -.6691D-01 0.
-.6232D+00 0.3071D-01 0
0.5769D+00 -.6829D-01 -

I © OO

o

0.7698D+00 -.8224D-01 -.
.8982D+00 0.3837D-01 0.

0.150167
0.134574E-01

RE PART OF

IM PART OF

.2735D+00 0.1055D-01 -
.7902D-02 -.5291D-01 0
.2428D+00 0.8603D-01 0.

0

.4353D+00 -.1061D+00

.7372D+00 -.1083D+00 -.
.5262D+00 -.1487D+00 -.
.5284D+00 -.8130D-01 O.
.3095D+00 -.1298D+00 -.
.5507D+00 0.1129D+00 -.

FUNCTIONS

.1531D+00 -.1120D+00
1325D+00 0.8070D-01
.4223D-01 0.2431D+00
.8674D-01 0.2719D+00
.3718D-01 -.2780D+00

.9335D-02 0.4446D+00
0

8351D-01 0.1351D+01

.6435D-01 -.5763D+00
.8088D-01 -.1298D+01
.4592D+00 0.1030D+00 -.
0.2716D+00 -.1259D+00 -.

1646D+00 -.1211D+01
1631D+00 -.5370D+00

FUNCTIONS

.2391D-01 -.2560D+00
.8108D-01 -.2684D+00

1506D+00 -.1425D+00
.1328D+00 0.8857D-01
1518D+00 0.1221D+00
1846D-01 0.6235D+00
1780D+00 0.1380D+01

1677D+00 -.5138D+00
1559D+00 -.1335D+01
5905D-01 -.1316D+01
6149D-01 -.6546D+00

2
1 0.1732E+01
2 0.1000E+01

.7601D-06
.5930D-05
.2701D-04
.4534D-03
.9231D-02
.5112D-01
.4633D-02
.3348D-03
.3777D-04
.1728D-05

1506D-05

6563D-05
7047D-05
2784D-04
1206D-03
1107D-02
3506D-01
1289D-01
3710D-03
6059D-05
1620D-04
5103D-05

[elelelNeNe)

.8680D-05
.2169D-04
.3867D-04
.2169D-03
.2399D-02
.1732D-01
0.
.1124D-02
.5932D-04
.5374D-04
.4406D-04

2046D-01

.4645D-05
.5197D-05
.5248D-04
.5087D-03
.5540D-02
.4285D-03
.1935D-01
.1388D-02
.8405D-04
.4979D-04
.4498D-04

o O o

o O O
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CALCULATION OF WAVE FUNCTION WITH DIRECTION -->

NUMBER OF OPEN CHANNELS.
VALUE OF I-TH MOMENTUM .
VALUE OF I-TH MOMENTUM .

(NOPEN) =
(I,QR )
(I,Gr ) =

IM PART OF WRONSKIAN

2
1
2

0.1732E+01
0.1000E+01

% %k %k %k k

.2445D-07
.4531D-06
.2948D-05
.6446D-04
.1300D-02
.2248D-02
.2638D-04
.5789D-04
.3999D-05
.2039D-06
.6915D-07

.3403D-06
.4906D-06
.2187D-05
.4282D-04
.1591D-02
.5965D-02
.2316D-02
.1535D-04
.3894D-06
.1052D-05
.2851D-06

o O o

o o

o O o

o O o

.4751D-06
.1458D-05
.3128D-05
.1879D-04
.2460D-03
.6851D-02
.7678D-04
.3906D-03
.9632D-05
.3182D-05
.2284D-05

.2162D-06
.4708D-06
.5597D-05
.9200D-04
.3790D-03
.9390D-02
.6339D-04
.4310D-03
.1222D-04
.2867D-05
.2320D-05



-25.
-19.
-13.
.9000
.6000
.0000
.6000
.9000
.6000
.3000
.0000

-25.
-19.
-13.
.9000
.6000
.0000
.6000
.9000
.6000
.3000
.0000

2.00000
-.179667E-08 2.00000

RE PART OF RR

-.179667E-08

-.194759
0.591176E-03 -.485403E-01

IM PART OF RR

0.591176E-03

-.124681
-.172716

RE PART OF TT

-.172716
0.931470

0.600459
-.317926E-01 -.276469

IM PART OF TT

0.317926E-01

-.729781
0.150167

Z
0000
3000
6000

A
0000
3000
6000

o

o o 1

o1 O

o O o

0.2735D+00

-.150167
0.134574E-01

RE PART OF

.2716D+00 0.1259D+00
.4592D+00
0.5769D+00
.6232D+00
.4115D+00
.8416D+00
.1490D-01
.5802D+00
.6802D+00
.7209D+00 -.1045D+00 -.
0.6664D+00 0.1165D+00 -.

o1

.6829D-01
.3071D-01 -
.6691D-01 -
.7861D-01

o

o1

.5077D-01
.7978D-01 -

o1

IM PART OF

.6149D-01 -.6546D+00
.5905D-01 -.1316D+01

.8982D+00 -.3837D-01 -
.7698D+00 0.8224D-01 0
.5507D+00 -.1129D+00 O.
.3095D+00 0.1298D+00 0
.5284D+00 0.8130D-01 -
.5262D+00 0.1487D+00 O.
.7372D+00 0.1083D+00 O
.4353D+00 0.1061D+00 -.

.2428D+00 -.8603D-01 -.
.7902D-02 0.5291D-01 -
-.1055D-01 0.

.5461D-01 0.
0

FUNCTIONS

0.1631D+00 -.5370D+00
.1030D+00 0.
0.8088D-01 -.1298D+01

1646D+00 -.1211D+01

.6435D-01 -.5763D+00
.8351D-01 0.1351D+01
.9335D-02 0.4446D+00
3718D-01 -.2780D+00
.8674D-01 0.2719D+00
.4223D-01 0.2431D+00
1325D+00 0.8070D-01

1531D+00 -.1120D+00

FUNCTIONS

1559D+00 -.1335D+01

.1677D+00 -.5138D+00
.1780D+00 0.1380D+01
1846D-01 0.6235D+00
.1518D+00 0.1221D+00
1328D+00 0.8857D-01

1506D+00 -.1425D+00

.8108D-01 -.2684D+00

2391D-01 -.2560D+00

1506D-05

.1728D-05
.3777D-04
.3348D-03
.4633D-02
.5112D-01
.9231D-02
.4534D-03
.2701D-04
.5930D-05
.7601D-06

5103D-05
1620D-04
6059D-05
3710D-03
1289D-01

.3506D-01

1107D-02
1206D-03
2784D-04
7047D-05
6563D-05

o o1

.4406D-04
.5374D-04
.5932D-04
.1124D-02
.2046D-01
0.
.2399D-02
.2169D-03
.3867D-04
.2169D-04
.8680D-05

1732D-01

.4498D-04
.4979D-04
.8405D-04
.1388D-02
.1935D-01
.4285D-03
.5540D-02
.5087D-03
.5248D-04
.5197D-05
.4645D-05

0.
.2039D-06
.3999D-05
.5789D-04
.2638D-04
.2248D-02
.1300D-02
.6446D-04
.2948D-05
.4531D-06
.2445D-07

[eNelNeNeNoNe N

ok Kok ok ok ok ook oK ook K ok ok o ok oK oK K ok oK ok ok ook oK K ok K ok ok o oK oK ok oK ok ok o ok oK ok o ok K o oK ok ok ok K ok ok ook oK ok K ok ok ok ok oK oK

CHECK PROPERTIES

|RR_<-]"2 + |TT_<-|"2

1.00000
0.353866E-09

MAXIMAL ABSOLUTE ERROR

0.353866E-09
1.00000

|IRR_->|"2 + |TT_->|"2
1.00000
-.353867E-09

MAXIMAL ABSOLUTE ERROR

-.353867E-09
1.00000

PART: TT_->1 * RR_<- + RR_->"1 * TT_<-
0.179243E-09
-.475400E-09

0.475463E-09
0.169614E-09

PART: TT_->1 % RR_<- + RR_->"1 * TT_<-

0.367987E-13

-.198433E-09

=0.457613E-09

=0.457614E-09

% k% %k k

6915D-07

.2851D-06

1052D-05

.3894D-06
.1535D-04
.2316D-02
.5965D-02
.1591D-02
.4282D-04
.2187D-05
.4906D-06
.3403D-06

o oo

o oo

.2284D-05
.3182D-05
.9632D-05
.3906D-03
.7678D-04
.6851D-02
.2460D-03
.1879D-04
.3128D-05
.1458D-05
.4751D-06

.2320D-05
.2867D-05
.1222D-04
.4310D-03
.6339D-04
.9390D-02
.3790D-03
.9200D-04
.5597D-05
.4708D-06
.2162D-06
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-.198434E-09 -.320299E-13
MAXIMAL ABSOLUTE ERROR =0.515210E-09

RE PART: RR.<-"T - RR_<-

0.00000 -.128480E-09
0.128480E-09 0.00000

IM PART: RR.<-"T - RR_<-

0.00000 0.472197E-09
-.472197E-09 0.00000

MAXIMAL ABSOLUTE ERROR =0.489364E-09

RE PART: RR_->T - RR_->

0.00000 0.128480E-09
-.128480E-09 0.00000

IM PART: RR_->T - RR_->

0.00000 -.472197E-09
0.472197E-09 0.00000

MAXIMAL ABSOLUTE ERROR =0.489364E-09

0.258571E-12 -.318056E-11
-.309714E-11 -.360267E-13

0.251799E-12 0.511789E-09
0.511769E-09 -.207664E-13

MAXIMAL ABSOLUTE ERROR =0.511799E-09

% kK %k k
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