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The subroutine TIMEGT 2.0 calculates numerical solutions ¥(r, t) of the Cauchy problem for the
time-dependent Schrédinger equation in d-dimensional space

AU (r, 1)

= (—;VE +U(r) + f(r,t)) U(r,t), W(r ty) = Ty(r), (1)

up to 2M (M = 1,2, 3) order of accuracy in the time step 7 of a uniform grid Q. [tg, T] = {to,tx+1 =
tp +7,(k =0,1,...,K — 1),tx = T} covering the time interval ¢ € [to,T], in the frame of the
Kantorovich method [1] using the explicit Magnus expansion [2] of the evolution operator with the
additional gauge transformations and their Padé approximations.

We require the solution ¥(r,¢) to be continuous and to have general first derivatives integrable
with square, and to belong to the Sobolev space ¥(r,t) € Wi(R? @ [to,T]) (¥o(r) € Wi(RY)).
Also, we suppose that the functions U(r) and f(r,t) are functions of high smoothness by the spatial
variable r, and the function f(r,t) has partial derivatives to the order of 2M to be continuous by time
variables t. The normalization condition reads

@ (r, )| = / |U(r,t)|2dr =1, t€ [to,T). (2)

Remark. At M = 3 subroutine TIMEGT 2.0 is realized only for potentials f(r,¢) satisfying the
conditions V20, f(r,t) = 0.

In the Kantorovich method, the solution ¥(r,t) is expanded over the oneparameter basis functions
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In equation (3) the vector function X(r,t) = (X1(7t),. .., Xjmar (1, 1))? is unknown, and the
components of the surface vector function B(Q;r) = (B1(;7), ..., Bj,.. (Q2;7))T form an orthonormal
basis with respect to the set of angular coordinates (2 for each value of hyperradius r, which is treated
here as a given parameter. The basis functions B;(%;7) € F,. ~ La(S971(Q)) are determined as
solutions of the following parametric eigenvalue problem:

(‘271311?2 + U(F)) B r) = Ej(r)B;(;r), (4)

where A?z is the generalized self-adjoint angular momentum operator. The eigenfunctions of this
problem satisfy the same boundary conditions in angular variable  for U(r,t) at each fixed value of
the parameter r and are normalized as

<Bi(Q;r)‘Bj(Q;r)>Q = /Ei(Q;T)Bj(Q;T)dQ = 0;j. (5)

An averaging of Eq. (1) by the basis B;(€;r), leads to a system of jmax ordinary second-order
differential equations for the x(r, t):
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Here I, V(r), ZM(r,t) and Q(r) are matrices of dimension jyayx X jmax, Whose elements are given by

the relation
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In solving the numerical solution of the problem (6)—(8) at each x(r,tx) transforming into
x(r,tr+1) we use the following implicit numerical scheme [2] with the symmetric operators A,(CM),
S0,
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Here L = [%], I is the unit operator. The coefficients, ozEM) (¢=1,...,.M, M > 1), stand for
the roots of the polynomial equation 1 Fy(—M, —2M,2M1/«) = 0, where 1 Fi(a,b, x) is the confluent
hypergeometric function and the overline indicates the complex conjugate. At M = 1,2, 3 the operators

A(M) S(M) are given by the relations
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where f = f(z,t.), fz of(x, )=y, - U=U(r) and t. =t +7/2.
Methods:

The considered scheme was constructed on the basis of the algorithms published in [3]. Further
discretization of the resulting problem (9)—(11) at each layer ¢ = ¢; is implemented by means of the
finite-element method [4] by spatial variable r € [0, "max], using Lagrange interpolation polynomials
up to the order p = 8 at suitable smoothness of the solution.



Test:

Test example is carried out from paper [5] for an exact solvable two-dimensional model (1), (2) with
potentials U(r) = w?r?/8 and f(r,t) = r(f1(t) cos(#) + f2(t)sin(0)), where f1(t) = cos(wt/2)E;(t) —
sin(wt/2)Es(t), fo(t) = —sin(wt/2)E1(t) — cos(wt/2) Es(t), E;(t) = a; sin(w;t). In test run in interval
t € [0,0.4] we use the following values of parameters: w = 47, w1 = Twy = 27, a1 =1, ag = 2.
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Structure:

SUBROUTINE

Name: TIME6T

Internal subroutines: TMSOLV, ASSMBN, ASSMBT, EMASSD, ESTIFD, ESTIFN,
ESTITD, ESTITN, ADDVEC, HQPOTN, SGPOTN, BOUNDC,
COLMHT, ERRDIM, FEGRID, MAXHT, GAULEG, NODGEN,
SHAPEF, MULTC, MULTCC, REDBAC, DECOMC

External subroutines: POTCAL, POTTIM, DINIT (user-supplied subroutines)

Usage:

CALL TIME6T(TITLE,MDIM,IDIM,NPOL,TMIN,TMAX,TAU,ITORDR,

1 IPRINT, IPRSTP, IPRITT,NMESH, RMESH, IBOUND, FNOUT,
I0UT,POTEN, IOUP,POTTM, I0UD,FMATR,, IOUM, EVWEN,
3 I0UF,TOT, ITOT,ZTOT,MTOT,MITOT ,MZTOT)
INPUT: TITLE,MDIM,IDIM,NPOL,TMIN, TMAX,TAU, ITORDR,

IPRINT, IPRSTP,IPRITT,NMESH,RMESH, IBOUND,FNOUT,
I0UT,POTEN, I0UP,POTTM, IOUD,FMATR, IOUM, EVWEN,
I0UF,TOT,ITOT,ZTOT,MTOT,MITOT,MZTOT:

TITLE -- character symbol, title of the run to be printed on the output
listing.

MDIM -- integer number, number of coupled differential equatiomns.

IDIM -- integer number, dimension of the envelope space.

NPOL -- integer number, order of interpolating Lagrange polynomials.

TMIN -- double precision number, begin of time interval.

TMAX -- double precision number, end of time interval.

TAU -- double precision number, time step of time variable t.

ITORDR -- integer number, order of Magnus expansion, 1 , 2 , 3.

IPRINT -- integer number, level of print, O , 1 , 2.

IPRSTP -- integer number, step of spatial variable r with which solutions
are printed out.

IPRITT -- integer number, step of time variable t with which solutions
are printed out.

NMESH -- integer number, dimension of array RMESH. NMESH always should be
odd and > = 3.

RMESH  -- double precision array, array RMESH contains information about

subdivision of interval [0,r_max] of space variable x on
subintervals. The whole interval [0,r_max] is divided as
follows: RMESH(1) = 0, RMESH(NMESH) = r_max, and the values



of RMESH(I) set the number of elements for each subinterval

[RMESH(I-1), RMESH(I+1)], where I=2, 4, ... , NMESH-1.
IBOUND -- integer number, parameter defining the type of boundary
conditions set in the boundary points r = 0 and r = r_max:
= 1 -- the Dirichlet -- Dirichlet boundary conditions;
= 2 -- the Dirichlet -- Neumann boundary conditions;
= 3 -- the Neumann -- Dirichlet boundary conditiomns;
= 4 -- the Neumann -- Neumann boundary conditions.
FNOUT  -- character symbol, name of the output file for printing out
the results of the calculation.
I0UT -- integer number, number of the output logical device for printing
out the results of the calculation.
POTEN  -- character symbol, name of the scratch file for potential matrices.
I0UP -- integer number, number of the logical device POTEN.
POTTM  -- character symbol, name of the scratch file for potential matrices.
I0UD -- integer number, number of the logical device POTTM.
FMATR  -- character symbol, name of the scratch file for storing matrices.
I0UM -- integer number, number of the logical device FMATR.
EVWFN  -- character symbol, name of the output file for storing the results

of the calculation, namely, finite-element grid points, and
solutions. It is used only if IOUF > O.

IOUF -- integer number, number of the logical device EVWFN.
TOT -- double precision array, working vector.
ITOT -- integer array, working vector.
ZTOT -- double complex array, working vector.
MTOT -- integer number, dimension of the working array TOT.
MITOT -- integer number, dimension of the working array ITOT.
MZTOT -- integer number, dimension of the working array ZTOT.

OUTPUT:

WRITE(IOUF) NN,NGRID,TT,TAU, (XGRID(J),J=1,NGRID),

1 (Zu(J) ,J=1,NN)
NGRID -- integer number, the number of finite-element grid points.
NN -- integer number, the number of finite-element grid points of solution.
TT -- double precision number, the value of time variable t.
TAU -- double precision number, the time step of time variable t.
XGRID -- double precision array, contains the values of the finite-element grid points.
ZU -- double complex array, contains calculated solution.

POTCAL is the name of the user-supplied subroutine which calculates
the potential matrices V and Q and should be written as follows:

SUBROUTINE POTCAL(RHO,VV,QQ,MDIM,IOUT)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION VV(MDIM,MDIM),QQ(MDIM,MDIM)
RETURN

END

POTTIM is the name of the user-supplied subroutine which calculates
the potential matrices G and Z and should be written as follows:

SUBROUTINE POTTIM(RHO,GG,ZZ,TT,TAU,ITORDR,MDIM,I0UT)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION GG(MDIM,MDIM),ZZ(MDIM,MDIM)

RETURN



END

DINIT is the name of the user-supplied subroutine which calculates
the initial function and should be written as follows:

SUBROUTINE DINIT(KEY,MDIM,NN,NGRID,XGRID,ZU)
IMPLICIT REAL*8 (A-H,0-Y)

IMPLICIT COMPLEX*16 (Z)

DIMENSION ZU(NN),XGRID(NGRID)

RETURN

END
RHO -- double precision number, the value of spatial variable r.
TT -- double precision number, the value of time variable t.
TAU -- double precision number, the time step of time variable t.
KEY -- integer number, If IBOUND >= 3 then KEY = 0, else KEY = 1.
Remarks:

1. In subroutine TIME6T 2.0 is used the dynamic distribution
storages as one-dimensional arrays TOT, ZTOT, ITOT, RMESH. In test
example their dimension is set by the values MTOT=2 000 000, MZTOT=1
000 000, MITOT=300 000, NMESH1=5. If user has set insufficient
values of dimension above arrays the message about an error is
printed and the execution of the program is aborted. In the last
case, in order to carry out the required calculation it is necessary
to increase the dimensions of arrays to the quantity taken from the
message.

2. For the accuracy control over the numerical solution by step TAU,
the Runge coefficient on four twice condensed grids is additiomally
calculated, using the subroutine RUNGE.



