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fxl                                                                                          C++ suite of FFT methods 

 

 
Header file: #include ”fxl.hh“ 
 
Libraries: libfxl4.a   (static)                                     linux-2.6.32-504.12.2.el6.x86_64 
  libfxl4.so (dynamic)                                                    gcc-4.4.7 20120313 
 
 
Class ... fxl<T>  ................................. std. T =          double,      long double 
                                      cpx<double>, cpx<long double>  

                                                                     extra T = mtx<T> 
 
Member variables (public): 

� ddc / ddr   = T  ...................... pointers to Np long arrays of “imag” / "real" part 
                                                          (for mtx<T> = A + iB, A,B self-adjoint) 

� fzc / fzr   = T  ...................... pointers to Np long arrays of “imag” / "real" part 
                                                          (for mtx<T> = A + iB, A,B self-adjoint) after  
                                                          the FoxLima filter 

� N     = int  .............................. # of Fourier bins = Np 
� p     = int  .............................. oversampling ratio 
� rms   = double  ........................ signal rms 

 
Constructor (public) 
fxl F(T*, T*, N,  q, str, ...) 
      ^   ^   ^   ^    ^    ^  

      |   |   |   |    |    |_ arg’s for the command (see below) 
      |   |   |   |    | 

      |   |   |   |    |_ command 
      |   |   |   | 

      |   |   |   |_ 2q FFT bins - allows oversampling, p = 2q / N, recommended q:  
      |   |   |                q > 3 + log(N) / log(2) 
      |   |   | 

      |   |   |_ # i/p samples 
      |   | 

      |   |_ pointer "real"-part (or vec of matrices, symmetrical part) 
      | 

      |_ pointer "imag"-part (or vec of matrices, anti-symmetrical part) 
 
 
command = "XX" , or "XX  raw" – with XX = F0, F1, F2, F4, F8, F16, GX, FC, FX, FE, FW 
  F0  = Cooley-Tukey,   -6dB/oct tails, p = 2q / N 

F1  = FoxLima-F1   ,   -6dB/oct tails, p = 2q / N 
F2  = FoxLima-F2   , -12dB/oct tails, p = 2q / N, similar to Welch  apodisation, 

 but w/ exact cancellation of 1 / (f-f0) tails 
F4  = FoxLima-F4   , -24dB/oct tails, p = 2q / N, suis-generis Welch-4 

 window,  but  w/  exact   cancellation   of 
 1 / (f-f0)

k tails (for k = 1, 2, 3) 
F8  = FoxLima-F8   , -48dB/oct tails, p = 2q / N, suis-generis Welch-8 window 
F16= FoxLima-F16 , -96dB/oct tail,   p = 2q / N, suis-generis Welch-16 
GX = Gaussian(sigma),                p = 2q / N, gaussian apodisation 

FC  = coherent chirp,                   p = 2q        with no windowing, σ size 

FX  = coherent chirp,                   p = 2q        with Gaussian(σ) window 

FE  = coherent chirp,                   p = 2q        with back-exp(τ)  window 

FW = coherent chirp,                   p = 2q        with Welch(σ)      window 
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For the following: λ-3  p = # bins at which smooth function falls   -3 dB 

   λ-20 p = # bins at which smooth function falls -20 dB 

            condition:  1.472 < λ-20 / λ-3  < 4.684 

2f0 ∆t = f0 / FSR = chirp coherence-frequency  

σchirp  = chirp coherence-length # bins 
 
case F0, F1, F2, F4, F8, F16 raw  arg = void 

F0, F1, F2, F4, F8, F16 smooth arg = λ-3, λ-20 

GX raw    arg = σ 

FC raw    arg = 2f0 ∆t, σchirp   

FX raw     arg = 2f0 ∆t, σchirp   

FE raw     arg = 2f0 ∆t, τchirp   

FW raw    arg = 2f0 ∆t, σchirp   

GX smooth    arg = σ, λ-3, λ-20 

FC smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 

FX smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 

FE smooth    arg = 2f0 ∆t, τchirp , λ-3, λ-20 

FW smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 
 
 
Parameters 

� fn   = (n-Np/2) / Np / T  .................... frequency of bin n 

� An = √(ddrn
2+ddcn

2)  / Np ................ amplitude of bin n (Cooley-Tukey) 

        √(fzrn
2 + fzcn

2)  / Np .................        - - ‘’ - -            (FoxLima) 
 
Resolution 

� df / f = 0.7 / int(f T)  …...................... frequency resolution 
� dA / A = from i/p  ............................ amplitude resolution 

 
 
Description 
 
    The fxl class is a suite of D-FFT methods. 
 
COHERENT SIGNALS 
 
    F0 – is the classic Cooley-Tukey algorithm. It receives N time bins and outputs 2q bins, 

where p = 2q / N is the (frequency)-oversampling ratio (recommended around x8). 
The oversampling solves the imprecision of Cooley-Tukey’s algorithm which for 
certain frequencies (periodically in the spectrum) has large errors, missing their 
peaks in: 

- frequency: δf < 1 / Np∆t, 

- amplitude: δA / A < 2p / π, 

- phase: δϕ < π / 2p. 
It is evident that for p = 1 the errors can be large. 
The Cooley-Tukey algorithm has -6 dB/oct fall-off spectrum leakage tails. For certain 
peaks, with f = n / T, this is not visible as the sampling occurs exactly at the position 
of the zero’s. For all else it is visible with various degrees. Metrologically, the 
favourable peaks do not represent the real performance of the algorithm. 
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