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An algorithm of the continuous analogue of Newton method (CANM) is proposed for
the solving of the boundary value problems of beam transport.
The e�ciency of CANM has been practically shown on a number of the problems of
beam dynamics leading to the solving of ordinary di�erential and integral equations.
The solving of the problem of determining the optimal (in sense of some criterions
of quality) parameters Pi for charged particles transportation systems taking into
account di�erent nonlinear e�ects, is given. The results of the calculation of the
consistent "invisible"straight section (insertion) of the accelerator obtained with the
help of CANM are shown.

1 Introduction
The creating of new accelerators and reconstruction of existing ones requires to solve

complicated nonlinear problems. Mathematical modeling of these problems leads to interesting
mathematical problems. Most of them are such complicated nonlinear problems (including
inverse ones) that the only way for their investigation is to develop and implement a numerical
method with the use of computers. In particular, among these problems, there is a problem
of determination of the optimum (in the sense of some criterions of quality) parameters Pi for
charged particles transportation systems taking into account some nonlinear e�ects; a problem
of a design of matched "invisible"long�straight sections of an accelerator. All these physical
problems can be formulated as mathematical problems of solution of boundary values problems
for the systems of two second order nonlinear ordinary di�erential equations.

A number of physical problems [1, 2] reduced to the solving of ordinary di�erential or integral
equations, have been solved e�ectively with a continuous analogue of Newton method (CANM).
That is why the authors of this paper decided to apply CANM to the solution of the problems
mentioned above.
CANM it was actively used in works of mathematical modeling of problems of dynamics of
particles [2-4]. The ideologist and scienti�c the professor E. P.Zhidkov was the head of these
works in LIT JINR. Use of this method has allowed to solve a number of the physical problems
connected with with enough split-hair accuracy
Problems of reconstruction of synchrophasetron JINR and problem of creation of the new
superconducting accelerator on 1.5 Gev.
The purpose of the present work is to give detailed enough description of algorithm of numerical
modeling of problems of dynamics of the charged particles in which basis the continuous analog
of a method of Newton is put.

This method allows to �t parameters, make placements and estimate errors of placements
for the elements of a system.



2 Physical statement of the problem
The scheme of the model of a charged particle transportation system with a chosen system of

coordinates is shown in Fig.1. One of the possible variants of the structure of "invisible"section
for superconducting synchrotron is shown in Fig.2. Physical statement of the problem of charged
particle transportation is made in following way. The given charged particles beam's direction
and spatial position at the entrance of a transportation system � (α0, α0⊥, s0, x0, y0).

s0

x0

y0




−coordinates of a trajectory′s initial point in the rectangular

system of coordinates of an installation.

α0 � the angle contained by a tangent to the projection of the trajectory on the plane �SX�
at point (s0, x0, y0) and S�axis (in radians); α0⊥ � the angle contained by a tangent to the
projection of the trajectory on the plane �SY�and S�axis (in radians) at point (s0, x0, y0).
It is necessary to determine such parameters (P1, P2, P3 · · · ; for example, p�momentum of a
particle) so that for the given initial position and direction of the particle one can obtain its
�nal position and direction (also given) �(αk, αk⊥, sk, xk, yk).

sk

xk

yk




−coordinates of a trajectory′s final point in the rectangular

system of coordinates of an installation.

αk and αk⊥ are of the same meaning as α0 and α0⊥ but at point (sk, xk, yk).

3 Mathematical statement of the problem
Movement of a particle through a magnetic �eld is described by complete equations

in the rectangular system of coordinates of an installation [5]:
{ d2x

ds2 = A
B0R0

ϕ(s, x, y, x′s, y
′
s, Bs, Bx, By, Pi)

d2y
ds2 = A

B0R0
ψ(s, x, y, x′s, y

′
s, Bs, Bx, By, Pi)

(1)

where B0R0 � a magnetic rigidity of the particle and 1
B0R0

= e
p
,

p � momentum of the particle,
A =

√
1 + (x′s)2 + (y′s)2, Pi � some parameters, their mathematical and physical meanings

are de�ned in any particular case.
The components of the �eld B(Bs, Bx, By) are de�ned either analytically or numerically (if the
�eld is given as a table) in any particular physical case. Bs, Bx, By components are nonlinear
functions of (s, x, y) and may depend on parameters Pi.
The boundary conditions are :





x(s0, Pi) = x0,
y(s0, Pi) = y0,
x(sk, Pi) = xk = a,
y(sk, Pi) = yk = b,

x′s(s0, Pi) = tg α0,
y′s(s0, Pi) = tg α0⊥,
x′s(sk, Pi) = tg αk = c,
y′s(sk, Pi) = tg αk⊥ = d.

(2)

The system of equations (1) may be transformed into a system of the �rst � order
equations by substitution :
x′s = x1 and y′s = y1







(x1)
′
s = A

B0R0
ϕ(s, x, y, x1, y1, By, Pi)

(y1)
′
s = A

B0R0
ψ(s, x, y, x1, y1, By, Pi)

x′s = x1

y′s = y1

(3)

Then the boundary condition (2) may be rewritten as




x(s0, Pi) = x0,
y(s0, Pi) = y0,
x1(s0, Pi) = tg α0,
y1(s0, Pi) = tg α0⊥,

x(sk, Pi) = a,
y(sk, Pi) = b,
x1(sk, Pi) = c,
y1(sk, Pi) = d.

(4)

Mathematical statement of the boundary value problem is as follows :
It is necessary to determine such parameters Pi that the trajectory of a charged particle will
satisfy equations (3) and following boundary conditions :




x(sk, Pi) = xk(Pi) = a,
y(sk, Pi) = yk(Pi) = b,
x1(sk, Pi) = x1k(Pi) = c,
y1(sk, Pi) = y1k(Pi) = d.

(5)

Let us rewrite boundary conditions (5) in a new form :




f1(sk, Pi) = xk(sk, Pi)− a = 0,
f2(sk, Pi) = yk(sk, Pi)− b = 0,
f3(sk, Pi) = x1k(sk, Pi)− c = 0,
f4(sk, Pi) = y1k(sk, Pi)− d = 0.

(6)

The obtained system of four equations makes it possible to determine four parameters Pi, i =
1 ÷ 4. Satisfaction of the boundary conditions (5) achieved by these parameters �tting. The
system of Eqs.(6) may be solved by the method of introduction t [6] if considering parameters
Pi as functions of t, i.e. Pi = Pi(t).
From this method we have : 




∂
∂t

f1(sk, Pi) = −f1(sk, Pi),
∂
∂t

f2(sk, Pi) = −f2(sk, Pi),
∂
∂t

f3(sk, Pi) = −f3(sk, Pi),
∂
∂t

f4(sk, Pi) = −f4(sk, Pi)

(7)

or, in detail,




∑4
i=1(xk)

′
Pi

Pi
′
t = −(xk − a),∑4

i=1(yk)
′
Pi

Pi
′
t = −(yk − b),∑4

i=1(x
′
k)
′
Pi

Pi
′
t = −(x′k − c),∑4

i=1(y
′
k)
′
Pi

Pi
′
t = −(y′k − d).

(8)

The values of Pi
′, i = 1÷ 4 can be determined from the Eqs.(8).

Then, using the next formula

Pi
′
t =

Pi(t + ∆t)− Pi(t)

∆t
, (9)

where ∆t � a step for parameter t, we get the values of Pi for the next step on t:

Pi(t + ∆t) = Pi(t) + Pi
′
t∆t (10)



The values of Pi(t0) are given ( the initial approximation for t0 = 0).
In order to solve the system of equations (8), it is necessary to determine its coe�cients
(xk)

′
Pi

, (x′k)
′
Pi

, (yk)
′
Pi

, (y′k)
′
Pi
.

For this purpose we should solve following Cauchy problems for equations (3, 4):
1) Cauchy problem for the set of parameters P1, P2, P3, P4. Having solved this problem,
we get :





xk(P1, P2, P3, P4),
yk(P1, P2, P3, P4),
x′k(P1, P2, P3, P4),
y′k(P1, P2, P3, P4).

(11)

2) Cauchy problem for the set of parameters P1 + ∆P1, P2, P3, P4, where ∆P1 � a step of
the increment for corresponding parameter.
We obtain





xk(P1 + ∆P1, P2, P3, P4),
yk(P1 + ∆P1, P2, P3, P4),
x′k(P1 + ∆P1, P2, P3, P4),
y′k(P1 + ∆P1, P2, P3, P4).

(12)

From (11) and (12) one can obtain
{

(xk)
′
P1

= xk(P1+∆P1,P2,P3,P4)−xk(P1,P2,P3,P4)
∆P1

,

(x′k)
′
P1

=
x′k(P1+∆P1,P2,P3,P4)−x′k(P1,P2,P3,P4)

∆P1
.

(13)

In the same way we get (yk)
′
P1

, (y′k)
′
P1
. The procedure described above can be used for

calculating the derivatives with respect to P2, P3, P4. It enables us to solve the system (8) and
to obtain Pi(t+∆t), i = 1, 4. So the �rst step of integration over t variable is complete. The next
step is implemented by repeating the above procedure with new initial parameters obtained by
formula (10).
This iterative process will be carried out until the given accuracy is attained.

4 Application of the described method to some
physical problems

The following physical problems have been solved by using the described method :
• calculation of the bend � focusing beam transport system for fast extraction of the

beam from the Synchrophasetron at LHE, JINR [3];
• optimization of the long � straight matched sections of the 1.5 Gev proton

superconducting synchrotron JINR and analysis of nonlinear aberrations in these
sections [4];



Problem 1. A transportation system for beam fast extraction at the Synchrophasetron
contains two turning magnets (see Fig.1). As such magnets have a �eld with large gradient
(n = dB

dR
R
B

= −140), the direction of the beam at the exit of the system depends essentially not
only on the values of magnetic induction B1 and B2 but also on the magnet's position in space
(turns around axes and slopes). The �eld into the magnet's iron is given as two � dimensional
tables by of the results of the measurement. The values of the component By(s, x, y) were
measured in magnet's median planes in relative units. Using of tables is necessary because of
complexity of the �eld distribution law at the edges of the magnets. In order to get a value
of magnetic �eld in Gauss units one has to multiply a value from the tables by the value of
magnetic induction B1 or B2, correspondingly, for the �rst and second magnets. The values of
components of the magnetic �eld can be obtained by formulae:




By(s, x, y) = By(s, x, 0)− y2

2

(
∂2By(s,x,0)

∂s2 + ∂2By(s,x,0)
∂x2

)
,

Bx(s, x, y) = −∂By(s,x,0)
∂x

y,

Bs(s, x, y) = ∂By(s,x,0)
∂x

y.

(14)

The formulae (14) are obtained by Taylor expansion of By(s, x, y) about the point (s, x, 0) up
to second�order taking into account the following conditions:

d2By

ds2
+

d2By

dx2
+

d2By

dy2
= 0 and rot ~B = 0 (15)

The position of the magnets in space is determined by parameters:

d1

d2

}
−distances from the centres of the magnets to the ”S” axis.

l1
l2

}
−distances from the centres of the magnets to the ”X” axis.

γ1

γ2

}
−horizontal angles of turn of the magnets around the ”Y” axis.

γ1⊥
γ2⊥

}
−vertical angles of turn of the magnets around the ”X” axis.

β1

β2

}
−vertical angles of turn of the magnets around the ”S” axis.

Di�erent combinations of the parameters by four have been taken as varied parameters. Each
combination contained the values of magnetic induction B1 and B2 because these parameters
exert a substantial in�uence on the trajectory of a particle. The table 1 contains coordinates
and angles of beam at the exit of the system depending on the values of parameters P1 =
B1, P2 = B2, P3 = d1, P4 = d2. The complete description of these results can be found in [5].



TABLE 1

d1 d2 B1 B2 y tg α

55 77 �100 �99 143,4899 0,2573
55 77 �99 �99 143,3140 0,2569
55 77 �99 �100 143,3640 0,2573
55 77 �99 �99 143,3730 0,2610
55 77 �99 �99 143,6530 0,2600

Fig.1 The system of coordinates utilized for calculations: SX� basic rectangular system
of coordinates; S1X1 and S2X2�systems of coordinates of the 1�st and 2�nd magnets.
Problem 2. The organization of a beam's injection�extraction system, placement of an

accelerating station etc. require long and free sections (see Fig.2) in the modern rigidly focusing
synchrotrons. The second physical problem is related to investigations of nonlinear aberrations
in quadrupole lenses of the above mentioned section for the 1.5 Gev proton superconducting
synchrotron (LHE of JINR) and its matching with nonlinearities taken into consideration.
It is worth mentioning that most papers devoted to design of a matched section are based on
linear approximation. In this paper all calculations for the free section were implemented taking
into account the nonlinear e�ects in lenses according to the method described above. Varied
parameters are gradients of lenses (G1, G2, G3), their lengths (l1, l2, l3) and drift distances (L1,
L2, L3). The magnetic �eld of a quadrupole lens of great length almost does not depend on s,
i.e. Bs = 0 and expansions of components Bx, By are:

{
Bx = Gy[1 + d6(5x4 − 10x2y2 + y4) + d10(9x8 − 84x6y2 + 126x4y4 − 36x2y6 + y8) + · · ·],
By = Gx[1 + d6(5y4 − 10x2y2 + x4) + d10(9y8 − 84y6x2 + 126x4y4 − 36y2x6 + x8) + · · ·],

(16)



where G � a quadrupole gradient of a corresponding lens, dn = R(n−2)cn, R � a radius is equal
to half�aperture of a corresponding lens, cn � a relative value of a �eld's nonlinearity in a
lens. Numerical experiments showed that the best matching can be obtained by an insertion of
corrective elements into the structure of the section (see Figs.3,4).
Computed optimum parameters of such elements for free section for the 1.5 Gev proton
superconducting synchrotron are:

GN = −464.296 Gs/cm, lN = 13.2 cm, LN = 10 cm.

The complete description of the numerical modeling is given in [4].

Fig.2 Structure of the "invisible"section.

Fig.3 Dependens of the phase shift 5ψx (1) and 5ψz (2) of magnitude emittensa beam
for a linear coordination (without additional item)



Fig.4 Dependens of the phase shift 5ψx (1) and 5ψz (2) of magnitude emittensa beam
for a unlinear coordination (with additional item)

5 Conclusions
1. The general approach to the solution of the problems of charged particles transport and

matching of long�straight sections of accelerators is proposed. It is based on a continuous
analogue of Newton method (CANM).

2. The developed method proved to be e�ective for solution of the described above boundary
value problem of charged particles transport and allows to �t parameters of the system
and carry out the placement of system's elements according to initial and �nal positions
and directions of a beam. The errors of element's placement can be estimated also.

3. The following physical problems have been solved:
• parameters of proton's transport system for fast extraction of a beam at the

Synchrophasetron of LHE, JINR have been computed and errors of turning magnets
placement in the system have been obtained.

• computation for a long matched section of the 1.5 Gev superconducting synchrotron
(SPIN) have been carried out. Nonlinear aberrations have been taken into account.
The results showed that nonlinear aberrations causes substantial dismatching in the
matched sections and using of corrective nonlinear elements is the best way to eliminate
this e�ect.

4. Further development of the proposed numerical method in connection with the transport
systems is to try to obtain optimum parameters taking into consideration not only beam's
direction but also extent of a beam's "spot".
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