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I. BOUNDARY VALUE AND EIGENVALUE PROBLEMS AND SYMMETRIC QUADRATIC
FUNCTIONAL

The program KANTBP 4M is intended for solving the boundary value problem and eigenvalue problem for
the system of ordinary differential equations of the second order with respect to the unknown functions P(z) =
(®1(2),...,Pn(2))T of the independent variable z € Q(z™", M%) pumerically using the Finite Element Method:

(D—E1) @0 (z) = (—fBl(z)Id%fA(z)d% FV(2) + ;QEZQ(Z)% + fBl(Z)de(ZQ(Z) —EI) ®(z) = 0. (1)

Here fg(z) > 0 and fa(z) > 0 are continuous or piecewise continuous positive functions, I is the unit matrix, V(z)
is a symmetric matrix, V;;(z) = Vj;i(2), and Q(z) is an antisymmetric matrix, Q;;(z) = —Q;i(z), of the effective
potentials having the dlmenswn N x N. The elements of these matrices are continuous or piecewise continuous real or

complex-valued coefficients from the Sobolev space 7-1,2 ( ), providing the existence of nontrivial solutions subjected
to homogeneous boundary conditions: Dirichlet and/or Neumann, and/or third-kind at the boundary points of the

interval z € {z™in, zM3} at given values of the elements of the real or complex-valued matrix R(z*) of the dimension
N x N
(I):  ®(z') =0, t=min and/ormax, (2)
d
(I) :  lim fa(z) (Id_ - Q(z)) =0, t= min and/ormax, (3)
z—zt z

= R(z")®(z"), t=min and/ormax. (4)

t

m: (14 -ae)

zZ=Zz

The solution ®(z)eH5=" () of the BPVs (1)-(4) is reduced to the calculation of stationary points of a symmetric
quadratic functional numerically using the Finite Element Method(FEM)

max
z

E(®, F, M0, pmax) = / ®°(2) (D — EI) ®(2)dz = TI(®, E, ™8, z7ax)

min

—fA(Zmax)‘I).(Zmax)G(Zmax)‘I)( max)+fA(Zmin)‘I).(Zmin)G(Zmin)‘I)(Zmin), (5)
(@, g = [P EEE L e v ©

HARE QS 1) P ql)e() - 17 Ee ()0 ()| d=

where G(z) = R(z) — Q(z) is a symmetric matrix of the dimension N x N, ® denotes either the transposition 7, or

the Hermitian conjugation f, i.e., the transposition with complex conjugation, depending on the type of the problem
to be solved.

II. BRIEF DESCRIPTION OF THE CLASS OF PROBLEMS

Three classes of the boundary value problems are considered

1. For the multichannel scattering problem (examples: 07, 08, 11, 13, 14) on the axis z € (—o0, +00) at fixed
energy E = RE the desired matrix solutions ®(z) = {®7(2)}N,, ®(2) = (@g? (2),..., @E\Z])U(z))T (the subscript
v takes the values — or < and means the initial direction of the incident wave from left to right or from right to
left) the boundary value problem for the system of N ordinary differential equations of the second order (1) in the
interval z € (2™ 2M%) are calculated by the code. These matrix solutions are subjected to homogeneous third-kind
boundary conditions (4) at the boundary points of the interval z € {z™® z™8%} with the asymptotes of the “incident
wave + outgoing waves” type in open channels i = 1,..., N,:

X (+) (Z) + X(*)(z)RU, AS (—OO, Zmin]7 =
Lo (Z — :l:OO) X( )(z) —+ X(+) (Z)R'u; S [Zmax, +OO)7 U =4 (7)
X(*)(Z)Tva z € (_Oouzmm]7 -



where T, and R, are unknown rectangular and square matrices of transmission and reflection amplitudes, respectively,
to construct the scattering matrix S of the dimension N, x N,:

s=(n w0 ) ®

which is the symmetric and unitary in the case of real-valued potentials.

For the multichannel scattering problem on a semiaxis z € (2™ +00) or 2 € (—o00,2™%), the desired matrix
solution ®(z) of the boundary value problem for the system of N ordinary differential equations of the second order
(1) is calculated in the interval z € (2™, 2™a%). This matrix solutions is subjected to the homogeneous third-kind
boundary conditions (4) at the boundary point 2™ or 2™ of the interval, with the asymptotes of the “incident wave

+ outgoing waves” type in the open channels i =1, ..., N,:

B (2 +00) = X () + XD(RL, 2 € [, +00) 9)
or ®,(z— —00)=XP () + XD ()R, ze (—o0,2mT]

and subjected to the homogeneous boundary conditions (Dirichlet and/or Neumann, and/or third-kind (see (2)—(4)))
at the boundary point 2™ or 2™ to construct the scattering matrix S = R or S = R_,, which is symmetric and
unitary in the case of real-valued potentials.

In the solution of a multichannel scattering problem the closed channels are taken into account. In this case the
asymptotic conditions (7), (9) have the form

as X-EII_)B,))((Z)TA + }(5][(1:&,((2')T‘3_)7 z > pmax
Y = (=) (+) () c min. (10)
Xmin (Z) + Xmin (’Z):R"> + Xmin (Z)Rﬁa z S z 5
P — X§n<_a))c(2') + Xgn_a’))((z)Re —+ XEI?ax(Z)Rf_, z> Zmax7 (11)
- Xﬁr:rz (Z)Te + XEBH(Z)T‘;, z < Zmin;

where XEn_a),l(z) = X (2),z > zmex, anTrz(z) = X (2),z < Zmin, anfrz (2) = X(F)(2), 2z < 2™ in eqs.(10) and
X](m:,)((z) =X (2), 2 > gmax X](;a,)((z) = XH)(2), 2 > gmax, Xf:lrz (2) = X()(2), 2 < 2™" in eqs.(11).

It is assumed that the leading terms of the asymptotic solutions X(+) (2) of the boundary value problem at z < z™in
and/or z > 2™ have the following form:

in the open channels V!, < E are oscillating solutions:

(+) exp(:l:ngoz) . . | fe(ZY) 1t . _—
Xioj (Z) — —fA(Z)pf 57,0_]7 pio - fA(Zt) E ‘/;oio J= 17 .. .,]V7 Lo = 1, . -7N07 (12)

in the closed channels V;’; > E are exponentially decreasing solutions

c 1 fB(Zt) . .
X)) o ——exp (=p |2]) 6y, Pl =221 VE, —E j=1,...,N, i.=N,+1,...,N. (13
cJ( ) fA(Z) ( c| |) J c fA(Zt) cle ( )

These relations are valid if the coefficients of the equations with z < 2™ and/or z > 2™ gatisfy the following
conditions:

fa(z) _ fa(zh)
fe(2)  fB(zY)

In this version of the program the more general case is not considered, but if the user knows the asymptotic
behavior of the solutions, it is possible to apply them. For example, long-range effective potentials, decreasing ~ 2%,
k > 1, applied asymptotic expansions of solutions with leading members of (12). Examples of calculation of such
expansions by means of recurrence relations are given in [3]. In solving the boundary value problem (1)-(4) the
corresponding symmetric quadratic functional (5)is used, where ® denotes transpose and complex conjugate ' for
real-valued potentials and transposition © for complex-valued potentials, required for discretization of the problem by
the FEM. Detailed information on the solution of multi-channel scattering problem is given below. See Examples 11

and 13.

+0(1), t=min,max, Vi(2)=V+o(1), VZE(Z) =o(1), L(z)=o0(1), i#j. (14)

ij



2. For the eigenvalue problem (examples: 02, 03, 04, 05, 06, 09, 10, 12, 15, 16) the code calculates a set of M
energy eigenvalues F: RE; < RE; < ... < RE) and the corresponding set of eigenfunctions ®(z) = {® m)( VML,

& (2) = (™ (2),..., " (2))7 from the space H2 for the system of N ordinary differential equations of the second
order (1) subjected to homogeneous boundary conditions: first and/or second, and/or third kind (see (2)—(4)) in the
boundary points of the interval z € (2™ 2™8%), In the case of real-valued potentials the solutions are subjected to
the normalization and orthogonality conditions

max

@) = [ @) ) = b (15)

min

and the corresponding symmetric quadratic functional (5) is used, in which ® denotes Hermitian conjugation T, needed
for discretization of the problem by the FEM.

In the case of complex valued potentials (examples 06 u 15) the solutions are subjected the normalization and
orthogonality conditions

max
z

(@@ = / F5(2)(@™ (2)T®™) (2)dz = by, (16)

min

and corresponding symmetric quadratic functional (5) is used, in which ® denotes the transposition ©

discretization of the problem by the FEM.

To solve the problem for bound states on the axis or on the semiaxis the initial problem is approximated by
boundary value problem (1)—(4) on a finite interval z € (2™ 2™M%%)  with the boundary conditions of the third
kind (4) with given matrices R(z?), independing on an unknown eigenvalue E, and a set of approximate eigenvalues
and eigenfunctions is calculated (examples 02-06, 09, 10, 12, 15-16). If the matrices R(z!) are depended on an
unknown eigenvalue E, then R(z, E) are determined by the known asymptotic expansion of the desirable solution.
In this case, to calculate the approximate eigenfunctions and eigenvalues in the program, Newtonian iteration scheme
is implemented. Appropriate initial approximations are chosen from solutions calculated previously with boundary
conditions independing on E (Examples 04, 14, 15, 16).

3. For the calculation of metastable states (examples 14 and 15) with unknown complex eigenvalues F the
program solves the boundary value problem for a system of equations (1) on a finite interval with homogeneous
conditions of the third kind (4), depending on an unknown eigenvalue E, using the appropriate symmetrical quadratic
functional (5), where ® denotes transposition 7', which is necessary for the discretisation of the problem by the FEM.
In contrast to the scattering problem, the asymptotic solutions for metastable states contain only outgoing waves,
that are considered in a sufficiently large, but finite interval of the spatial variable [5]. For metastable states on
the axis z € (—o00,+00), the eigenfunctions obey the boundary conditions of the third kind (4), where the matrix
R(&}) = diag(R(&))) depends on the desired complex energy eigenvalue E = E,,, = RE,, +1SE,, SE,, < 0 and is

given by
/ ; [ fp(zmin)
Rzoio Zmax E Zmlax mu Rioio mea Em = - T V;mim - Ema 17
olo ( ) fA (Zmln) olo ( )

because the asymptotic solution of this problem contains only outgoing waves in the open channels Vt i < RE,
i, =1,..., Ny, while only decay waves in closed channels Vt >RE,i.=N,+1,.

max Zmax mln Zmln
Ricic (Z ’ E ‘ \/ - ‘/Zmax Zcic E “ \/ - len (18)
ZmaX Zmln

For metastable states on the semiaxis z € (z™" ,+00) or z € (—o0, M%), the solution is subject to the boundary
condition (4), (17) at the boundary point 2™* or 2™ and the boundary conditions of the first, second, or third kind
(see (2), (3) or (4)) at the boundary point 2™ or z™max,

In this case, the eigenfunctions obey the orthogonality and normalization conditions

, needed for

max

@2 @) a2

min

((}(m’)l@(m)):(Em — En) +Chyim = 0,

= = LAY @ PRy, (M, Byn) = R, (27, Byr) — 2Q(7)] 87 (%) (19)
LA (@) (R, (270, E) = R, (275, ) = 2Q(=7)] () (200,



Note the orthogonality condition is derived by calculation of difference of two functionals (5) with substitution of
cigenvalues E,,, E,, eigenfunctions ®™ (z), <I>(m/)(z) and elements of matrices R(z™%*, E,,,), R(z™" E,,) from
formulas (17), (18). The calculation of the complex eigenvalues and eigenfunctions of the metastable states is per-
formed using the Newton iteration method. Appropriate initial approximations are chosen from solutions calculated
previously with boundary conditions at fixed E. In example 14 as the initial approximation an appropriate resonance
transmission solution of the scattering problem at the resonance value of energy £ = RFE is taken. In example 15 as
the initial approximation an appropriate solution of the bound state problem is taken.

III. FEM GENERATION OF ALGEBRAIC PROBLEMS

High-accuracy computational schemes for solving the BVP (1)—(4) can be derived from the variational functional
(5), (6) basing on the FEM. The general idea of the FEM in one-dimensional space is to divide the interval [z™", z™aX]
into many small domains referred to as elements. The size of the elements can be defined free enough to account for
physical properties or qualitative behavior of the desired solutions, such as smoothness.

The interval A = [z™" 2M3X] js covered by a set of n elements Aj = [z;m“7 Fmex = errjruﬂ in such a way that
A =, Aj. Thus, we obtain the grid
QP () [pmin pmax] — fpmin — gnin g0 — 0 L hyj=1,...,m—1, (20)

max __ _min __ _max
AN = N f, = ZMAXL

where z;-“i“ = 272, J = 2,...,n are the mesh points, and the steps h; = 2" — zﬁ“in are the lengths of the elements
Aj.

The program features the ability to specify a quasi-uniform grid, for which hy = ho = ... = hpy, hny 11 = hipy o =
e = Ppydngs Py tnat1 = Pnydnot2 = oo = Rnytngtng, . L€ interval A = [2™" 2™2%] jg firgt broken down into

nmesh sub-intervals (in the general case of unequal length) each of which is divided into ngrid(r0)=n,o subintervals
of equal length.

A. Interpolation Hermite Polynomials

In each element A; we define the equidistant sub-grid Q;”(z) [20, 209%] = {2 _1yp = 2, 2G—1)pgr, T = 1, .., D —

1,25 = z;“ax} with the nodal points z, = 2(j_1)p4, determined by the formula

Z(j—1)p+r = ((p— T)Z;'nin + Tz;nax)/pa r=0,...,p. (21)
As a set of local functions {N;(z, 20, Zax) JT R pmax — 57Fxmax we will use the Interpolation Hermite Polynomials

IHPs m2) P KTTMI in the nodes z,., r =0, ..., p of the grid (21). The values of the functions ¢! (z) with their
Pr r=0J k=0 T T

derivatives up to the order (k®* — 1), i.e. K =0,...,k"** — 1, where x"®* is referred to as the multiplicity of the
node z,, are determined by the expressions [6]
dr’ of (2
90;?(27“’) = 51”7"’&-@07 622’72/() = 5rr’5nn’- (22)
z=z_,

To calculate the IHPs we introduce the auxiliary weight function

max
P

we= I (222)7 . we-1 (23)

Z, — Z
,,‘/:07,,‘/75,’, T r!

The weight function derivatives can be presented as a product

d"w,.(z)

2 — ()95 (2)

where the factor g7 (z) is calculated by means of the recurrence relations
rk—1

g2 = P g, 29



with the initial conditions

1 dw.(z P K%
K =1 )= oy A

wp(z) dz o BT R
We will seek for the IHPs ¢ (z) in the following form:
|
pr(z) =we(z) Y apt(z—z)", (25)
r/’=0

Differentiating the function (25) by z at the point of z, and using Eq. (23), we obtain

K =K' R,n” "
= Z //l Ii —K}N)|gT (Zr)a’r K. (26)

zZ= K =0

d~ ok (2)

dzr'

Hence we arrive at the expression for the coefficients a*

/ "1
’ dﬁ @K(Z) s 7" 7
af)’{ = Tl/ - Z //| //)|gr o (Zr)af)ﬁ K /’{/!' (27)
Zr Kk'"=0
Taking Eq. (22) into account, we finally get:
0, K < K,
! 1//@" K =K,
a,” = K =1 .
Z (,{/7,@//)|g'r " (Zr)a”{ - ’ K’/ > K.
K''=kK

Note that all degrees of interpolation Hermite polynomials ¢%(z) do not depend on x and equal p’ = Y7, _ kI — 1.
Below we consider only the IHPs with the nodes of identical multiplicity «*** = k™** r =0,...,p. In this case, the
degree of the polynomials is equal to p’ = k™**(p+ 1) — 1. We introduce the following notation for such polynomials :
Nymaxy (2, z?’in, ) =¢i(z), r=0,...,p, K=0,... K" 1. (28)
These THPs form a basis in the space of polynomials having the degree p’ = x™**(p + 1) — 1 in the element z €
[z, 2202%] that have continuous derivatives up to the order ™ — 1 at the boundary points 2™ and 2" of the
element z € [, z74%].
The 1nterpolat10n Lagrange polynomials and interpolation Hermite polynomials with the multiplicity of nodes
k™ = 2.3 (and their first and second derivatives with respect to z) are shown in Fig. 1 — 3.
It is seen that the values of THP Nymasx,i. (2, min 22%) and N, (z,z;rjr”{,z;nf{‘) (at 7 = p and r = 0) and their

%
derivatives up to the order s — 1 coincide at the mutual point 27" = z“_‘;i‘ of the adjacent elements. Moreover,
the boundary points are nodes (zeros) of the multiplicity £™** of other IHPs, irrespective of the length of elements

of [z] min 2] and [z ;1“1‘, 27%%]. This allows the construction of a basis of piecewise and polynomial functions having

contlnuous derivatives to the order of K™** —1 in any set A = U 1A=z mm, 2% of elements A; = [z ;n‘“, 2 =

max

B. Generation of Algebraic Eigenvalue Problems

We consider a discrete representation of the solutions ®(z) of the problem (1)—(4) reduced by means of the FEM
to the variational functional (5), (6) on the finite-element grid,

p min max]

th(z)[z 2 =[z0=2"" 2,0 =1,...,np— 1, 2, = 2™, (29)

with the mesh points z; = zj, = 2" = 2% of the grid Q"(*)[z™" 2m2] determined by Eq. (20) and the nodal

points 2; = z(j_1)p4r, 7 = 0,...,p of the sub-grids Q;”(z) [zf’in,z;nax], j =1,...,n, determined by Eq. (21). The



on
.

FIG. 1: The interpolation Lagrange polynomials up to the fifth order p’ = p = 1,2,3,4,5, x™** = 1, The nodes z, of
interpolation Lagrange polynomials are shown by vertical lines.

solution ®"(z) ~ ®(z) is sought for in the form of a finite sum over the basis of local functions N, (z) at each nodal
point z = z; of the grid Qij(z) [zmin »max] of the interval z € A = [z™min ymax];

h - h arg h h d”‘I)h(Z) h
@ (2) = Z (PIU‘N#(Z), @ (Zl) = (ﬁlnmaxa 7 = él,{max+,{ (30)
p=0 2=z

where L = (pn + 1)k™** is the number of basis functions <I>Z (matrices of dimensional N x 1) at u = (k™ 4 k are

the nodal values of the sth derivatives of the function ®"(z) (including the function ®"(z) itself for x = 0) at the
points z;.

The basis functions NJ(2) = Nl m . (2) are piecewise polynomials of the given order p’, their derivative of the

order x at the node z equals one, and the derivative of the order ' # x at this node equals zero, while the values of
the function NJ(z) with all its derivatives up to the order (k™* —1) equal zero at all other nodes z» # z; of the grid

A" Ny omaxy .
» . 1 max g . B _ a
th(z), Le., — = T O lpwr, L=0,...,np, Kk =0,..., KM — 1.

For the nodes z of the grid (29) that do not coincide with the mesh points 27*** of the grid (20), i.e., at | # jp,
Jj=1...n—1, the polynomial NJ(z) at u = ((j — 1)p + 7)™ + k has the form

i a .
N‘q Nﬁmaxr_l’_,i(z,zmln,zyl X), z e A]7

(p(—1)+r)rman- (2) = { 0, 2 d A, (31)

i.e., it is defined as the THP Nymax, 1 ,(z, z?’in Z1*) in the interval z € A; and zero otherwise. Since the points z;-nin

)%
and z;"** are nodes of multiplicity £™*, such piecewise polynomial functions and their derivatives up to the order

k™% — 1 are continuous in the entire interval A.

For the nodal points of the grid z; of the grid (29) that coincide with one of the mesh points 2;"** of the grid (20),
belonging to two elements Aj; and Ajq, j=1...n—1,i.e., for | = jp, the polynomial, whose derivative of the order
K equals one at the node z;, has the form

Nigmaxpips(2, 2 aX) 2 e A
Ngﬁma,(ij(z) = Nalz, 231, 2755, z € Njyq; (32)
0, z e Aj @] Aj+1.
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FIG. 2: The interpolation Hermite polynomials with the multiplicity of nodes x™** = 2 (left), their first (centre) and second
(right) derivatives at z;"" = 0 ;" = 6.

In other words, it is constructed by joining the polynomial Npmexq (2, z;“i“, 2% defined in the element A; with

X J
the polynomial Ny (z, 2}, 2j3%) defined in the element Aj;,;. These basis piecewise polynomial functions Nf(z) =

N{ x4, () are also continuous with all its derivatives of the order K™ — 1 in the interval z € A.

As an example, Figs. 4, 5 u 6 present the basis functions N7 (z) a piecewise continuous polynomials of the order p’
with IHPs with different s™** and p on the grid (29) of the three finite elements n = 3.

Fig. 4 shows the basis functions of Lagrangian elements of the first p’ = 1, the second p’ = 2 and the fourth p’ = 4
order: (k™** p) = (1,1), (k™ p) = (1,2), (k™ p) = (1,4). It is evident that at the boundary points of the finite
elements, marked by vertical lines, the basis functions are continuous, and the fractures indicate the fact that their
first derivatives are discontinuous.

Fig. 5 shows the basis functions of the third order p’ = 3 with Lagrangian elements (™, p) = (1,3), and the
Hermitian elements (k™% p) = (2,1). Fig. 6 shows the basis function of the fifth order p’ = 5 with Lagrangian
elements (k™ p) = (1,5), and the Hermitian elements (xk™**,p) = (2,2) and (™, p) = (3,1). It is evident that
the Hermitian elements, in contrast to the Lagrangian ones, in the boundary points of the finite elements have no
fractures, i.e., both the basic functions and their first derivatives are continuous.

The modulo of the division number of basis functions p on £™®* shows the function (if p is a multiple of K™*¥) or a
derivative of order  (if the modulo is equal to ) in one of the nodes is taken as equal to unity:  for basis functions
with Hermitian elements with k™#* = 2, the first derivatives in one of the nodes take the value equal to one, marked
by odd numbers, but for the basis functions of a Hermitian elements of a k™** = 3, the first and second derivatives
in one of the nodes take the value equal to one, marked with numbers 1,4,7,10 and 2,5,8,11, respectively.

The substitution of the expansion (30) into the variational functional (5), (6) reduces the solution of the problem
(1)—(4) to the solution of the generalized algebraic eigenvalue problem with respect to the desired set of eigenvalues
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FIG. 3: The interpolation Hermite polynomials with the multiplicity of nodes £™** = 3 (left), their first (centre) and second
(right) derivatives at 2;"" = 0 2;"** = 6.

L—-1 .

E and eigenvectors {{®" })L, ueo

(A —2EB)®" = 0. (33)

Here A = A®@ + A(D 4 V4 M™in _ Mmax and positive defined B are symmetric LN x LN stiffness and mass matrices
of dimension NL x NL

(2) A(Q)j 2)] 5 lel (Z, Z;_nin7 Z;nax) le2 (Z, Z;—nin, Z;nax) )
vi,vespr 1 e+l T Z v1,v2;l,l20 V1,V2,l1,l2 viva fA e 7 2,
(4,l1,12)€D Jmin
. N ( m1n Zr_nax)
(1) (1)j mm max d 12 \Z j
AV1,V27#1+1”U«2+1 Z A}/hug;ll,lg Vl)VQ,ll,lQ fA Nl1 )Ql/ﬂ/z( ) dz dZ
(J)l1,l2)€D Jmin

max
%5

lel(z,zr_nm,zr_nax) mm max
- / fa(z) i) ()N (2, 2 )

dz

Zmin
J

max

_ J J _ min _max ,min_ max
VVl,V2§#1+1>#2+1 - E : VI/17I/2;117127 VVlﬂ/g;ll)lQ - / fB(z)dZNll(zvzj ) %5 )VV1V2( )le( ) %5 )7
(J)l1,l2)€D

Zmin
J

Lmax

Buy v +1pua+1 = Z BZ17V27llyl2’ BV17V2vll)l2 / Oy [B(2)N, (2, m1n maX)le( m1n7Z;naX)dz (34)
(4,l1,12)€D

min
J

where D = {j € {1,...,n},l1 € {0,....,p'}, 12 € {0, ..., p' 1 = pr™*(j — 1) + l1, p2 = p™**(j — 1) + I2}.

The matrices M™% and M™" with the dimension NL x N L have only one nonzero N x N sub-matrices each:
Mglli,?g;ll - fA( m1n) V1,V2( mm) and Mulalfg,L+l—nmax7L+l—nmax fA( max) V1,V2 (zmax)’ respectively.

1. If the coefficients of the equation (33) are given in the tabular form, then we use the following matrix elements

z
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FIG. 4: The basis functions NJ(z) of a Lagrangian elements of the first p’ = 1, the second p’ = 2 and the fourth p’ = 4 order:
(k™% p) = (1,1), (s™*,p) = (1,2), (5™, p) = (1,4) at n = 3 finite elements, marked by vertical lines.

(w",p) = (1,3) ("%, p) = (2,1)

FIG. 5: The basis function NJ(z) of fifth order p’ = 3 with Lagrangian elements (™, p) = (1,4), and Hermitian elements
(k™% p) = (2,1) at n = 3 finite elements, marked by vertical lines.

- 7

(Kmax7p) — (17 5) (Hmax7p) — (27 2) (,‘ﬁmaxyp) — (37 1)

FIG. 6: The basis function NJ(z) of fifth order p’ = 5 with Lagrangian elements (x™*,p) = (1,5), and Hermitian elements
(K™% p) = (2,2) and (+™*,p) = (3,1) at n = 3 finite elements, marked by vertical lines.

Vi1, (2010, 278%) from (34):

z;_nax . . P Kmax—1 ) )
[ FB N 5, Y N o 5, ) = 30D W 5V O ety pr)
Ze r=0 K=0
where Wl{ Dol (z;“i“, 2%%) are determined by the integrals with THPs

. . e . . .
W3 1ty (2 = [ ()N, (o 2, 2N (2, 2, 2N (2, 20, 2
zZ;
The obtained expression will be exact for polynomial potentials of the order smaller than p’. Generally this decompo-
sition leads to numerical eigenfunctions and eigenvalues with the accuracy of the order about p’ + 1. If the integrals
cannot be calculated in the analytical form, then the Gauss integration rule [7] with p’ + 1 nodes is applied and held
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FIG. 7: The structure of the matrices Br, 1, and Ar, 1, for the potential V(z) = 0 and Q(z) = 0 for the number of elements
n = 6 in the entire interval (2™, 2™) and different values of the multiplicity of nodes x™* and the number of subintervals
p. From left to right: (x™*,p) = (1,7), (k™*,p) = (2,3), (k™*,p) = (4,1), the dimension of the matrices are L x L, L =
K™ (np4-1), equal to 43 x 43, 38 x 38, 28 x 28, the total number of elements within blocks (n(p®+2p)+1)(k™*)? = 379, 364, 304
and bandwidth 2(p’ + 1) — k™** = 15, 14, 12, respectively. At N > 1 each block is a matrix of dimension N x N, i.e. B and A
are matrices of the dimension of the matrix NL x NL to the total number of elements within blocks N?(n(p® + 2p) + 1)(k™**)?
and bandwidth N(2(p’ + 1) — ™).

the theoretical estimations (35)

le (Z Zmin Zmax) le ( mln Zmax)
szl)fQ oy = Z §V1V2wqu(zq) 1\%s d] )y %24 2 J
sV25t1, YA dZ
z=z4 z=2z4
; 4 . ANy, (z, 200, zmax)
1 l
AI(/1)7-1]/2§Z1.,I2 = Z wng (Zg)Nll (Zg? Z;nm7 Z;nax)leQ (Zg) — djz —
9=0 z=z4
’
c lel( mm’ Z;nax) mm max
=D wefalzg) e Quava (29) N1, (29, 257, 25°)
9=0 z=z4

/

Vujl,w,ll,lz ngfB 2g)NL, (25 ;Illnvz?lax)v(zg)NLz(ZgaZ;mnvzywx)v
g=0

/

B tiin =D Ovin o [B(2)Niy (29, 217, 2P )Ny (29, 257, 25°)
g=0

where zq (p) — g)z™" + gz™2* and w,, g = 0,p’ are gaussian nodes and weights of an orthogonal polynomial of
degree p’ + 1, on the element z € (2 m‘“, 25a%)

Note, using the local coordinate 7 € [—1, 1] related to the absolute coordinate z as z = zJ"™+h;(1+7)/2, g—; =h;/2,
one should ordinary exploit the following expansions of the function and its first derivative

max__ |

dz\"
KMaXp 4 nma"r K _17 1 N )
Z + +r(m, ) (dﬁ)

Lor dNHmaxr+H(’l’],—1,1) dz ol
S

3. The matrices Ay, yo.ty 1oy Buyaits s T Vi iy 1o are symmetric, their dimension is NLx N L, where L = k™ (np+1).
They consist of n sub-matrices with the dimension x™**(p+ 1) x k™**(p+ 1). The intersections of these sub-matrices
are blocks having the dimension «™** x x™#*. These blocks include elements that equal zero in both matrices

K

I
\M‘@
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By, vty 1, and fl,,h,,z;lhlz for V(z) = 0 and become nonzero in the matrix fl,,l’,,z;llh, when V(z) # 0. The existence
of such elements is a manifestation of the IHPs symmetry. The total number of elements in all these blocks is
(n(p? + 2p) + 1)(k™*)2. Examples of banded matrix structures are shown in Fig. 7.

4. In the case of BC (II) the matrix elements of (34) are unchanged. To impose the BC (I) in 2™ one should omit
the first row and the first column, while to apply the BC (I) in 2™#* one should omit the row and the column with
the number L 4 1 — k™. To impose the BC (III) in 2™ one should apply A,, ,,.1.1 — A, voi11 + fa(z™)R(z™0),
while to impose the BC (III) in z™#* one should apply AVI’VZ;LH_NM&LH_NMX — fll,lyl,z;LH_,.imaxyLH_ﬁmax —
fA (Zmax)R(Zmax)'

5. For small matrix dimensions ~ 100, the desired solution of the problem generated at Step 2.3 is performed
using the built-in procedures of the Maple LinearAlgebra package. For large matrix dimensions ~ 100 -+ 1000000, the
subspace iteration method is used, implemented in the Fortran program SSPACE [7] which is efficient for large-scale
eigenvalue problems with symmetric band matrices[9].

The theoretical estimate for the H? norm of the difference between the exact solution @,,,(z) € H3 and the numerical
one ®" (2) € H*""" has the order of

B = Bl S k™, [|@(2) = @(2)]], < c2h? (35)

where h = maxi <<, h; is the maximal step of the grid [2].

C. The calculation scheme of multichannel scattering problem

We consider the solution of the algebraic problem with respect to the matrix solution ®" = ((x)", ..., (x(N))")
GPo®" = (A? — EBP)®" =M &", (36)

obtained by discretization with the help of Finite Element Method of high order of accuracy of variational functional
(5), (6) corresponding to BVP (1), (4) that approximate of multichannel problem at fixed E. The matrices AP =
A® + A £V and M = M™ — M™" of dimension NL x NL are given in (34). Matrices M™?* and M™" arise
due to the approximation of boundary conditions of the third kind at the left and right boundaries of the interval
z e (Zmln, Zmax)

d®"(2)
dz

The elements of the matrix M = { M, ;, YL | equal zero except those, for which both indexes If = (I1 — 1)N + vy,
1272

= (G(2) + Q(z))‘I’h(z), z =0 5= pmax (37)

2
5 = (la — 1)N + v belong to the interval 1,..., N or to the interval (L — fmaxN) + 1, ..., (L — kmaxN) + N, where N
is the number of equations (1) and L is a number of basis functions N7(z) in expansion of desired solutions (30) on
interval z € A = [pmin pmax]
We rewrite the problem (36) in the following form

Gr, G, 0 3, G’ 0 0 ®,
Gl Gl Gl || e | = 0o 0 o0 &, |. (38)
0 G’ Gr |\ @, o oG, ) \@&.

The matrices G}, of the dimension (L —2N) x (L —2N), G} and G, of the dimension (L —2N) x N, G? and G?,
of the dimension N x (L —2N) ,GE_, GE_ of the dimension N x N are determined from finite element approximation
and considered as known. Existence of zero submatrices are connected with band structure of matrix G? from (38).
Matrices Guin and Gpax of the dimension NV x N, and ®, and ®. of the dimension N x 1, should be connected by
with asymoptotic expansion and will be considered below, matrix ®; of the dimension (L —2N) x 1 are derived by
droping submatrices ®, and ®. from matrix-solution.

We rewrite the problem (38) in the explicit form

Gga(ﬁa + ng@b = _Gﬁlin(ﬁm
G! &, + GL®, + GL&, =0, (39)
G;Zb(I)b + Glc)c(I)C = anaX(I)C'

Let us eliminate ®; from the problem. From the second equation the explicit expression follows

@, = —(G},) "G}, ®a — (G,) G2, (40)
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however, it requires the inversion of a large-dimension matrix. To avoid it, we consider the auxiliary problems

G Foa = G, G Foe = G- (41)
Since G¥, is a nondegenerate matrix, each of the matrix equations (41) havs a unique solution
Fio = (Gy,)” 1G€a7 Fye = (ng)_ngc' (42)
Then, for the function ®; we have the expression
Py = —Fpa®o — Fic®, (43)

and the problem (39) takes the form
G2, &, — G", Fu®, — GI,Fy.®, = —G”,

mm

_Gzc)bea‘I)a - Gzc)bec(I)c + GZC)C(I)C = GmaX(I)C'

Thus, the algebraic problem (38) with the matrix of the dimension L x L is reduced to two algebraic problems with
the matrices of the dimension N x N

Yga(Pa + chq)c = _an1n® (44)
Y:gaq)a + Y;gcq)c = Gmaxq)c-
where Y7, is determined via the solutions F'y, and F}. of problems (41)
Y. =Glo — G Fva, Yoo = —Gg,Fuc, (45)
Y?, = -G Fio, Y, =GE, — G F..

cc
Let us consider the solution (10) for the incident wave travelling from left to right

XGah ()T + X (2) T, >0,
&, (2 = +o0) = (j)() S ax(2) » s (16)
Xmin( ) + Xmm( )R—> + Xmm( )R y 2 < 0
and solution (11) for incident wave from right to left
(<) (=) (e) c
@H(z N :l:OO) _ inm)(( ) + XmaxE ))Re + Xmax( )R , 2> O7 (47)
Xmm( )TF + Xmm( )Tf—v z < 0.

Here ® ,(z — 400) and ®, (2 — +00) are the matrix solutions of the dimension 1 x N* and 1 x NE. In other
words, there are N linearly independent solutions, describing the incident wave traveling from left to right and N
linearly independent solution, describing the incident wave traveling from right to left, respectively. The matrices

X(_’)( ), X(f)(z) of the dimension 1 x NI and the matrices Xsn_a),)((z), Xg_a))((z) of the dimension 1 x NI represent

min min
the fundamental asymptotic solution at the left and right boundaries of the interval, describing the motion of the

wave in the arrow direction. The matrices anm( ) of the dimension 1 x (N — NZL) and Xgﬁx(z) of the dimension
1 x (N — NE) are fundamental asymptotically decreasing solutions at the left and right boundaries of the interval.
The elements of these matrices are column matrices of the dimension N x 1.

It follows that the matrices of reflection amplitudes R_, and R are square matrices of the dimension NI x NI
and N] LI N, 1 while the matrices of transmission amplitudes T_,, T, — are rectangular matrices of the dimension
NE x N L are N L x NI The auxiliary matrices R¢,, T¢,, R¢ and T¢  are rectangular matrices of the dimension
(N NL) x NE (N - NR) x NEJ (N — NEF) x NR (N NE)yx NE,

Then the components of the wave function take the form

N-NE
((I) )iozL _ f;L) mm _|_ Z X(<_) min RE_;IZ Z X(C) mm 502)7
il =1 il =1
I N-NF
((PC)ioig = Z XZ(:::)) max Z zL + Z Xl(ocz) max (ZL)’
i =1 ir=1 ‘
I N-NE
(@)s,im = Y X ETI + 3 X[, (T, (48)
it =1 il =1
NE N-NE

(B = KA+ S XGEIR + S KR,

il =1 il =1
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where the asymptotic solutions X(7)(z) = X*)(z), X()(2) = X(7)(2) of the boundary value problem at z < z™»
and/or z > 2™ are given by Eqs. (12)—(13).
For the right-hand side of Egs. (44) we have

(Gﬁun )ioiL _X/(%) mln ZX/(%) mln 1 1L + Z X/(C) min Rl(/cl_L));
i, =1 °e in=1 co
No™ N-NZE
(Ghax®o)iip = Y X5 T+ >0 X0 1y,
= bt
N-NE
Gk = 3 X+ 3 Xy »
7/_1 7/—1
NG N-NE
(ChBoiss = XN+ 3 X+ 3 X

oo
;I — ;I —
il =1 il =1

(=)

Z,LL7

Substituting the equalities (48) and (49) into Eq. (44) we arrive at the system of nonhomogeneous equations R

ik Wrirs Ly irs i Lyin ™ yir’s /R,Whlchhasaunlquesolutlon

When solvmg the problem {n'the semiaxis with the Neumann or the third-kind boundary conditions an the boundary
2™ or 2™a% of the semiaxis, the role of independent variables is played by the elements of the matrices ®, or ®.,
instead of R and T, while for the Dirichlet boundary conditions we have ®, = 0 or ®, = 0, so that in this case the
corresponding equation is not taken into account.

D. Algorithm for calculating the complex eigenvalues and eigenfunctions of metastable states

To calculate the complex eigenvalues and the corresponding eigenfunctions of metastable states we solve the algebraic
problem (33) for the equation with respect to the pair of unknowns u = {\"*, ®"}:

A _\h h_ _ormh
{(A A'B) @ =0, A\=2E" (50)

" B®") —1=0.

The equation of the Continuous Analog of Newton Method in the vicinity of the solution u = {\" ®"} with respect
to the unknowns u(t) = {®(t), A(t)}, 0 <t < oo has the form

{(A AB)———BQ_—(A—AB)tﬁ 51)

2 (42 B®)=1-(®,B®),

where A(0) and ®(0) denote the known initial approximation for the eigenvalue and the eigenfunction. Using the
discrete representation of derivatives

d® |  Ppy — P A

Tk

Akl — Ak

_— 52
o [k (52)

the discrete analog of Eq.(51) obtained using the grid tx41 = tx + 7% with the step 74 with respect to the pair of
unknowns uy vy takes the form

{ (A - /\kB) vi — e B®, = —ry, (53)

2 (Vk,B(INc) = 1 — (‘I’k,B(I’k) y

where Ao = A(0) and ®; = ®(0) are initial approximation to the eigenvalue and the eigenvector. The iteration
corrections ri and vy are given by formulas

ry = (A — /\kB) D, vi=-—Pp + p1Oy. (54)
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The iteration corrections @y and py to the eigenvector ®j, and to the eigenvalue A\, are calculated from the algebraic
problem

{ (A -MB) @, =Ba, (55)

2uk (O, B®y) = 1+ (Py, B‘I)k) ,
whereas the iteration corrections py is calculated by means of the formula
1+ (P, BPy)
M= 5@, Bey)

This option in the program is implemented, by default, when the value of the key mukopt=1.
The transition from ®5, \; at k-th step to ®r1, A1 at k + 1-th step is executed by using the formulas

{ D1 =Py +TRVvE = (I—Tk)q)k—l—Tk,uk@k, (57)

Ait1 = Ak + Tr ik

Calculation of the optimal iteration step 7. To calculation the optimal iteration step 7%, we use the following
representation of the quantity ry4; at the k + 1-th step

Tit1 = (A - )\k+1B> Py = (A - (g + Tkuk)B) (1 = 7)®p + 7 ®r) = (1 — 7)r — T2 Bve.  (58)
Then the expression for the discrepancy ||ry1]|? takes the form
el = (1= 7)2[lewl® = 21 = 7)7 (i, Bvie) + g i | B |1 (59)
We denote f(7%) = |[rry1]|? and calculate its derivative

F(7) = 2(m = D|ril|* — 2275 — 370w (xr, Bvi) + 47 iz [ Bvie |2
= 43 |Bve | 72 + 6k (v, Bvie) 70 + 2 [rell® — 20k (vr, Bvi)] 7 — 2[|re ). (60)

We see that f/(0) = —2||rx||> < 0 and f/(2) = 2f(2) > 0. Hence, the function f(7) has at least one minimum in the
interval (0,2). Thus, it is possible to find an optimum value of the iteration parameter 7, = 7}, calculating the roots
of the cubic equation f’(7}) = 0. If it has three real roots, one should choose the one close to 1. In the program the
option of choosing the optimal step 75 is implemented with the key value of mukopt=1. By default, the program
sets the value 7, = 1 when the value of the key is mukopt=0. The iterative process (55)—(57) is terminated, provided
that ||rx.1]/? <€, where 0 < € < 1 specifies the accuracy of the approximate solution.

Remark. Let A, A, ® be complex numbers. Then pug, vi, rp are complex numbers and the discrepancy is
determined by the relation

el = (1= 7m)ry = 70 BvE) (1= 7 )re — 772 Bv)
= (1= 7)? ek ll? = 200 = 7)) T2 R(ef, i Bve )1 + 73 B %, (61)
where ||al|? = (af,a);, and (a,b); = alb.
The iteration corrections @y and uy, to the eigenvector ® and to the eigenvalue Ay are calculated instead of (53)
from the following algebraic problem:

(A - )\kB) O, = B®,,

. (62)
(®r, B®y)pr = (‘I’k, (A - /\kB) ‘I’k>7
whereas the iteration corrections py, is calculated using the formula
(20 (A-NB) @) (@,
(@, BOy) =1, = = Bor) (P, i) (63)

(P, BPy,) (P, BP®})

In the program this option is implemented, when the value of the key muke=0. The transition from ®;, \; at the
k-th step to ®i11, Ap+1 at the k + 1-th step is executed by means of the formulas

V (D4 41,BBri1) (64)

{ Bpp1 = B + 7V = (1 — 7)) Pp + T O, Pppy = Pii1
A1 = Ak + Trfbk,
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with the iteration step 7 calculated using the formula [8]

™
Th =75 g <L 65
el + [Fema 2 (65)

where
Tpp1 = (A - >\k+1B) D1, (66)

and ®gy1, Ap1 calculated by formula (64) at 7, = 1. In program the option of choosing the optimal step 7y is
implemented with the key value of mukopt=1. By default, the program made the value 7, = 1 when the value of
the key mukopt=0.

The iterative process (62)—(65) in which py, is calculated using the formula (63) is terminated, using Eq. (66), under
the condition that ||rg11|? <'e, where 0 < € < 1 is the specified accuracy of the approximate solution.
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IVv. INPUT AND OUTPUT

This archive contains

File “kantbp4dm.mwt” with procedure hermites() for solution of boundary problem for paragraph I,
Files with examples “examplexx.txt”.

In the process of work the program generates the work and output files, for example,

“hermites.dat” contains interpolation Hermite polynomials,

“Inta.dat” contains integrals between polynomials Hermite and/or their derivatives, from which the stiffness and
mass matrix are constructed,
“wiuncts**.dat” contains eigenvalues and eigenfunctions of the solved problem.

Accessing the program is as follows:

1. read “kantbp4m.mwt”; initialization of procedure;
2. ... (list of input data); input data;
3. hermites(); execution of procedure;
4. (output data); output data
the steps 2-4 are repeated.

A. List of input and output data

keypot (by default 1)

0 — approximation of a function by the interpolation Hermite polynomials,

1 — solution of the eigenvalue problem (calculations of first eigenvalues and eigenfunctions),

2 — solution of the scattering problem,

3 — solution of the eigenvalue problem by Newton method,

4 — matrices A and B from (33)—(34) are calculated and written in files “afem.dat” and “bfem.dat”.

z independent variable.

INPUT:

filenameh, filenamew, filenamea, filenamei (by default “hermites.dat”, “wfuncts*.dat”, “abfem.dat” and
“inta.dat”, respectively) files for storing of intermediate and final results (see. below), where * means the value
of counter nexec.

nexec counter (by default at the first start 1, further it is increased by 1) * in the name of file "wfuncts*.dat”
takes values equal nexec.

zpoints (at keypot=0)
contains a list of nodes, in which the values of the approximated function and its derivatives is given in the
form: zpoints:=[z1,22,...,2n]-

fpoints (at keypot=0)
a list, containing the values of the approximated function and its derivatives in the points from the list zpoints
is given in the form: fvalsz:—[[f(21),f"(21),e-, f 0 (20)],[£(22) s f 2 (22) ] oes[ £ (200 ) oo f ) (200)]] -

psubint (by default 3)
the number of subintervals on p finite element (21), i.e. the number of nodes equals to psubint+1.

kappamax (by default 2)
multiplicity of nodes.

intprep (by default 1)

0 — integrals A, B and V, from which the stiffness and mass matrix are read from file filenamei. It used if
previous execution was performed with same psubint and kappamax.

1 —integrals A, B and V are calculate and write to the file filenamei.
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femmatcal (by default 0)

-1 — the stiffness matrix (AFEM) and the mass matrix (BFEM) without boundary conditions are read from file
filenamea.

0 — the stiffness and the mass matrix are calculated, but are not written in file filenamea.

1 — the stiffness and the mass matrix are calculated, and are written in file filename, after that femmatcal takes
value -1.

grid11(r0), r0=0,1,...,psubint, grid11(0):=-1, grid11(psubint):=1
distribution of the nodes in the interval [-1,1] (by default distribution of nodes is equidistant).

eqgs (by default 0)
1,2,3,..., the number of equations N in (1)
0 one equation, at this indices of vpot, RBoundL, RBoundR are not written.

nmesh (by default 0) .
1,2,3,..., the number of subintervals on domain z € [¢™", 2™**] which divided on finite elements of equal length
0 on domain z € [z™™ 2™2%] the equidistant grid is used.

zmin, zmax (at nmesh=0)
boundary points z™" and z

max

zmesh(r0), r0=0,1,... ,nmesh, (at nmesh=1,2,3,...)
boundary points of nmesh subintervals

ngrid the number of finite elements on interval [zmin, zmax]. At nmesh=1,2,...is given in the form of array
ngrid(1), ..., ngrid(nmesh) where ngrid(r0), r0=1,. .. nmesh means the number of finite elements on subinterval
[zmesh(r0-1), zmesh(r0)],

vpot are elements of matrix of effective potentials V;; of the problem (1). Is given in the form:
vpot—...at nmesh—=0 and eq—0

vpot(i0)= ...; i0=1..nmesh; at nmesh=1,2,...and eq=0
vpot(il,i2)=...;il,i2=1...eq; at nmesh=0 and eq=1,2,. ..
vpot(il,i2,i0)= ...;i1,i2=1...eq; i0=1...nmesh; at nmesh=1,2,...at eq=1,2,. ...

Qap (at eqs=1,2,3,..., by default 0)
If matrix of effective potentials Q;; is exist (1-yes, 0 - no).

qpot (at Qap=1)

are elements of matrix of effective potentials ();; of the problem (1). Is given in the form:
gpot(il,i2)= ...;i1,i2=1...eq; at nmesh=0 and eq=1,2,. ..

qpot(il,i2,i0)= ...; i1,i2=1...eq; i0=1...nmesh; at nmesh=1,2,...and eq=1,2,. ...

FFA (by default 1)
function fa(z). At nmesh=1,2,...and FFAD=-1 is given in the form of array FFA(1),... FFA(nmesh).

FFB (by default 1)
function fp(z). At nmesh=1,2,...and FFBD=-1 is given in the form of array FFB(1),... ,FFB(umesh).

FFAD (by default 0, if f4(z) is monom of z, else 1)

0 — integrals A from (33)—(34)are calculated, using explicit expressions for FFA,

+ 1 — integrals A are calculated, using expansions of FFA by interpolation Hermite polynomials, FFAD< 0
involves piecewise continuous f(z).

FFBD (by default 0, if fp(z) is monom of z, else 1)

0 — integrals B, V and @ from (33)—(34) are calculated, using explicit expressions for FFB

+ 1 — integrals B, V and @ are calculated, using expansions FFB and FFB*vpot by interpolation Hermite
polynomials, FFBD< 0 involves piecewise continuous fgz(z).

DirL, DirR (by default 2 at keypot=1 or 3 and 0 at keypot=2)
boundary condition in the left and right points of interval:

1 — Dirichlet condition,

2 — Neumann condition ,

3 — condition of third type,
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0 — condition of third type that determined from the asymptotic solution (10), (11) of the multichannel scattering
problem.

RBoundL, RBoundR (are given by user at DirL=3 and DirR=3, respectively, by default 0)

relation R(z) of derivative of the solution to the solution see formula (4). At keypot=3 them may explicitly
depend on formal parameter EEh, which correspond to the values of Eh. At eqs—1,2,..., are given in the form
of matrix with dimension eqs x eqs: RBoundL(11,12), RBoundR(11,12).

asymexp (at keypot=2, by default 0)
0 — asymptotic solutions of scattering problem are given by formulas (12) and (13),
1 — asymptotic solutions of scattering problem are given by user.

Lp20C(l1) (at keypot=2, DirL=0, array of the dimension max(1,eqs), is given by user at asymexp=1)
the square of the wave number (pf;) at z < 2™ (see (12)), if > 0, channel 11 is opened, if < 0, channel 11 is
closed.

Rp20C(11) (at keypot=2, DirR=0, array of the dimension max(1,eqs), is given by user at asymexp=1)
the square of the wave number (pf;) at z > 2™* (see (12)), if > 0, channel 11 is opened, ecim < 0, channel 11 is
closed.

LBoundLR(11,12), LBoundRL(11,12), LBoundC(l1,12) (at keypot=2, DirL=0, are matrices of the dimension
max(1,eqs) X max(1,eqs), in which the first index indicates the number of channel, and the second — the number
of component of solution, are given by user at asymexp=1)

asymptotic solutions at z < 2™, describing the waves incident from left to right, the waves incident from right
to left and decreasing solutions for closed channels, respectively (see (12) and (13)).

DLBoundLR(11,12), DLBoundRL(11,12), DLBoundC(11,12) (at keypot=2, DirL=0, are matrices of the di-
mension max(1,eqs) x max(1l,eqs), are given by user at asymexp=1)
derivatives of asymptotic solutions LBoundLR(11,12), LBoundRL(11,12), LBoundC(11,12) (see (12) and (13)).

RBoundLR(11,12), RBoundRL(11,12), RBoundC(11,12), DRBoundLR(11,12), DRBoundRL(11,12),
DRBoundC(11,12) (at keypot=2, DirR=0, are given at asymexp=1)

the same as LBoundLR(11,12), LBoundRL(11,12), LBoundC(11,12), DLBoundLR (11,12),
DLBoundRL(11,12), DLBoundC(11,12) but at z > 2™** (see (12) and (13)).

numberf ( at keypot=1 by default 5)
the number of eigenfunctions.

grprint (by default 1)
Are the graphics of eigenfunctions displayed (1-yes, 0 - no, -1 (at keypot=1 or 2) the program calculates only
eigenvalues or S - matrix, 2 (at keypot=3) displayed intermediate results).

Eh (at keypot=2 or 3)
a fixed value of the energy E for the of scattering problem (at keypot=2) or an initial approximation for the
eigenvalue (at keypot=3).

Phink (at keypot—3)
the initial approximation for eigenfunction, at eqs=1,2,...is given in the form of array Phink(1),... ,Phink(eqgs).

itermax (at keypot=3, by default 20) .
the number of iterations, the calculations are also terminated at the achievement of accuracy 103~ Pisits,

muke (at keypot=3, by default 1)
method of calculation of iteration correstion py (1 — by formula (56), 0 — by formula (63)).

mukopt (10 ymosganuio 0)
Is the optimal value of iteration step 75 calculated (1- yes, 0 - no).

gropts
a set, of options for drawing, by default the real and imaginary parts of the solutions are displayed by the solid
and dashed lines, and the color is changed from red for the first component to violet for the last component.

infopr (by default at the first execution is 1, after 0)
Is auxiliary information displayed (1-yes, 0 - no).
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infoerr (at keypot=3, by default 1)
Are the intermediate eigenvalues, corrections and iteration step displayed (1 - yes, 0 - no).

normtp (at keypot 1 or 3, by default 1)
normalization condition (1 — by formula (15), 0 — by formula (16) )

OUTPUT:

IHP (written to the file filenameh)
interpolation Hermite polynomials (25).

fun (at keypot=0, global)
the function, which interpolated from values fpoints on a grid zpoints.

eigvxx, xx=1,... ,numberf (at keypot=1, written to the file filenamew)
the eigenvalues.

eigfxx, xx=1,... ,numberf (at keypot=1, written to the file filenamew)
the eigenfunctions in the form of piecewise continuous polynomial. At eqs—1,2,...the number of components
are added in parentheses: eigfxx(1), ..., eigfxx(eqgs)

eigfLRr, eigfLRi, eigfRLr, eigfRLi (at keypot=2 u weigf>-1, written to the file filenamew)
the real and imaginary parts of the eigenfunctions <I>Z and <I>Z.

NOpenL, NOpenR, NCloseL, NCloseR (upu keypot=2, global)
the numbers of open and closed channels.

RLRscat, RRLscat, TLRscat, TRLscat, RLRscatc, RRLscatc, TLRscatc, TRLscatc (at keypot=2,
global, also written to the file filenamew)
the matrices of the reflection and transmission amplitudes, and the matrices of coefficients of asymptotic solutions

in closed channels: R, (E), R (F), T (E), T (E), R¢_(E), R°,(E), T¢(E), T—(E)°, respectively.

Smatr (at keypot=2, global)
S - matrix (8).

eigv (at keypot=3, written to the file filenamew)
the eigenvalue.

eigf (at keypot=3, written to the file filenamew)
the eigenfunctions in the form of piecewise continuous polynomial, the number of components are added in
parentheses eigf(1), ..., eigf(max(1,eqs)).

Eh (at keypot=3, global)
eigenvalue of the discrete spectrum problem.

B. Notes

For such variables, when keypot are not specified, it is means that keypot>0.

For a short time, you can get results with an accuracy of the order of 8 significant digits. If you want to get results
with a greater accuracy and the number of equations in the system is large, for example, such that the number of
elements of the eigenvector in solving algebraic problem exceeds NL > 103, the calculation is best done in Fortran
using a software package KANTBP [9].

Time of “silence” program when it is executed for the sample is not more than 1-3 minutes, long “silence” or hang
can be caused by either too much order p’ = k™**(p + 1) — 1 of the FEM scheme (p’ is displayed as "Order of Finite
Element Scheme”), or variable Digits or dimension of the algebraic problem NL x NL (NL is displayed as "Dimension
of algebraic eigenvalue problem”), or the elements of the matrix algebraic problem is not calculated in the form of
numbers, for example, presented as formal expressions. In the latter case it is recommended to start the program
with keypot=4 and view the elements of the matrices in the files “afem.dat” and “bfem.dat”.



22
V. EXAMPLES

Sample files are located in the same archive and called examplexx.txt (xx=01-16). For execution of the code
for a selected examplexx.txt user should copy it to Maple worksheet via "copy/paste”, or use Maple command <<
read “examplexx.txt” >> or open file examplexx.txt by Maple choosing <<Maple Input >>.

Examples of numerical solution of boundary value problems for systems of ODE on a finite interval with
boundary conditions of the first, second and third type, that approximate the test quantum mechanical eigenvalue
problems and the scattering problems on an infinite interval, and the problem of calculating the metastable states on
a sufficiently large but finite interval. To control of an accuracy of the numerical solution computed error obtained
when substituting the ODE, &,,(2) = [(D(z) — E!)®" (2)], 2 € (2™, M%) If the test problem has an analytical
solution, it is calculated as the absolute value of the difference between the numerical and the known analytic solutions
em(2) = |® (2) — ®eract(2)|, z € (™0, zma%) 4 = 1,2, ... numberf. Plots of calculated errors &,,(z) and &,,(z) of
eigenfunctions are displayed on the computer screen.

Since the eigenfunctions of the discrete spectrum of decay exponentially ®2%(z) ~ exp(—v/—FEpn|z|) in the
z — 00, then the original problem is reduced to a boundary value problem for bound states in a finite interval with
Dirichlet or Neumann conditions at the boundary points z™" and z™® interval and the normalization condition
(15). Solutions of the reduced boundary problem differs from the solution of the original problem of the order of

eV = f_zmm D5 (2)P%(2)dz + ft,i D25 (2)D%(2)dz and actually determined by the sum of the exponents eV~

oo z

Gas (Zmin)| 4 | Pas (ymax —2+/—F,,) in the boundary points of the interval. For a given value of error D e
(|o5( )|+ 125 m y point g m’
have the estimate of required values of the boundary points z™" and z™#* of a finite interval.



23

Example 01. The interpolation of function by the given values of the function and its derivatives on the grid

restart;read '"kantbp4m.mwt";keypot:=0; 1
2

vv:=-99/8/cosh(z)~2; 3
zpoints:=[0, 5/4, 5/2, 3]; 4
fpoints:=[[subs(z=zpoints[1],vv)] 5
, [subs (z=zpoints[2],vv) ,seq(subs(z=zpoints[2],diff (vv,z$i)),i=1..4)] 6

, [subs (z=zpoints[3],vv) ,subs(z=zpoints[3],diff (vv,z))] 7

, [subs (z=zpoints[4],vv) ,subs(z=zpoints[4],diff (vv,z)),subs(z=zpoints[4],diff (vv,z,z))] 8

1 9
hermites(); 10
funl:=fun; 11
plot([funl,vv],z=0..3);plot ([funl-vv],z=0..3); 12

Line 1: Initialization procedure.

Line 3: An approximated function.

Lines 4-9: It is assumed that there is a set of values of the function and its derivatives in the mesh points of a
grid named ’zpoints’: in first point value of function is given, in second point the values of function of the derivatives
up to fourth order are given, in third point the values of function of the derivatives up to first order are given, and in
forth point the values of function of the derivatives up to second order are given.

Lines 10-12: interpolation of the function and verification : graphics of the calculated function and a difference
between the calculated and approximated function
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Example 02. Solution of the eigenvalue problem with Dirichlet, Neumann and third kind boundary conditions

Program calculates solutions of the eigenvalue problem (1) with the potential V' (z) = 0 for different boundary
conditions: Dirichlet, Neumann, and the third kind, for whose eigenvalues and functions are known in analytical
form, for example, F,, = 1,4,9,16, ... of Dirichlet boundary conditions and F, = 0,1,4,9, ... for Neumann boundary
conditions.

restart;read "kantbp4m.mwt"; 1
psubint:=3; kappamax:=2; 2
vpot:=0; 3
ngrid:=4;zmin:=-Pi/2;zmax:=Pi/2; 4
numberf :=5; 5
6

DirL:=1;DirR:=1; 7
hermites(); 8
9

DirL:=2;DirR:=2; 10
hermites(); 11
12

DirL:=3;DirR:=3;RBoundL:=5;RBoundR:=5; 13
hermites(); 14
15

16

read "wfunctsl.dat": 17
for ii from 1 to numberf do 18
plots[logplot] ([abs(abs(eigf||ii)-abs(sin(ii*z+Pi*ii/2)/sqrt(Pi/2)))],z=zmin. .zmax 19
,title=cat("test by comparison with ",convert(ii,string),"-th exact w.f.")); 20
plots[logplot] ([abs(-diff(eigf||ii,z,z)-eigv||ii*xeigf||ii)],z=2zmin..zmax 21
,title=cat("test by substitution of ",convert(ii,string),"-th solution to ODE")); 22
od; 23
24

read "wfuncts2.dat": 25
for ii from 1 to numberf do 26
plots[logplot] ([abs(abs(eigf||ii)-abs(cos((ii-1)*z+Pi*(ii-1)/2)/sqrt(Pi/¢if¢(ii=1,1,2))))] 27
,Z=zmin. .zmax 28
,title=cat("test by comparison with ",convert(ii,string),"-th exact w.f.")); 29
plots[logplot] ([abs(-diff(eigfl||ii,z,z)-eigv||ii*eigf||ii)],z=zmin. .zmax 30
,title=cat ("test by substitution of ",convert(ii,string),"-th solution to ODE")); 31
od; 32

Lines 1-2: Initialization of procedure, and the choice of parameters of finite element method.

Line 3: the effective potential of the problem.

Line 4: Select of the interval of integration and partition it into 4 equal sub-interval.

Line 5: Select the number of desired eigenfunctions.

Lines 7-8: The solution of the problem with Dirichlet boundary conditions. The eigenfunctions and eigenvalues
are written to the file 'wfunctsl.dat’ (see. filenamew).

Lines 10-11: The solution of the same problem, but with the Neumann boundary conditions. The eigenfunctions
and eigenvalues are written to the file 'wfuncts2.dat’.

Lines 13-14: The solution of the same problem, but with boundary conditions of the third kind ®'(z) = 5®(z)
in the z = 2™ and z = 2™, The eigenfunctions and eigenvalues are written to the file 'wfuncts3.dat’.

Lines 17-23: Display graphs of discrepancy of eigenfunctions for the problem with Dirichlet boundary conditions.
The absolute value of the difference between the numerical and the known analytic solutions &,,(z) = [®74™(z) —
peract(2)| z € (xMin zmaxX) 4y = 1,2, ... numberf and accuracy of numerical solutions obtained when substituting the
TAC, £,(2) = |(D(2) — Ep) @3 (2)], 2 € (7m0, o),

Lines 25-32: Display graphs of discrepancy of eigenfunctions ¢,,(z) and &,,(z) for a problem with Neumann
boundary conditions.
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Example 03. The solution of the eigenvalue problem for the Schrédinger equation with the one-dimensional
harmonic oscillator potential and the radial equation for the d-dimensional harmonic oscillator

The original problem for bound states is formulated for the Schrodinger equation of d-dimensional harmonic
oscillator
1 d 4.,d

s R . + 2% — Em> D,,(2) =0,

D - B2 =

has an analytical solution - the eigenvalues E<**“! and the eigenfunctions of ®¢¥%“!(z), normalized by the condition
(15) on infinite interval z € (—oo,+o0) at d = 1 (B¢t =1,3,5,7,...), or semi-infinite interval z € (0, +o0) at
d>2 (Bt =d,.d+4,d+8,...).

The original problem is reformulated as eigenvalues problem (1) with boundary conditions (2) and the normal-
ization condition (15) (if d > 2, then at z = z ™™ the boundary condition (3) is applied), at fz(z) = fa(z) = 2971,
N=1,V(z) = V1(z) = 2%

restart;read "kantbp4m.mwt"; 1
psubint:=3;kappamax:=2; 2
vpot:=(z)"2; 3
ngrid:=14;zmin:=-7;zmax:=7; 4
numberfl:=10;numberf :=numberfl;filenamew:="1dosc.dat"; 5
hermites(); 6
7

intprep:=1;ddim:=5;filenamew:="5dosc.dat"; 8
vpot:=(z2)~2; ngrid:=7; 9
FFA:=z"(ddim-1) ;FFB:=z"(ddim-1) ; 10
zmin:=0;zmax:=7 ;numberf2:=5;numberf :=numberf2; 11
hermites(); 12
13

read "ldosc.dat": 14
oscfun1(0):=0; 15
for ii from 1 to numberfl do 16
oscfuni(ii):=‘if‘(ii=1 17
,exp(-z~2/2)/sqrt(sqrt(Pi)) 18
,sqrt (2)*z/sqrt(ii-1)*oscfunl(ii-1)-sqrt(ii-2)/sqrt(ii-1)*oscfunl(ii-2)); 19
plots[logplot] ([abs(abs(eigf||ii)-abs(oscfunl(ii)))],z=zmin. .zmax 20
,title=cat("1d osc: test by comparison with ",convert(ii,string),"-th exact w.f.")); 21
print (%) ; 22
plots[logplot] ([abs(-diff(eigf||ii,z,z)+z"2*eigf||ii-Re(eigv||ii)*eigf||ii)],z=zmin. .zmax 23
,title=cat("1d osc: test by substitution of ",convert(ii,string),"-th solution to ODE")); 24
print (%) ; 25
od: 26
27

28

read "bdosc.dat": 29
for ii from 1 to numberf2 do 30
oscfun(ii) :=sqrt (2*GAMMA (ii-1+(ddim)/2)/GAMMA((ii-1) +1)) 31
/GAMMA (ddim/2) 32
xexp(-z~2/2) *hypergeom([-ii+1], [ddim/2],z"2); 33
plots[logplot] ([abs(abs(eigf|[ii)-abs(oscfun(ii)))],z=zmin. .zmax 34
,title=cat (convert(ddim,string),"d osc: test by comparison with " 35
,convert(ii,string),"-th exact w.f.")); 36
print (%) ; 37
plots[logplot] ([abs(-1/FFBxdiff (FFAxdiff (eigf||ii,z),z)+z"2%eigf||ii-Re(eigv||ii)*eigf||ii)] 38
,z=zmin. .zmax,title=cat (convert(ddim,string),"d osc: test by substitution of " 39
,convert(ii,string),"-th solution to ODE")); 40
print (%) ; 41
od: 42

Lines 1-2: Initialization of procedures, and the choice of parameters of finite element method.
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Line 3: The effective potential of the problem.

Line 4: Select the interval of integration tasks and splitting it into 14 equal intervals.

Lines 5-6: Calculation of the first 10 of the eigenfunctions and eigenvalues of a one-dimensional harmonic
oscillator.

Lines 8-12: Calculating the first 10 eigenfunctions and eigenvalues of the problem for the d-dimensional harmonic
oscillator. The matrix elements are re-read again. This is important, if FFAD—0 or FFBD—0.

Lines 14-26: Display of plots of errors €,,(z) and &,,(z) for the one-dimensional harmonic oscillator.

Lines 29-42: Display of plots of errors eigenfunctions e,,(z) and &,,(z) for the d-dimensional harmonic oscillator.



Example 04. The solution of the eigenvalue problem for the radial equation with Coulomb potential

The original problem for bound states is formulated for the Schrédinger equation with Coulomb potential

1 d ,,d 2
- — — — - — B, | Pn(2) =0,
A1dz" Az ) ()

D~ 50,0 (
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which has an analytical solution — eigenvalues E<*?“* and the eigenfunctions of ®¢*“!(z), normalized by the condition
(15) in the semi-infinite interval z € (0,+oc0) in the (d > 2) -dimensional space, In particular, for the d = 3,

Eizact — —1/”2, n=1,2,..

Firstly, the eigenvalue problem (1) with boundary conditions (3) and the normalization condition (15) at
f(2) = fa(z) = 22, N = 1, V(2) = Vi1(2) = —2/z is solved, then the boundary conditions (3) are replaced by

boundary conditions (4), depending on the eigenvalue E,,, and the solutions are performed by Newton method.

restart; read '"kantbp4m.mwt";
psubint:=3; kappamax:=2;

FFA:=z"2;FFB:=FFA;
FFAD:=0; FFBD:=0; #choose 1 or 0;

nmesh:=12; for i from 1 to nmesh do vpot(i):=-2/(z);ngrid(i):=1;0d;
zmesh(0) :=1/32;for i from 1 to nmesh do zmesh(i) :=zmesh(i-1)+2"1/64;0d;
numberf:=5; hermites();

read "wfunctsl.dat":
for i from 1 to nmesh do ngrid(i):=4;od;

DirL:=3;DirR:=3;keypot:=3;

RBoundL := (-1-(1/3%(EEh-2))x*zmesh(0)
+(1/6*(2*EEh-1) ) *zmesh (0) "2
+(1/90* (-10*EEh+2+3*EEh~2) ) *zmesh (0) ~3)
/ (1-zmesh(0)-(1/6%(EEh-2))*zmesh(0) ~2+(1/18*%(2*EEh-1) ) *zmesh (0) "3
+(1/360% (-10*%EEh+2+3*EEh~2) ) *zmesh (0) ~4) ;

RBoundR:=-sqrt (-EEh+subs (z=zmesh (nmesh) , vpot (nmesh))) ;
Digits:=16;
for ii from 1 to numberf do
Phink:=eigf|[ii:
Eh:=eigv||ii;
hermites();
od:

for ii from 1 to numberf do
read cat("wfuncts",convert(ii+l,string),".dat"):
plots[logplot] ([abs(abs(eigf(1))-abs(2/ii~(3/2)*exp(-z/ii)*hypergeom([-ii+1],[2],2%z/1ii)))]
,z=zmesh(0) . .zmesh (nmesh)
,title=cat("test by comparison with ",convert(ii,string),"-th exact w.f."));
print(%);
plots[logplot] ([abs(-1/z~2xdiff (z~2*diff (eigf (1) ,z),z)-2/z*eigf (1) -eigv*eigf (1))]
,z=zmesh (0) . .zmesh (nmesh)
,title=cat ("test by comparison with ",convert(ii,string),"-th exact w.f."));
print (%) ;
od:

Lines 1-2: Initialization of procedure, and the choice of parameters of finite element method.

O ~NO O WN -
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Line 4: Determination of f4(z) and fp(z)
Line 5: Choosing a method of calculating of the integrals to generate algebraic problem.
Lines 7 and 9: Firstly, the problem with Neumann boundary conditions is solved on a nonuniform grid Q, =

{1/32,1/16,1/8, ...,64, 128}, the effective potential should be set on on each of the sub-intervals.

Line 11: First five eigenfunctions and eigenvalues are calculated and written to the file *'wfunctsl.dat’ (see.

filenamew) .

1/8, ...

kind.

Line 13: First five eigenfunctions and eigenvalues are read from the file 'wfunctsl.dat’ .

Line 14: Sets a more dense irregular grid €, = {1/32,5/128,3/64,7/128,1/16,5/64,3/32,7/64,
,64,80,96,112,128}, where each subinterval 2, divided into 4 parts.

Line 16: Select the options for solving the problem by Newton’s method with boundary conditions of the third

Lines 19-25: Sets the asymptotic terms of the asymptotic expansions of the solution at z — 0 and z — +o0.
Lines 26-31: Precision of the first five eigenfunctions and eigenvalues of Newton’s method.
Lines 33-43: Displaying of graphs of errors €,,(z) and &, (z) of eigenfunctions for solving the problem by Newton’s

method.
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Example 05. The solution of the eigenvalue problem with a one-dimensional P&schl-Teller potential

The original problem for bound states is formulated on an infinite interval of z € (—oo, 400) for the Schrédinger
equation with the Pdschl-Teller potential

0
dz? = cosh(z)?

(D — Ep) ®pa(z) = ( - Em> ®,,(2) =0, (67)

with solutions are known in analytical form — eigenvalues E¢*?“* and the eigenfunctions of ®¢29¢(z) normalized
by the condition (15) at 2™ — —oco and z™% — +oo. For the chosen A = 11/2, there are five eigenvalues
Eeract — [-20.25, —12.25, —6.25, —2.25, —0.25)].

The eigenvalues problem (1) with boundary conditions (3) and the normalization condition (15) at fp(z) =
fa(z)=1, N=1and V(z) = V11(z2) = %@;} is solved. The program calculates five numerical eigenfunctions and

eigenvalues.
A.A. Gusev, et al, Lecture Notes in Computer Science 8660, pp. 138-154 (2014)

restart;read "kantbp4m.mwt"; 1
psubint:=3;kappamax:=2; 2
3

nmesh:=5; 4
for i from 1 to nmesh do ngrid(i):=4;vpot(i):=-99/4/cosh(z)"2;0d; 5
zmesh (0) :=-20;zmesh (1) :=-5;zmesh(2) :=-1; 6
zmesh (3) :=1;zmesh(4) :=5;zmesh(5) :=20; 7
8

numberf :=5;hermites(); 9
10

read "wfunctsl.dat": 11
ptfun(l) := (8/35)*sqrt(70)/(cosh(z)~(9/2)*sqrt(Pi)); 12
ptfun(2) := (8/5)*sqrt(10)*sinh(z)/(cosh(z)~(9/2)*sqrt(Pi)); 13
ptfun(3) := -(2/7)*sqrt(14)*(-8+7xcosh(z)~2)/(cosh(z)~(9/2)*sqrt (Pi)); 14
ptfun(4) := -(2/5)*sqrt(10)*sinh(z)*(-8+5*cosh(z)~2)/(cosh(z)~(9/2)*sqrt(Pi)); 15
ptfun(5) := (1/5)*sqrt(5)*(16-20*cosh(z) ~2+5xcosh(z)~4)/(cosh(z)~(9/2)*sqrt(Pi)); 16
17

for ii from 1 to 5 do 18
plots[logplot] ([abs(abs(eigf||ii)-abs(ptfun(ii)))],z=zmesh(0)..zmesh(nmesh) 19
,title=cat ("PT: test by comparison with ",convert(ii,string),"-th exact w.f.")); 20
print(%); 21
plots[logplot] ([abs(-diff(eigf||ii,z,z)+vpot(1l)*eigf||ii-Re(eigv||ii)*eigf||ii)] 22
,z=zmesh (0) . .zmesh (nmesh) 23
,title=cat("PT: test by substitution of ",convert(ii,string),"-th solution to ODE")); 24
print (%) ; 25
od: 26

Lines 1-2: Initialization of procedure, and the choice of parameters of finite element method.

Lines 4-7: The problem is solved in the quasi-uniform grid Q, = {—20(4) — 5(4) — 1(4)1(4)5(4)20}, where the
number in parentheses denotes the number of subinterval finite element, each of nmesh: = 5 subintervals effective
potential must be specified.

Line 9: The solution of the problem with Neumann boundary conditions. Calculation of first five eigenfunctions
and eigenvalues.

Lines 11-26: Display graphs errors ¢,,(z) and &,,(z) of eigenfunctions.
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Example 06. The solution of the eigenvalue problem with a one-dimensional potential Scarf (complex
Poschl-Teller potential)

The original problem for bound states is formulated on an infinite interval z € (—oo, +00) for the Schrédinger
equation with the Scarf potential
d? n Vi Vs sinh(z)
- 1
dz?  cosh(z)? cosh(z)?

(D — Ep) ®p(2) = ( - Em> B, (2) =0, (68)

solutions are known in analytical form: - eigenvalues E;7*“ and the eigenfunctions of ®57%“*(2) normalized by the
condition (16) at z™" — —oo and 2™ — 4o0.
The eigenvalue problem (1) with boundary conditions (3) and the normalization condition (16) at fp(z) =

fa(z) =1, N =1and V(z) = Vi1(2) = =0 + 22500 ¢ golved.

cosh(z)? cosh(z)?

A A. Gusev, et al, Lecture Notes in Computer Science 9301, pp. 182-197 (2015);

restart;Digits:=12; read '"kantbp4m.mwt"; 1
keypot:=1;psubint:=3;kappamax:=2; 2
3

nmesh:=3; 4
ngrid(1) :=4;ngrid(2) :=ngrid(1) ;ngrid(3) :=ngrid(1); 5
zmesh (0) :=-12;zmesh (1) :=-2;zmesh(2) :=2;zmesh (3) : =12; 6
V1:=2;V2:=3; 7
vpot (1) :=-V1/cosh(z) ~2-V2*I*sinh(z)/cosh(z)~2; 8
vpot (2) :=vpot (1) ;vpot (3) :=vpot (1) ; 9
10

numberf :=2;hermites(); 11
12

for n from 0 to numberf-1 do 13
En:=evalf (- (n+1/2-1/2x(sqrt (1/4+V1+V2)+sqrt (1/4+V1-V2)))"2); 14
od; 15
16

read "wfunctsl.dat": 17
for ii from 1 to numberf do 18
plots[logplot] ([abs(-diff (eigf||ii+I*eigfil|ii,z,z) 19
+(vpot(1)-eigv| |ii)*(eigf||ii+I*xeigfil|ii))],z=zmesh(0) . .zmesh(nmesh) 20
,title=cat("Scarf: test by substitution of ",convert(ii,string),"-th solution to ODE")); 21
od; 22

Lines 1-2: Initialization of procedure, and the choice of parameters of finite element method.

Lines 4-9: The problem is solved in the quasi-uniform grid Q, = {—12(4) — 2(4)2(4)12}, where the number in
brackets denotes the number of subinterval finite element, each of nmesh:=3 subintervals effective potential must be
specified.

Line 11: Calculating and writing to the file 'wfunctsl.dat’ (see. filenamew) two eigenfunctions and eigenvalues.

Lines 13-15: The analytical expressions for the eigenvalues F,, are given to verify the accuracy of approximate
eigenvalues E .

Lines 17-22: Display graphs of error of numerical solution &,,(z).
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Example 07. The solution of the scattering problem for one-dimensional P&schl-Teller potential

The original scattering problem is formulated on an infinite interval z € (—oo, +00) for the Schrédinger equation
with the P&schl-Teller potential

2 _ _
(D—-E)®(z) = (—% + %@i) - E) ®(z) =0, (69)

and has solutions known in analytical form: eigenfunctions ®**“*(z), and the transmission T}, reflection and R,.
Because the effective potential symmetric with respect to z = 0 solution of the problem can be constructed
from even and odd solutions of the original scattering problems, but on a semiaxis z € (0, 4+00), with the Neumann
or the Dirichlet boundary conditions at z = 0, respectively.
The boundary value problem (1) with boundary conditions (3) which are determined from the asymptotic

solution (10), (11), of scattering problem fg(z) = fa(z) =1, N =1and V(z) = V11(2) = #&;} is solved.
restart;Digits:=16; read "kantbp4m.mwt"; 1
keypot:=2;psubint:=2;kappamax:=3; 2
3
lambda:=11/2; 4
#lambda:=1/2+7/sqrt (2) *I; 5
vpot:=-expand (lambda* (lambda-1))/cosh(z)~2; 6
7
Eh:=7.0; 8
zmin:=0;zmax:=8;ngrid:=12;DirL:=1; 9
hermites() ;Rrll:=RRLscat; 10
11
DirL:=2; hermites() ;Rrl2:=RRLscat; 12
13
zmin:=-8;zmax:=8;DirL:=0;ngrid:=24; hermites(); 14
15
"tests"; 16
"|R<-|~2+]|T<-|~2-1"=abs(TRLscat[1,1]) ~2+abs(RRLscat[1,1])~2-1; 17
"|R->|"2+|T->|~2-1"=abs(TLRscat[1,1]) ~2+abs(RLRscat[1,1])~2-1; 18
"|Reven|~2-1"=abs(Rrl1[1,1]1)"2-1; "|Rodd|~2-1"=abs(Rrl2[1,1])"2-1; 19
"( Reven+Rodd)/2-R<-"=(Rrl1[1,1]+Rrl12[1,1])/2-RRLscatl[1,1]; 20
"(-Reven+Rodd) /2-T<-"=(-Rrl1[1,1]+Rr12[1,1])/2-TRLscat[1,1]; 21
"(Reven+Rodd) /2-T->"=(Rr11[1,1]+Rr12[1,1])/2-RLRscat[1,1]; 22
"(-Reven+Rodd) /2-T->"=(-Rrl11[1,1]1+Rr12[1,1]1)/2-TLRscat[1,1]; 23
24
k:=sqrt (Eh) :p:=evalf (sinh(Pixk)/sin(Pi*lambda)): 25
"|Rexact|~2-|R<-|"2"=1/(1+p~2) -abs (RRLscat[1,1])~2; 26
"|Texact|~2-|T<-|~2"=p~2/(1+p~2) -abs(TRLscat[1,1])"2; 27
28
read "wfunctsl.dat": 29
plots[logplot] ([abs(-diff (eigfRLr(1,1)+I*eigfRLi(1,1),z,2) 30
+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))],2z=0..zmax 31
,title=cat ("PT: test by substitution of odd solution to ODE")); 32
33
read "wfuncts2.dat": 34
plots[logplot] ([abs(-diff (eigfRLr(1,1)+I*eigfRLi(1,1),z,2) 35
+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))],2=0. .zmax 36
,title=cat ("PT: test by substitution of even solution to 0DE")); 37
38
read "wfuncts3.dat": 39
plots[logplot] ([abs(-diff (eigfRLr(1,1)+I*eigfRLi(1,1),2,2) 40
+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))],z=2zmin. .zmax 41
,title=cat ("PT: test by substitution of RL solution to ODE")); 42

plots[logplot] ([abs(-diff (eigfLRr(1,1)+I*eigfLRi(1,1),z,2) 43
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+(vpot-Eh)*(eigfLRr(1,1)+I*eigfLRi(1,1)))],z=zmin. .zmax 44
,title=cat ("PT: test by substitution of LR solution to ODE")); 45

Lines 1-2: Initialization of procedure, and the choice of parameters of finite element method.

Lines 4-6: The effective potential of the problem.

Line 8: Sets the fixed value of the energy for the scattering problem

Lines 9-10: solving boundary value problems (1) on a uniform grid with Dirichlet boundary conditions (2) at
z = 0 and the third kind (4) at z = 2™ with asymptotic solutions of the scattering problem on the semiaxis (9),
(12).

Line 12: The decision of the boundary problem (1) on a uniform grid with Neumann boundary conditions (3)
at z = 0 and the third kind (4) at z = 2"** with asymptotic solutions of the scattering problem on the semiaxis (9),
(12).

Line 14: The decision of the boundary problem (1) on a uniform grid with the boundary of the Third Kind (4)
min and z = 2™ with asymptotic solutions scattering on the axis (7), (12).

Lines 16-27: Checking errors (~ 0) of implementation relations for the amplitudes of the reflection and
transmission |R |2 + [T-]? =1 = 0, |R5> + [T5> =1 = 0, |Reven]* =1 = 0, |Roaal* — 1 = 0, Communi-
cation between the amplitudes of reflection on the half and amplitudes of the reflection and transmission axis
(Rcvcn+Rodd)/2_R<ﬁ = 0; (_Rcvcn+Rodd)/2_T<— = 0; (Rcvcn+Rodd)/2_R~> = 0; (_Rcvcn+Rodd)/2_T~> = 07 and
comparing the reflection and transmission coefficients with known analytical value |R%°2 = | RS*a°t|2 = 1 /(1 + p?),
(Teoct]2 = T2 = p2/(1 4 p?), p = sinh(rv/E)/ sin(r).

Lines 29-45: displaying graphs of error of numerical solution &,,(z).

at 2
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Example 08. The solution of the scattering problem for one-dimensional Scarf potential

The original scattering problem is formulated on an infinite interval z € (—oo, +00) for the Schrédinger equation
with the Scarf potential
d? | V5 sinh(z)
D-E)®(z)=|——
( ) 2(2) ( dz? + cosh(z)? T cosh(z)?

- E) d(z) =0, (70)

and has solutions known in analytical form: eigenfunctions ®**“*(z), and the transmission T}, reflection and R,.

The boundary value problem (1) with boundary conditions (3) which are determined from the asymptotic

solution (10), (11), of scattering problem at f5(z) = fa(z) =1, N =1, V(2) = V11(z) = COSXEZV —i—z‘ﬁ):’h“(};()z) is solved.

restart;Digits:=12;read "kantbp4m.mwt"; 1
keypot:=2; psubint:=2; kappamax:=3; 2

3
V1:=2;V2:=3; 4
vpot:=V1/cosh(z)~2+V2xI*sinh(z)/cosh(z)"2; 5

6
Eh:=2.0; 7
zmin:=-12;zmax:=12;ngrid:=60; 8
hermites(); 9

10
"tests"; 11
k:=sqrt(Eh); 12
gp:=sqrt(Vi+V2-1/4): 13
gm:=sqrt(V1i-V2-1/4): 14
TK:=evalf ((sinh(2*Pix*k))~2 15

/ ((sinh (2%Pixk)) ~2+2*cosh(2*Pixk)*cosh(Pixgp)*cosh(Pi*gm)+cosh(Pi*gp) ~2+cosh(Pixgm)~2)); 16
RL:=evalf ((2*cosh(Pi*gp)*cosh(Pi*gm)+cosh(Pi*gp) ~2%exp (-2*¥Pixk)+cosh(Pi*gm) ~2*exp (2*Pixk)) 17
/ ((sinh (2*Pixk))~2+2*cosh(2+Pixk)*cosh(Pi*gp)*cosh(Pixgm)+cosh(Pi*gp) ~2+cosh(Pi*gm)~2)); 18
RR:=evalf ((2*cosh(Pixgp)*cosh(Pi*gm)+cosh(Pi*gp) ~2*exp (2*Pi*k)+cosh(Pi*gm) ~2*exp (-2*Pixk)) 19
/ ((sinh (2%Pixk)) ~2+2*cosh(2*Pixk)*cosh(Pixgp)*cosh(Pi*gm)+cosh(Pi*gp) ~2+cosh(Pixgm)~2)); 20

"|Texact|~2-|T->|~2"=TK-abs(TLRscat[1,1])"2; 21
"|Texact|~2-|T<-|~2"=TK-abs(TRLscat[1,1])"2; 22
"|Rexact|~2-|R->|"2"=RL-abs(RLRscat[1,1])"2; 23
"|Rexact|~2-|R<-|~2"=RR-abs(RRLscat[1,1])"2; 24
25

read "wfunctsl.dat": 26
plots[logplot] ([abs(-diff (eigfRLr(1,1)+I*eigfRLi(1,1),z,2) 27
+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))],z=2zmin. .zmax 28
,title=cat("Scarf: test by substitution of RL solution to ODE")); 29
plots[logplot] ([abs(-diff (eigfLRr(1,1)+I*eigfLRi(1,1),z,2) 30
+(vpot-Eh)*(eigfLRr(1,1)+I*eigfLRi(1,1)))],z=2zmin. .zmax 31
,title=cat("Scarf: test by substitution of LR solution to ODE")); 32

Lines 1-2: - Initialization procedures, and the choice of parameters of finite element method.

Lines 4-5: The effective potential of the problem.

Line 7: Setting a fixed value of the energy for the scattering problem

Lines 8-9: The decision of the boundary problem (1) on a uniform grid with the boundary of the third kind
(4) at 2™ and z = z ™% with asymptotic solutions of the scattering problem for axis (7), (12).

Lines 11-24: A comparison of the reflection coefficients and passing to known analytical values |RS¥act
|Rexact|2 |Texact|2 — |Texact|2

— y |4 — .

Lines 26-32: displaying graphs of error of numerical solution &,,(z).

%
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Example 09. The solution of the eigenvalue problem for square well potential

The original problem for bound states is formulated on an infinite interval z € (—oo, +00) for the Schrédinger
equation with the piecewise constant potential
d2

(D—E,) Pn(z) = (—@ +V(z)— Em> D,,(2) =0, V(z)={Vo,|z| < a;0,otherwise},

solutions are known in analytical form: — eigenvalues E<*?“* and the eigenfunctions of ®¢*%“(z) normalized by the
condition (16) at 2™ — —oo and 2™ — +o00.

The eigenvalue problem (1) with boundary conditions (3) and the normalization condition (16) at fg(z) =
fa(z) =1, N =1 with the above V(z) is solved.

restart;read '"kantbp4m.mwt"; 1
psubint:=6; kappamax:=1; 2
3

V:=-50;a:=1; 4
nmesh:=3; vpot(1):=0;vpot(2):=V;vpot(3):=0; 5
ngrid(1) :=10;ngrid(2) :=20;ngrid(3) :=10; 6
zmesh (0) :=-5;zmesh(1) :=-a;zmesh(2) :=a;zmesh(3) :=5; 7
8

numberf :=5;hermites(); 9
10

"test"; 11
eq3:=tan(sqrt(E-V)*a)=sqrt (-E) /sqrt (E-V): 12
eq3a:=tan(sqrt (E-V)*a)=-sqrt(E-V)/sqrt(-E): 13
ExactEigenvalues=sort({seq(fsolve(eq3,E=V+n~2/a~2) ,n=1..ceil (evalf (a*sqrt(-V)))) 14
,seq(fsolve(eq3a,E=V+n~2/a~2) ,n=1..ceil(evalf (a*sqrt(-V))))}); 15

Lines 1-2: Initialization procedures, and the choice of parameters of finite element method.

Lines 4-7: The problem is solved in the quasi-uniform grid ©, = {—5(10) — a(20)a(10)5}, where the number in
brackets indicates the number of finite elements each of nmesh: = 3 subintervals. It is important to point potential
breaks coincide with nodes zmesh(*).

Line 9: Calculation and write to the file 'wfunctsl.dat’ (see. filenamew) five eigenfunctions and eigenvalues.

Lines 11-15: the exact eigenvalues of the problem is the solution of algebraic equations ’eq3’ and ’eq3a’ for the
depth of the potential well V' and a width 2a.
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Example 10. The solution of the eigenvalue problem for the system of equations with square well potentials

The original problem for bound states is formulated on an infinite interval z € (—oo, +00) for the system of
equations

_% +Vi1(2)®1(2) + Via(2)P2(2) + ... + Vin(2)®n(2) — E®1(2) =0,
_% + Vo1 (2)®1(2) + Vaa(2)P2(2) + ... + Van (2)@n(2) — E®2(2) =0,
_% + Vn1(2)®1(2) + Viva(2)Pa(2) + ... + Vien (2)@n(2) — E®n(2) = 0,

with the matrix of piecewise constant potentials
Vij(2) = Vji(2) = {Vijir, 2 < 213 Vijia, 2 < 295 5 Viji—1, 2 < 2i—1; Vijik, 2 > 21}

The set of eigenvalues Ef” < ES* < ... < ES¥ and the eigenfunctions of ®{"(z), ®5"(2), ... ,®;. (2) normalized by the
condition (15) at 2™ — —oco and 2™3 — +o0, can be calculated at fg(z) = fa(z) = 1, N = 3 using a representation
of their eigenfunctions as a linear combination of trigonometric and exponential functions depending on the spectral
parameter F, with unknown coefficients. However, the need to find the roots of nonlinear equations, which is the
required ’exact’ eigenvalues of the original problem.

Since the eigenfunctions of the discrete spectrum decay exponentially as z — oo, then the original problem
is reduced to a boundary value problem (1) with the above V;;(z) = 0 and @Q;;(2) = 0 for bound states in a finite
interval with Dirichlet conditions at the boundary points 2™ < 21 and 2™2% > z,_1, the interval and the normalization
condition (15) that is solved numerically by finite element method using KANTBP 4M .

restart;read "kantbp4m.mwt'";Digits:=12; 1
egs:=3;psubint:=8;kappamax:=1; 2
keypot:=1;DirL:=1;DirR:=1; 3

4
nmesh:=3; ngrid(1):=10;ngrid(2):=10;ngrid(3) :=10; 5
zmesh (0) :=-12;zmesh (1) :=-2;zmesh(2) :=2;zmesh (3) : =12; 6

7
vpot(1,1,1):=0;vpot(2,2,1):=5;vpot(3,3,1):=10; 8
vpot(1,2,1):=0;vpot(1,3,1):=0;vpot(2,3,1):=0; 9
vpot(2,1,1):=0;vpot(3,1,1) :=0;vpot(3,2,1):=0; 10

11
vpot(1,1,2):=-5;vpot(2,2,2):=0;vpot(3,3,2):=10; 12
vpot(1,2,2):=4;vpot(1,3,2):=4;vpot(2,3,2) :=4; 13
vpot(2,1,2):=4;vpot(3,1,2) :=4;vpot(3,2,2) :=4; 14

15
vpot(1,1,3):=0;vpot(2,2,3):=0;vpot(3,3,3):=0; 16
vpot(1,2,3):=0;vpot(1,3,3):=0;vpot(2,3,3):=0; 17
vpot(2,1,3):=0;vpot(3,1,3):=0;vpot(3,2,3):=0; 18

19
numberf:=5; hermites(); 20

21
read "examplelOtest.txt"; 22

Lines 1-3: The initialization of procedure, the choice of options for solving the problem on their eigenvalues for
the three equations with Dirichlet boundary conditions and the choice of parameters of finite element method.

Lines 4-5: The problem is solved in the quasi-uniform grid Q. = {—6(10) — 2(10)2(10)6}, where the number
in brackets denotes the number of subinterval finite element, each of nmesh:=3 sub-intervals must be given effective
potentials. It is important to point potential breaks coincide with nodes zmesh(*).

Lines 8-18: Setting the effective potentials.

Line 20: Calculation, display and recording in a file 'wfuncts1.dat’ (see filenamew) five eigenfunctions ®}(z),

,<I>§(z) and its eigenvalues of E} < E} < ... < Eb.
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Line 22: File "examplelOtest.txt" contains a helper program for examplel0test for systems of nonlinear equa-
tions with thirteen trigonometric and exponential functions, depending on the desired spectral parameter, and 12
linear with respect to the unknown parameters the expansion coefficients of the desired eigenvector - function of the
original problem on their eigenvalues on the axis. This program is designed for the calculation of the spectrum only
in a special case, eqs=3 and nmesh=3 and vpot(i,j,1)=vpot(i,j,3)=0 for i#j and may be at be finalized by the user.

The first step to using the built-in procedures dsolve sought the general solution of the ODE with constant
coefficients vpot(i,j,2) which is valid on the interval z €[zmesh(1),zmesh(2)], the derivative of the solution is calculated
also.

The second step uses the asymptotic solutions proportional A||(i)*exp(sqrt(-Eh+vpot(i,i,1))*xmin) and
AJ|(i4-3)*exp(-sqrt (-Eh+vpot(i,i,3)) *xmax), just under z <zmesh(1) and z >zmesh(2) and their derivatives of z.

In the third step calculates the difference between the solutions obtained in the first step and asymptotic
solutions in the third step, and the difference between the derivatives thereof, whereupon the difference values with
the substitution z =zmesh(1) or z =zmesh(2) equal to zero.

After the third step, we have a system of nonlinear equations with thirteen trigonometric and exponential
functions, depending on the desired spectral parameter F, and 12 linear with respect to the unknown parameters
(A]|(1),...,A]|(6) of the asymptotic solutions and _Cl||(1),...,_C]|(6) from the general solution of the ODE). In order
to calculate the non-trivial solutions, in the system of equations adding Equation A||(1)?+,...,+A[|(6)> — 1 = 0.. The
result is a rather complicated system of nonlinear equations.

In the fourth step, the system of nonlinear equations for thirteen unknowns 13 (the spectral parameter E, 12
and the parameters (Al|(1),...,A[|(6), _C]|(1),...,_C]|(6)) solved numerically using the built-in procedure fsolve. As
compared values desired spectral parameter F, displays only the value of the desired spectral parameter . What
would be an iterative process for solving nonlinear problems converge to different values of the spectral parameter
E, the initial conditions for the unknown coefficients in a system of nonlinear equations are randomly generated by a
built-in procedure rand, with the procedure for solving fsolve run 2*numberf times.

During testing, it became clear that to compute eigenvalues E{* < E5* < ... < E¢¥ which are displayed on the
screen for comparison with the eigenvalues of Ef < E} < ... < E!) calculated by finite element method, the number
of repetitions 2*numberf not enough ie too often the solution converges to one of the eigenvalues. In this case, the
command « read "examplelOtest.txt"; » to be repeated again. As a reminder of this output displays the following
warning:

"Eigenvalues given by solution of set of exact equations:"; "if not all, please repeat command « read" "exam-
plel0test.txt" "; »";

Attempts should be discontinued if the user sees all the eigenvalues calculated by the finite element method, or
the user will bother to run this command.
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Example 11. The solution of the multichannel scattering problem for the system of equations with square
well potentials

The original multichannel scattering problem at fixed E is formulated on an infinite interval z € (—o0, +00)
for the system of equations

_dzj;(z) +V11(2)®1(2) + Vi2(2)P2(2) + ... + Vin(2)®n(2) — E®1(2) =0,
_% + Vo1(2)®1(2) + Voo (2)P2(2) + ... + Van (2)Pn(2) — E®o(2) = 0,
_% + Vn1(2)®1(2) + Vivz (2)@2(2) + ... + Vyn (2)@n(2) — E®n(2) = 0,

with the matrix of piecewise constant potentials
Vii(2) = Vji(2) = {Viji1, 2 < 215 Vijia, 2 < 205 . s Vigie—1, 2 < 2Zi—15 Vijiks 2 > 2i—1},

solutions of them are calculated using a representation of eigenfunctions as a linear combination of trigonometric and
exponential functions with unknown coefficients.

The boundary value problem (1) with the above V;;(z) = 0 and @Q;;(z) = 0 with boundary conditions (4) which
are determined from the asymptotic solution (10), (11), of multichannel scattering problem at fg(z) = fa(z) = 1,
N =3.

restart;read '"kantbp4m.mwt'";Digits:=12; 1
eqs:=3;psubint:=8;kappamax:=1; 2
keypot:=2;DirL:=0;DirR:=0; 3

4
nmesh:=3; 5
ngrid(1):=10;ngrid(2) :=10;ngrid(3) :=10; 6
zmesh (0) :=-6;zmesh(1) :=-2;zmesh(2) :=2;zmesh(3) :=6; 7

8
vpot(1,1,1):=0;vpot(2,2,1) :=5;vpot(3,3,1):=10; 9
vpot(1,2,1):=0;vpot(1,3,1):=0;vpot(2,3,1):=0; 10
vpot(2,1,1):=0;vpot(3,1,1) :=0;vpot(3,2,1):=0; 11

12
vpot(1,1,2):=-5;vpot(2,2,2):=0;vpot(3,3,2):=10; 13
vpot(1,2,2):=4;vpot(1,3,2):=4;vpot(2,3,2) :=4; 14
vpot(2,1,2):=4;vpot(3,1,2) :=4;vpot(3,2,2) :=4; 15

16
vpot(1,1,3):=0;vpot(2,2,3):=0;vpot(3,3,3):=0; 17
vpot(1,2,3):=0;vpot(1,3,3):=0;vpot(2,3,3):=0; 18
vpot(2,1,3):=0;vpot(3,1,3):=0;vpot(3,2,3):=0; 19

20
Eh:=3.8; 21
hermites(); 22

23
"tests:"; 24
"S-S~T"=Smatr-Transpose(Smatr) ; 25
"S.S~\dag-I"=Smatr.HermitianTranspose(Smatr)-Matrix (NOpenR+NOpenL,shape=identity); 26

27
read "examplelltest.txt"; 28

Lines 1-3: The initialization of procedure, the choice of options for solving of the scattering problem for 3
equations on the axis, and the choice of parameters of finite element method.

Lines 4-5: The problem is solved in the quasi-uniform grid 2, = {—6(10) — 2(10)2(10)6}, where the number in
brackets denotes the number of subinterval finite element, each of nmesh:—3 subintervals effective potentials must be
specified. It is important to point potential breaks coincide with nodes zmesh(*).



38

Lines 9-19: Setting the effective potentials.

Line 21: Sets the fixed value of the energy for the scattering problem.

Line 22: The solution of the boundary problem (1) in the quasi-uniform grid with the boundary of the third
kind (4) at 2™ and z = 2™® with asymptotic solutions of the scattering problem for axis (7), (12). Displays the
S-matrix and its eigenfunctions.

Lines 24-26: Checking unitary and the symmetry of the S-matrix.

Line 28: The calculation of the S-matrix elements using a representation of eigenfunctions as a linear com-
bination of trigonometric and exponential functions, and their comparison with the output to the screen with the
previously counted using KANTBP 4M, calculated by FEM.
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Example 12. The solution of the eigenvalue problem for the system of equations obtained by Kantorovich
method for the Helmholtz equation in a rectangular region

We consider approximate solution of boundary value problem for the Helmholtz equation in a square with a
side equal to 7 in new coordinates z = (r + y)/v/2, 2/ = (z — y)/+/2 which are diagonals of square, with Dirichlet
conditions on boundary of the region. The solution ¥(z,z’) is sought in the framework of Kantorovich expansions

T (2, 2) = Ejvzl <I>j(z;z’)\I/§-m) (2) over basis functions ®; (z'; z), z’fnax(z) =7/V2— |z, 2™(2) = —7/V2 + |7],
corresponding to eigenvalues ¢; (z) at each value of parameter z € (z™2, z™ax):

V3 sin ( mi(2 — 2™ (2)) )

S oy i)
\/z’max(z) — 2™ ()

Substitution of expansion to Helmholtz equation and averaging over basis ®; (2’; z) reduces to system of ODE

w242
€ (2)= , . , P (¢2) =
O = g T

(71)

w.r.t. z € (zMin, zmax);
)" (2) (m) (m) 425" (2) | dQua(2)5™(2) (m)
——— 5 +Vu(2)®y 7 (2) + Va2 (2) 23 (2) + Qu2(2) + +... = En®(2) =0,
dz dz dz
425 (2 m d\™ (2) Qa1 (2)d\™ (2 m m
—272()4—‘/21(2)‘1’5 )(Z)+Q21(Z) 1 )—f— @ ()1 )—i-Vgg(z)@é )(2)+...—Em<1>é )(2)20,
dz dz dz
PG v ()0(6) + (o) S C)  1mEINT)
dz? NiEP N1 dz dz
m dol™ (» d )™ (2 m
+ Viva(2)®5™ (2) + Qna(2) de( ), QNQ(d)Z 2 () +o = B, (z) =0, (72)
where effective potentials Q;;(z) and Vj;(z) are given by analytic expressions
4ij 1 |2] 1645 (i + j2) 1
ij(z) = —= - —, Vij(z) = —— - ;
Qij(2) /a2 i(2) @ =722 (nv2—2|2|)2
47242 1
Vis(2) = mi+3 j#i, j—imod?2=0.

3 (V22

This system is divided into two subsystems of which are determined by the even (with odd indices j and ¢) and odd
solutions (with even indices j and ). The program calculates approximate even and odd eigenvalues E,, that may
be compared with known one E¢*%¢t =2 5 5 8 10, 10, ... — the sum of squares of natural numbers, and one can see
that E,, — E¥ect ~ N 73,

The code solves the eigenvalues problem for the system of equations (72) with Dirichlet conditions (2) at
2™ = —1/y/2 and 2™ = 1/4/2 and normalization conditions (15).

restart;read '"kantbp4m.mwt"; 1
eqs:=6; 2
psubint:=7; kappamax:=1; 3
nmesh2:=2;nmesh:=2*nmesh2; 4
Qap:=1; 5

6
DirL:=1;DirR:=1; 7

8
for 10 from 1 to nmesh do ngrid(i0):=4;o0d; 9
zmesh (0) :=-Pi/sqrt(2)+1/20; 10
zmesh (1) :=zmesh (0)*7/8; 11
zmesh(2) :=0; 12
zmesh(3) :=-zmesh (1) ; 13
zmesh (4) :=-zmesh(0) ; 14
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for par from O to 1 do 16
for nnl from 1 to egs do 17
for nn2 from 1 to egs do 18

nl:=2*nnl-1+par; 19
n2:=2*nn2-1+par; 20
if (n1=n2) 21
then 22
for i0 from 1 to nmesh2 do 23
vpot(nnl,nnl,nmesh2+i0) :=(1/3)*(4*xnl1~2%Pi~2+3)/(Pi*sqrt (2)-2%z)"2; 24
vpot(nnl,nn1,i0):=(1/3)*(4*n1~2*Pi~2+3)/(Pi*sqrt (2)+2%z)"2; 25
gpot(nni,nn1,i0) :=0;qpot(nnl,nnl,nmesh2+i0) :=0; 26

od; 27
else 28
for i0 from 1 to nmesh2 do 29
vpot (nnl,nn2,nmesh2+i0) :=(16* (n1~2+n2"2)) *n1*n2/((n1-n2) ~2* (n1+n2) ~2* (Pi*sqrt (2) -2*z)~2) ;30
vpot(nnl,nn2, i0) :=(16*(n1~2+n2~2) )*n1*n2/((n1-n2) ~2* (n1+n2) ~2*% (Pi*sqrt (2) +2*z)~2) ;31
gpot(nnl,nn2,nmesh2+i0) := 4*nl1*n2/((n1+n2)*(n1-n2)*(Pixsqrt (2)-2%z)) ; 32
gpot (nni,nn2, i0) :=-4*n1*n2/((n1+n2) * (n1-n2) * (Pi*sqrt (2)+2*z)) ; 33

od; 34
fi; 35
od;od: 36
numberf :=5; 37
hermites(); 38
od; 39

Lines 1-4: The initialization of procedure and the choice of the number of equations in the system and the
parameters of the finite element method.

Line 5: Selecting the availability of effective potentials @;; in the ODEs.

Line 7: Setting the Dirichlet boundary conditions.

Lines 9-14: Setting the quasi-uniform grid with four finite elements on each of the sub-intervals. Since effective
potentials are interrupted at z = 0, it is important that one of zmesh (*) was zero.

Lines 16-39: The solution of the problem at first for the even, and then to the odd sub-systems, which are
written to files 'wfunctsl.dat’ and ’wfuncts2.dat’ (see. filenamew). It includes job effective potentials (lines 17-36)
and the calculation of the five eigenfunctions and eigenvalues (lines 37-38).
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Example 13. The solution of the multichannel scattering problem of tunneling of two identical particles with
the oscillator interaction through the potential barrier

Code solves the multichannel scattering problem on an axis for a system of equations (1) at @Q;;(z) = 0,
fa(z) = fe(z) =1 and Vj;(2), given in analytical form, with asymptotic boundary conditions (10)—(13), obtained by
Galerkin method for the problem of tunneling of two identical particles with coordinates x1 u x5 the harmonic oscilla-
tor interaction Vos.(z1 — x2) = (z1 —22)?/2 through the Gaussian potential barrier Vy(zs) = a/(0v/27) exp(—22/0?),
s = 1,2, 0 = 0.1, a=alpha (in this example alpha=>5). Because the effective potentials V;;(z) are symmetric with
respect to z = 0: V;(z) = fj;: dz®9*¢(z)(Vy((z — 2)/vV2) + V(2 + 33)/\/5))@;’“(:1:), where ©9°¢(x) are even eigen-
functions of harmonic oscillator with potentialV,s.(z) = 2? and eigenvalues E*¢ =1,5,9,13,17,... (which determine
threshold energies E), then in the example under consideration the program calculates solutions ®Peyen and ®,qq4 of
the multichannel scattering problems, respectively, on a semiaxis z € (0,400), with the Neumann or the Dirichlet
boundary conditions at z = 0. In the example under consideration the checking the unitarity and symmetry of the
S-matrix and the relations between the matrices of reflection amplitudes on the semiaxis and the matrices of reflection
and transmission amplitudes on the axis, (Reven + Rodad)/2 — R =0, (—Reven + Rodd)/2 — T« = 0 is performed.

The problem was formulated in: A.A. Gusev et al, Resonant tunneling of the few bound particles through
repulsive barriers, Physics of Atomic Nuclei 77, pp. 389-413 (2014).

restart;read '"kantbp4m.mwt";Digits:=8; 1
eqs:=5;psubint:=3;kappamax:=2;keypot:=2; 2
3

alpha:=5; 4
vpot(l, 1) := (10/51)*2~(1/2)*51~(1/2)*exp(-(50/51)*z~2)/Pi~(1/2); 5
vpot(2, 1) := 6
- 7
vpot(5, 5) = ...; 8
9

for i from 1 to egs do 10
for il from i+l to egs do 11
vpot(il,i) :=alpha*vpot(il,i);vpot(i,il) :=vpot(il,i); 12

od; 13
vpot(i,i) :=alpha*vpot(i,i)+[1,5,9,13,17]1[i]; 14
od; 15
16

Eh:=5.45; 17
zmin:=-6;zmax:=6;ngrid:=40; 18
DirL:=0;DirR:=0; 19
hermites() ;NOpen:=NOpenL+NOpenR; 20
RLRscatO:=RLRscat; TLRscatO:=TLRscat;RRLscatO:=RRLscat;TRLscatO:=TRLscat;SmatrO:=Smatr; 21
22

DirL:=1;zmin:=0;ngrid:=20; 23
hermites() ;RRLscatl:=RRLscat;Smatrl:=Smatr; 24
25

DirL:=2; 26
hermites() ;RRLscat2:=RRLscat ;Smatr2:=Smatr; 27
28

"tests;"; 29
"S.S5~\dag-I"=HermitianTranspose (Smatr0) .Smatr0O-Matrix (NOpen, shape=identity) ; 30
"even: S.S"\dag-I"=HermitianTranspose(Smatrl).Smatrl-Matrix(NOpenR,shape=identity); 31
"odd: S.S~\dag-I"=HermitianTranspose (Smatr2).Smatr2-Matrix(NOpenR,shape=identity); 32
"S-S~T"=Transpose (Smatr0)-Smatr0; 33
"even: S-S~T"=Transpose(Smatrl)-Smatrl; 34
"odd: S-S~T"=Transpose(Smatr2)-Smatr2; 35
"( Revent+Rodd)/2-R<-"=( RRLscatl1+RRLscat2)/2-RRLscat0; 36
"(-Reven+Rodd) /2-T<-"=(-RRLscat1+RRLscat2)/2-TRLscatO0; 37

Lines 1-2: - The initialization of procedure, the choice of options for solving the scattering problem for 5
equations and parameters of the finite element method.
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Lines 4-15: Setting the effective potentials V;(z) (see file ’examplel3.txt’)

Line 17: Sets the fixed value of the energy for the scattering problem

Lines 18-21: The solution of the boundary problem (1) on a uniform grid with the boundary of the third kind
(4) at 2™ and z = 2™ with asymptotic solutions (7), (12)of the scattering problem on an axis. Assigning variables
RLRscat0, TLRscat0, RRLscat0, TRLscat0, Smatr0, the matrices of reflection and transmission amplitudes and the
S - matrix.

Lines 23-24: The decision of the boundary problem (1) on a uniform grid with Dirichlet boundary conditions
(2) at z = 0 and the third kind (4) at z = 2™ ¢ asymptotic solutions (9), (12) of the scattering problem on a
semiaxis. Assigning variables RRLscatl, Smatrl, the matrix of reflection amplitudes and S - matrix.

Lines 26-27: The decision of the boundary problem (1) on a uniform grid with Neumann boundary conditions
(3) at z = 0 and the third kind (4) at z = 2™ ¢ asymptotic solutions (9), (12) of the scattering problem on a
semiaxis. Assigning variables RRLscat2, Smatr2, the matrix of reflection amplitudes and S - matrix.

Lines 29-37: Checking unitarity and the symmetry of the S-matrix and the relations between the matrices of
reflection amplitudes on the semiaxis and the matrices ofreflection and transmission amplitudes on the axis: (Reyen +
:R«odd)/2 - R<— - 07 (_Rcvcn + :R«odd)/2 - T<— =0.
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Example 14. Calculation of metastable states (as the initial approximation the resonance transmission
solution of the scattering problem is taken)

The example of calculation of metastable states for two barriers ( Poschl-Teller or Scarf potentials), located at
a distance 2d

d? Vi Vs, sinh(z—d) Vi V, sinh(z+d)
D E,)m(z) = (- -
( ) @ () ( dz? + cosh(z—d)? e cosh(z—d)? +cosh(z—|—d)2 T cosh(z+d)?

Em) ®,(2) = 0. (73)

As the initial approximation to Newtonian scheme the resonance transmission solution of the scattering problem
localized between barriers is taken.

See for details:
A A. Gusev, et al, Lecture Notes in Computer Science 9301, pp. 182-197 (2015)

restart;Digits:=12;read "kantbp4m.mwt"; 1
keypot:=2;psubint:=6;kappamax:=1; 2
zmin:=-20;zmax:=20;ngrid:=80;DirL:=0;DirR:=0; 3
4

#choose one of four 5
#V1:=2;V2:=1;d12:=7/2;Eh:=0.360240; 6
V1:=2;V2:=1;d12:=7/2;Eh:=1.036324; 7
#V1:=2;V2:=0;d12:=7/2;Eh:=0.310918; 8
#V1:=2;V2:=0;d12:=7/2;Eh:=1.025359; 9
vpot:=V1/cosh(z-d12) ~2+V2*I*sinh(z-d12)/cosh(z-d12) "2 10
+V1/cosh(z+d12) ~2+V2*I*sinh(z+d12) /cosh(z+d12) ~2; 11

12

hermites(); 13
abs(TLRscat[1,1])"2; 14
15

read "wfunctsl.dat": 16
keypot:=3; 17
Phink:=eigfRLr(1,1)+IxeigfRLi(1,1): 18
DirL:=3;DirR:=3; 19
RBoundL:=-sqrt (-EEh) ;RBoundR:=sqrt (-EEh) ; 20
normtp:=0; 21
itermax:=20; 22
hermites(); 23

Lines 1-14 Calculation of initial approximation.
Lines 16-23 Calculation of metastable states.

Lines 1-3: Initialization of procedure selection of options for solving the problem of scattering on the axis with
the boundary conditions of the third kind, and the choice of parameters of finite element method and a uniform grid.

Lines 5-11: Setting the effective potential and its eigenvalues (It is also the initial approximation for the
eigenvalue in the Newtonian scheme). The eigenvalues of the corresponding resonant transmission selected in advance.
A choice of 4 sets of parameters.

Lines 13-14: The solution of the scattering problem on the axis and check that there is a complete transmission
(resonance transparency).

Line 16: Read file with the solution of the scattering problem.

Line 17: Select the options to clarify solution by Newton’s method.

Frame 18: The initial approximation for eigenfunctions.

Lines 19-20: Setting the boundary conditions of the third kind.

Lines 21-23: Selecting the type of the normalization, the maximum number of iterations and the solution of
the problem by Newton’s method.
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Example 15. Calculation of metastable states (as the initial approximation the solution of the eigenvalue
problem is taken)

The example of calculation of metastable states for two barriers ( Poschl-Teller or Scarf potentials), located at
a distance 2d
_d_2 n Wi _HVQ sinh(z—d) n | sz sinh(z+d)
dz? = cosh(z—d)?  cosh(z—d)? = cosh(z+d)? cosh(z+d)?

(D—E,) ®n(z) = ( Em) D,,(2) =0. (74)
As the initial approximation for the Newtonian scheme the resonance solution of the eigenvalue problem localized
between barriers is taken.

See for details:
A A. Gusev, et al, Lecture Notes in Computer Science 9301, pp. 182-197 (2015)

restart;Digits:=12; 1
read '"kantbp4m.mwt"; 2
keypot:=1;psubint:=6;kappamax:=1; 3
4

zmin:=-20;zmax:=20;ngrid:=20;numberf:=13; 5
DirL:=3;DirR:=3; 6
RBoundL:=-0.04-0.4*I;RBoundR:=0.04+0.4%1; 7
#V1:=2;V2:=1;d12:=7/2;sts:=7,12; 8
V1:=2;V2:=0;d12:=7/2;sts:=7,12; 9
vpot:=V1/cosh(z-d12) ~2+V2*I*sinh(z-d12)/cosh(z-d12) "2 10
+V1/cosh(z+d12) ~2+V2*I*sinh(z+d12)/cosh(z+d12)~2; 11

12

hermites(); 13
14

read "wfunctsl.dat": 15
keypot:=3; 16
zmin:=-20;zmax:=20;ngrid:=80; 17
normtp:=0; 18
itermax:=20; 19
RBoundL:=-sqrt (-EEh) ;RBoundR:=sqrt (-EEh) ; 20
for ii in sts do 21
Eh:=eigv(ii); 22
Phink:=eigf(1,ii)+I*eigfi(1,ii): 23
hermites(); 24
od: 25

Lines 1-13 Calculation of initial approximation.
Lines 15-25 Calculation of complex eigenvalues and eigenfunctions of metastable states.

Lines 1-3: - Initialization procedure, the key task keypot: = 1; for solving the boundary value problem with the
boundary conditions of the third kind: calculating a set of complex eigenvalues and the corresponding eigenfunctions,
and the choice of parameters of finite element method.

Lines 5-7: Setting a uniform grid, the amount calculated the discrete spectrum and the boundary conditions
of the third kind, which, unlike the boundary conditions of the third kind, defined in the line 20, does not depend on
the desired eigenvalue. Note. In this example, the potential for exponentially decreasing initial approximation to the
desired solution calculated for a given boundary condition of the third kind with coefficients R(z ™) = —R(z™") =
v —Ey, where the value of Ey chosen from the vicinity of the desired eigenvalues Fq and Fj.

Lines 8-11: Assignment of the effective potential. A choice of 2 sets of parameter values. List of rooms
eigenfunctions localized between the barriers (they are also the initial approximation for eigenfunctions) is the value
chosen in advance local variable sts

Line 13: Solution of the discrete spectrum.

Line 15: Read file with the solution of the discrete spectrum.

Line 16: Choosing options to refine the solution by Newton’s method.

Line 17: Specifying the new uniform grid.

Lines 18-19: The choice of the normalization condition and the maximum number of iterations.
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Line 20: Set a new boundary conditions of the third kind, which in contrast to the boundary conditions of the
third kind, given in line 7, depend on the desired eigenvalue.

Lines 21-25: Decision of the boundary problem by Newton’s method, where the primary approximations used
its eigenfunction, from the list of sts, localized at the origin and the corresponding eigenvalues.
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Example 16. Application of program for solving the boundary value problem for the Schrédinger equation

with cubic nonlinearity

The program can be used to prepare solutions of the boundary problem in the interval z € (0,8) nonlinear

Schrédinger equation

1d d 22 5 . dPy(2)
(‘g@@* Em)cbm(z)w@m(z»—o, Ty 5=

For this, the equation (75) can be rewritten in the form

~Ld i+—2+/\(<1> (2))°—E ) ®(2) =0, i
C22dz " dz m\#) =1 z%z z

and solve it by the method of simple iterations.
As a first approximation @g)(z) we use solutions (75) at A=10

8
=0, ®,(8)=0, /0 2dz|®,, (2)* = 1. (75)

/8 2dz|®,(2)2 =1 (76)
0

1d d doY 8
(——— L4z E,SS)) 20 (z) =0, limzi(z)zo, 20 (8) =0, / 2dz|®0) (2)]? = 1,

2zdz dz 2—0 dz 0

each next approximation (I)gi)( ), E¥ is given from the previous one @~ 1)( )
method the following boundary value problem:

1d d 2? ) dq)(k)(z)
T T —E® ) e®) () =0, limz—02 "
( R IR G O) m) m'(2) =0, lim z=—7-

restart;Digits:=16;
read '"kantbp4m.mwt";
psubint:=10;kappamax:=1;

zmin:=0;zmax:=8;ngrid:=4;
FFA:=z;FFB:=2%z;
DirL:=2;DirR:=1;
lambdaa:=2;eps:=10"(-6);
filenamew:="init.dat";
eqs:=1;

vpot(1,1):=2"2/2;

numberf :=4;

keypot:=1;

hermites();

keypot:=3;
grprint:=0;
for ii from 1 to numberf do
filenamew:=cat ("fun",convert(ii,string),".dat");
itermax:=5; iters:=0;
read "init.dat";
vpot(1,1):=2"2/2+(eigf||ii(1))~2*lambdaa;
Eh:=eigv]||ii;
Phink (1) :=(eigf|[1ii(1)):
hermites();
Ehs:=Eh;iil:=0;itermax:=2;
while 1i1=0 do
iters:=iters+1;
print("iteration=", iters);
read filenamew;
vpot(1,1):=z"2/2+eigf (1) ~2xlambdaa;
Eh:=eigv;

8
—0, a®)(8) =0, / 2dz P ()|
0

, E,(,f -b by solving the Newton’s

=1

O ~NO O WN -
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Phink (1) :=eigf(1): 33
hermites(); 34

if (abs(Ehs-Eh)<eps) then iil:=1; fi; 35
Ehs:=Eh; 36
od:od: 37
38

for ii from 1 to numberf do 39
read cat("fun",convert(ii,string),".dat"); 40
plot(eigf (1) ,z=zmin. .zmax) ; 41
plots[logplot] (abs(-1/2/z*diff (z*diff (eigf (1),2),2) 42
+(z~2/2-eigv) *xeigf (1) +eigf (1) ~3*lambdaa) ,z=zmin. .zmax) ; 43
od; 44

Lines 1-3: Initialization procedures, and the choice of parameters of finite element method.

Line 5: Setting a uniform grid.

Line 6: Identify f4(z) and fp(z)

Line 7: Setting the boundary conditions Neumann-Dirichlet.

Line 8: Setting parameters of problem.

Line 9: Specify the file name to be written in the first approximations to the desired solutions.

Lines 10-11: Selecting eqs=1 for solutions of one equation, while, in contrast to eqs=0, vpot is an array of the
dimension 1x1.

Lines 12-13: Selecting calculate a set of four of eigenfunctions and eigenvalues.

Line 14: The solution of the eigenvalue problem.

Lines 16-17: The choice of options refinement solutions by Newton’s method without displaying the plots of
calculation results on the screen.

Lines 18 and 37: The beginning and end of a cycle in which the computed solution of the boundary problem
for the nonlinear Schrédinger equation.

Line 19: For each from numberf solutions the name of file for storing next approximations (the file will be
overwritten each time).

Lines 20 and 26: Set the number of iterations to perform the Newton’s method.

Lines 20 and 28-29: Count the number of iterations.

Lines 21 and 30: read a file from the first and (k — 1)-th approximations.

Lines 22 and 31: Overriding effective potential for the calculation of the next approximation.

Lines 23 and 32: The initial approximation for the eigenvalue for further refinement solving the boundary
problem by Newton’s method.

Lines 24 and 33: The initial approximation for the eigenfunction for later refinement solving the boundary
problem by Newton’s method.

Lines 25 and 34: Clarification of boundary problem solution by Newton.

Lines 35 and 36: Check the condition of the completion of an iteration process.

Lines 39-44: Display graphs of four computed eigenfunctions and errors &,,(z) of the numerical solution.



