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I. BOUNDARY VALUE AND EIGENVALUE PROBLEMS AND SYMMETRIC QUADRATIC

FUNCTIONAL

The program KANTBP 4M is intended for solving the boundary value problem and eigenvalue problem for

the system of ordinary di�erential equations of the seond order with respet to the unknown funtions Φ(z) =
(Φ1(z), . . . ,ΦN (z))T of the independent variable z ∈ Ω(zmin, zmax) numerially using the Finite Element Method:

(D− E I)Φ(i)(z) ≡
(

− 1

fB(z)
I
d

dz
fA(z)

d

dz
+V(z) +

fA(z)

fB(z)
Q(z)

d

dz
+

1

fB(z)

d fA(z)Q(z)

dz
− E I

)

Φ(z) = 0. (1)

Here fB(z) > 0 and fA(z) > 0 are ontinuous or pieewise ontinuous positive funtions, I is the unit matrix, V(z)
is a symmetri matrix, Vij(z) = Vji(z), and Q(z) is an antisymmetri matrix, Qij(z) = −Qji(z), of the e�etive

potentials having the dimension N×N . The elements of these matries are ontinuous or pieewise ontinuous real or

omplex-valued oe�ients from the Sobolev spae Hs≥1
2 (Ω), providing the existene of nontrivial solutions subjeted

to homogeneous boundary onditions: Dirihlet and/or Neumann, and/or third-kind at the boundary points of the

interval z ∈ {zmin, zmax} at given values of the elements of the real or omplex-valued matrix R(zt) of the dimension

N ×N

(I) : Φ(zt) = 0, t = min and/ormax, (2)

(II) : lim
z→zt

fA(z)

(

I
d

dz
−Q(z)

)

= 0, t = min and/ormax, (3)

(III) :

(

I
d

dz
−Q(z)

) ∣

∣

∣

∣

z=zt

= R(zt)Φ(zt), t = min and/ormax . (4)

The solution Φ(z)∈Hs≥1
2 (Ω̄) of the BPVs (1)�(4) is redued to the alulation of stationary points of a symmetri

quadrati funtional numerially using the Finite Element Method(FEM)

Ξ(Φ, E, zmin, zmax) ≡
∫ zmax

zmin

Φ•(z) (D− E I)Φ(z)dz = Π(Φ, E, zmin, zmax)

−fA(zmax)Φ•(zmax)G(zmax)Φ(zmax) + fA(zmin)Φ•(zmin)G(zmin)Φ(zmin), (5)

Π(Φ, E, zmin, zmax) =

∫ zmax

zmin

[

fA(z)
dΦ•(z)

dz

dΦ(z)

dz
+ fB(z)Φ•(z)V(z)Φ(z) (6)

+fA(z)Φ•(z)Q(z)
dΦ(z)

dz
− fA(z)

dΦ(z)•

dz
Q(z)Φ(z)− fB(z)EΦ•(z)Φ(z)

]

dz,

where G(z) = R(z) −Q(z) is a symmetri matrix of the dimension N ×N ,

•
denotes either the transposition

T
, or

the Hermitian onjugation

†
, i.e., the transposition with omplex onjugation, depending on the type of the problem

to be solved.

II. BRIEF DESCRIPTION OF THE CLASS OF PROBLEMS

Three lasses of the boundary value problems are onsidered

1. For the multihannel sattering problem (examples: 07, 08, 11, 13, 14) on the axis z ∈ (−∞,+∞) at �xed

energy E ≡ ℜE the desired matrix solutions Φ(z) ≡ {Φ(i)
v (z)}Ni=1, Φ

(i)
v (z) = (Φ

(i)
1v (z), . . . ,Φ

(i)
Nv(z))

T
(the subsript

v takes the values → or ← and means the initial diretion of the inident wave from left to right or from right to

left) the boundary value problem for the system of N ordinary di�erential equations of the seond order (1) in the

interval z ∈ (zmin, zmax) are alulated by the ode. These matrix solutions are subjeted to homogeneous third-kind

boundary onditions (4) at the boundary points of the interval z ∈ {zmin, zmax} with the asymptotes of the �inident

wave + outgoing waves� type in open hannels i = 1, ..., No:

Φv(z → ±∞) =















{

X(+)(z)Tv, z ∈ [zmax,+∞),
X(+)(z) +X(−)(z)Rv, z ∈ (−∞, zmin],

v =→,
{

X(−)(z) +X(+)(z)Rv, z ∈ [zmax,+∞),
X(−)(z)Tv, z ∈ (−∞, zmin],

v =←,
(7)
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whereTv andRv are unknown retangular and square matries of transmission and re�etion amplitudes, respetively,

to onstrut the sattering matrix S of the dimension No ×No:

S =

(

R→ T←
T→ R←

)

, (8)

whih is the symmetri and unitary in the ase of real-valued potentials.

For the multihannel sattering problem on a semiaxis z ∈ (zmin,+∞) or z ∈ (−∞, zmax), the desired matrix

solution Φ(z) of the boundary value problem for the system of N ordinary di�erential equations of the seond order

(1) is alulated in the interval z ∈ (zmin, zmax). This matrix solutions is subjeted to the homogeneous third-kind

boundary onditions (4) at the boundary point zmax
or zmin

of the interval, with the asymptotes of the �inident wave

+ outgoing waves� type in the open hannels i = 1, ..., No:

Φ←(z → +∞) = X(−)(z) +X(+)(z)R←, z ∈ [zmax,+∞) (9)

or Φ→(z → −∞) = X(+)(z) +X(−)(z)R→, z ∈ (−∞, zmin]

and subjeted to the homogeneous boundary onditions (Dirihlet and/or Neumann, and/or third-kind (see (2)�(4)))

at the boundary point zmin
or zmax

to onstrut the sattering matrix S = R← or S = R→, whih is symmetri and

unitary in the ase of real-valued potentials.

In the solution of a multihannel sattering problem the losed hannels are taken into aount. In this ase the

asymptoti onditions (7), (9) have the form

Φas
→ =

{

X
(→)
max(z)T→ +X

(c)
max(z)Tc

→, z ≥ zmax,

X
(→)
min (z) +X

(←)
min (z)R→ +X

(c)
min(z)R

c
→, z ≤ zmin;

(10)

Φas
← =

{

X
(←)
max(z) +X

(→)
max(z)R← +X

(c)
max(z)Rc

←, z ≥ zmax,

X
(←)
min (z)T← +X

(c)
min(z)T

c
←, z ≤ zmin;

(11)

where X
(→)
max(z) = X(+)(z), z ≥ zmax

, X
(→)
min (z) = X(+)(z), z ≤ zmin

, X
(←)
min (z) = X(−)(z), z ≤ zmin

in eqs.(10) and

X
(←)
max(z) = X(−)(z), z ≥ zmax X

(→)
max(z) = X(+)(z), z ≥ zmax

, X
(←)
min (z) = X(−)(z), z ≤ zmin

in eqs.(11).

It is assumed that the leading terms of the asymptoti solutions X(±)(z) of the boundary value problem at z ≤ zmin

and/or z ≥ zmax
have the following form:

in the open hannels V t
ioio

< E are osillating solutions:

X
(±)
ioj

(z)→ exp
(

±ıptioz
)

√

fA(z)pti
δioj , ptio =

√

fB(zt)

fA(zt)

√

E − V t
ioio

j = 1, . . . , N, io = 1, . . . , No, (12)

in the losed hannels V t
icic
≥ E are exponentially dereasing solutions

X
(c)
icj

(z)→ 1
√

fA(z)
exp

(

−ptic |z|
)

δicj , ptic =

√

fB(zt)

fA(zt)

√

V t
icic
− E j = 1, . . . , N, ic = No + 1, . . . , N. (13)

These relations are valid if the oe�ients of the equations with z ≤ zmin
and/or z ≥ zmax

satisfy the following

onditions:

fA(z)

fB(z)
=

fA(z
t)

fB(zt)
+ o(1), t = min,max, Vii(z) = V t

ii + o(1), V t
ij(z) = o(1), Qt

ij(z) = o(1), i 6= j. (14)

In this version of the program the more general ase is not onsidered, but if the user knows the asymptoti

behavior of the solutions, it is possible to apply them. For example, long-range e�etive potentials, dereasing ∼ z−k,
k ≥ 1, applied asymptoti expansions of solutions with leading members of (12). Examples of alulation of suh

expansions by means of reurrene relations are given in [3℄. In solving the boundary value problem (1)�(4) the

orresponding symmetri quadrati funtional (5)is used, where

•
denotes transpose and omplex onjugate

†
for

real-valued potentials and transposition

T
for omplex-valued potentials, required for disretization of the problem by

the FEM. Detailed information on the solution of multi-hannel sattering problem is given below. See Examples 11

and 13.
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2. For the eigenvalue problem (examples: 02, 03, 04, 05, 06, 09, 10, 12, 15, 16) the ode alulates a set of M

energy eigenvalues E: ℜE1 ≤ ℜE2 ≤ . . . ≤ ℜEM and the orresponding set of eigenfuntions Φ(z) ≡ {Φ(m)(z)}Mm=1,

Φ(m)(z) = (Φ
(m)
1 (z), . . . ,Φ

(m)
N (z))T from the spaeH2

2 for the system of N ordinary di�erential equations of the seond

order (1) subjeted to homogeneous boundary onditions: �rst and/or seond, and/or third kind (see (2)�(4)) in the

boundary points of the interval z ∈ (zmin, zmax). In the ase of real-valued potentials the solutions are subjeted to

the normalization and orthogonality onditions

〈Φ(m)|Φ(m′)〉 =
∫ zmax

zmin

fB(z)(Φ
(m)(z))†Φ(m′)(z)dz = δmm′ , (15)

and the orresponding symmetri quadrati funtional (5) is used, in whih

•
denotes Hermitian onjugation

†
, needed

for disretization of the problem by the FEM.

In the ase of omplex valued potentials (examples 06 è 15) the solutions are subjeted the normalization and

orthogonality onditions

(Φ(m)|Φ(m′)) =

∫ zmax

zmin

fB(z)(Φ
(m)(z))TΦ(m′)(z)dz = δmm′ , (16)

and orresponding symmetri quadrati funtional (5) is used, in whih

•
denotes the transposition

T
, needed for

disretization of the problem by the FEM.

To solve the problem for bound states on the axis or on the semiaxis the initial problem is approximated by

boundary value problem (1)�(4) on a �nite interval z ∈ (zmin, zmax) with the boundary onditions of the third

kind (4) with given matries R(zt), independing on an unknown eigenvalue E, and a set of approximate eigenvalues

and eigenfuntions is alulated (examples 02�06, 09, 10, 12, 15-16). If the matries R(zt) are depended on an

unknown eigenvalue E, then R(zt, E) are determined by the known asymptoti expansion of the desirable solution.

In this ase, to alulate the approximate eigenfuntions and eigenvalues in the program, Newtonian iteration sheme

is implemented. Appropriate initial approximations are hosen from solutions alulated previously with boundary

onditions independing on E (Examples 04, 14, 15, 16).

3. For the alulation of metastable states (examples 14 and 15) with unknown omplex eigenvalues E the

program solves the boundary value problem for a system of equations (1) on a �nite interval with homogeneous

onditions of the third kind (4), depending on an unknown eigenvalue E, using the appropriate symmetrial quadrati

funtional (5), where

•
denotes transposition

T
, whih is neessary for the disretisation of the problem by the FEM.

In ontrast to the sattering problem, the asymptoti solutions for metastable states ontain only outgoing waves,

that are onsidered in a su�iently large, but �nite interval of the spatial variable [5℄. For metastable states on

the axis z ∈ (−∞,+∞), the eigenfuntions obey the boundary onditions of the third kind (4), where the matrix

R(ξt0) = diag(R(ξt0)) depends on the desired omplex energy eigenvalue E ≡ Em = ℜEm + ıℑEm, ℑEm < 0 and is

given by

Rioio(z
max, Em) =

√

fB(zmax)

fA(zmax)

√

V max
ioio
− Em, Rioio(z

min, Em) = −
√

fB(zmin)

fA(zmin)

√

V min
ioio
− Em, (17)

beause the asymptoti solution of this problem ontains only outgoing waves in the open hannels V t
ioio

< ℜE,
io = 1, . . . , No, while only deay waves in losed hannels V t

icic
> ℜE, ic = No + 1, . . . , N

Ricic(z
max, Em) = −

√

fB(zmax)

fA(zmax)

√

Em − V max
icic

, Ricic(z
min, Em) =

√

fB(zmin)

fA(zmin)

√

Em − V min
icic

. (18)

For metastable states on the semiaxis z ∈ (zmin,+∞) or z ∈ (−∞, zmax), the solution is subjet to the boundary

ondition (4), (17) at the boundary point zmax
or zmin

and the boundary onditions of the �rst, seond, or third kind

(see (2), (3) or (4)) at the boundary point zmin
or zmax

.

In this ase, the eigenfuntions obey the orthogonality and normalization onditions

(Φ(m′)|Φ(m))=(Em − Em′)

[

∫ zmax

zmin

(Φm′

)T (z)Φ(m)(z)fB(z)dz−δm′m

]

+Cm′m = 0,

Cm′m = −fA(zmax)(Φ(m′))T (zmax)[Rioio(z
max, Em)−Rioio(z

max, Em′)− 2Q(zmax)]Φm(zmax) (19)

+fA(z
min)(Φ(m′))T (zmin)[Rioio(z

min, Em)−Rioio(z
min, Em′)− 2Q(zmin)]Φ(m)(zmin).



6

Note the orthogonality ondition is derived by alulation of di�erene of two funtionals (5) with substitution of

eigenvalues Em, Em′
, eigenfuntions Φ(m)(z), Φ(m′)(z) and elements of matries R(zmax, Em), R(zmin, Em′) from

formulas (17), (18). The alulation of the omplex eigenvalues and eigenfuntions of the metastable states is per-

formed using the Newton iteration method. Appropriate initial approximations are hosen from solutions alulated

previously with boundary onditions at �xed E. In example 14 as the initial approximation an appropriate resonane

transmission solution of the sattering problem at the resonane value of energy E ≡ ℜE is taken. In example 15 as

the initial approximation an appropriate solution of the bound state problem is taken.

III. FEM GENERATION OF ALGEBRAIC PROBLEMS

High-auray omputational shemes for solving the BVP (1)�(4) an be derived from the variational funtional

(5), (6) basing on the FEM. The general idea of the FEM in one-dimensional spae is to divide the interval [zmin, zmax]
into many small domains referred to as elements. The size of the elements an be de�ned free enough to aount for

physial properties or qualitative behavior of the desired solutions, suh as smoothness.

The interval ∆ = [zmin, zmax] is overed by a set of n elements ∆j = [zmin
j , zmax

j ≡ zmin
j+1] in suh a way that

∆ =
⋃n

j=1 ∆j . Thus, we obtain the grid

Ωhj(z)[zmin, zmax]={zmin = zmin
1 , zmax

j = zmin
j + hj , j = 1, . . . , n− 1, (20)

zmax
n = zmin

n + hn = zmax},

where zmin
j ≡ zmax

j−1 , j = 2, . . . , n are the mesh points, and the steps hj = zmax
j − zmin

j are the lengths of the elements

∆j .

The program features the ability to speify a quasi-uniform grid, for whih h1 = h2 = ... = hn1
, hn1+1 = hn1+2 =

... = hn1+n2
, hn1+n2+1 = hn1+n2+2 = ... = hn1+n2+n3

, .... i.e. interval ∆ = [zmin, zmax] is �rst broken down into

nmesh sub-intervals (in the general ase of unequal length) eah of whih is divided into ngrid(r0)=nr0 subintervals

of equal length.

A. Interpolation Hermite Polynomials

In eah element ∆j we de�ne the equidistant sub-grid Ω
hj(z)
j [zmin

j , zmax
j ] = {z(j−1)p = zmin

j , z(j−1)p+r , r = 1, . . . , p−
1, zjp = zmax

j } with the nodal points zr ≡ z(j−1)p+r determined by the formula

z(j−1)p+r = ((p− r)zmin
j + rzmax

j )/p, r = 0, . . . , p. (21)

As a set of loal funtions {Nl(z, z
min
j , zmax

j )}lmax

l=0 , l
max =

∑p
r=0 κ

max
r we will use the Interpolation Hermite Polynomials

(IHPs) {{ϕκ
r (z)}pr=0}

κmax
r −1

κ=0 in the nodes zr, r = 0, . . . , p of the grid (21). The values of the funtions ϕκ
r (z) with their

derivatives up to the order (κmax
r − 1), i.e. κ = 0, . . . , κmax

r − 1, where κmax
r is referred to as the multipliity of the

node zr, are determined by the expressions [6℄

ϕκ
r (zr′) = δrr′δκ0,

dκ
′

ϕκ
r (z)

dzκ′

∣

∣

∣

∣

z=z
r′

= δrr′δκκ′ . (22)

To alulate the IHPs we introdue the auxiliary weight funtion

wr(z) =

p
∏

r′=0,r′ 6=r

(

z − zr′

zr − zr′

)κmax

r′

, wr(zr) = 1. (23)

The weight funtion derivatives an be presented as a produt

dκwr(z)

dzκ
= wr(z)g

κ
r (z),

where the fator gκr (z) is alulated by means of the reurrene relations

gκr (z) =
dgκ−1r (z)

dz
+ g1r(z)g

κ−1
r (z), (24)
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with the initial onditions

g0r(z) = 1, g1r(z) ≡
1

wr(z)

dwr(z)

dz
=

p
∑

r′=0,r′ 6=r

κmax
r′

z − zr′
.

We will seek for the IHPs ϕκ
r (z) in the following form:

ϕκ
r (z) = wr(z)

κmax
r −1
∑

κ′=0

aκ,κ
′

r (z − zr)
κ′

. (25)

Di�erentiating the funtion (25) by z at the point of zr and using Eq. (23), we obtain

dκ
′

ϕκ
r (z)

dzκ′

∣

∣

∣

∣

z=zr

=

κ′

∑

κ′′=0

κ′!

κ′′!(κ′ − κ′′)!
gκ

′−κ′′

r (zr)a
κ,κ′′

r κ′′!. (26)

Hene we arrive at the expression for the oe�ients aκ,κ
′

r

aκ,κ
′

r =





dκ
′

ϕκ
r (z)

dzκ′

∣

∣

∣

∣

z=zr

−
κ′−1
∑

κ′′=0

κ′!

κ′′!(κ′ − κ′′)!
gκ

′−κ′′

r (zr)a
κ,κ′′

r κ′′!



 /κ′!. (27)

Taking Eq. (22) into aount, we �nally get:

aκ,κ
′

r =















0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1
∑

κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′

r (zr)a
κ,κ′′

r , κ′ > κ.

Note that all degrees of interpolation Hermite polynomials ϕκ
r (z) do not depend on κ and equal p′ =

∑p
r′=0 κ

max
r − 1.

Below we onsider only the IHPs with the nodes of idential multipliity κmax
r = κmax, r = 0, . . . , p. In this ase, the

degree of the polynomials is equal to p′ = κmax(p+1)− 1. We introdue the following notation for suh polynomials :

Nκmaxr+κ(z, z
min
j , zmax

j ) = ϕκ
r (z), r = 0, . . . , p, κ = 0, . . . , κmax − 1. (28)

These IHPs form a basis in the spae of polynomials having the degree p′ = κmax(p + 1) − 1 in the element z ∈
[zmin

j , zmax
j ] that have ontinuous derivatives up to the order κmax − 1 at the boundary points zmin

j and zmax
j of the

element z ∈ [zmin
j , zmax

j ].
The interpolation Lagrange polynomials and interpolation Hermite polynomials with the multipliity of nodes

kmax = 2, 3 (and their �rst and seond derivatives with respet to z) are shown in Fig. 1 � 3.

It is seen that the values of IHP Nκmaxp+κ(z, z
min
j , zmax

j ) and Nκ(z, z
min
j+1, z

max
j+1 ) (at r = p and r = 0) and their

derivatives up to the order κmax − 1 oinide at the mutual point zmax
j = zmin

j+1 of the adjaent elements. Moreover,

the boundary points are nodes (zeros) of the multipliity κmax
of other IHPs, irrespetive of the length of elements

of [zmin
j , zmax

j ] and [zmin
j+1, z

max
j+1 ]. This allows the onstrution of a basis of pieewise and polynomial funtions having

ontinuous derivatives to the order of κmax− 1 in any set ∆ =
⋃n

j=1 ∆j = [zmin
j , zmax

j ] of elements ∆j = [zmin
j , zmax

j ≡
zmin
j+1].

B. Generation of Algebrai Eigenvalue Problems

We onsider a disrete representation of the solutions Φ(z) of the problem (1)�(4) redued by means of the FEM

to the variational funtional (5), (6) on the �nite-element grid,

Ωp

hj(z)
[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np− 1, znp = zmax], (29)

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax] determined by Eq. (20) and the nodal

points zl = z(j−1)p+r, r = 0, . . . , p of the sub-grids Ω
hj(z)
j [zmin

j , zmax
j ], j = 1, . . . , n, determined by Eq. (21). The
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FIG. 1: The interpolation Lagrange polynomials up to the �fth order p′ = p = 1, 2, 3, 4, 5, κmax = 1, The nodes zr of

interpolation Lagrange polynomials are shown by vertial lines.

solution Φh(z) ≈ Φ(z) is sought for in the form of a �nite sum over the basis of loal funtions Ng
µ(z) at eah nodal

point z = zl of the grid Ωp

hj(z)
[zmin, zmax] of the interval z ∈ ∆ = [zmin, zmax]:

Φh(z) =
L−1
∑

µ=0

Φh
µN

g
µ(z), Φh(zl) = Φh

lκmax ,
dκΦh(z)

dzκ

∣

∣

∣

∣

∣

z=zl

= Φh
lκmax+κ (30)

where L = (pn + 1)κmax
is the number of basis funtions Φh

µ (matries of dimensional N × 1) at µ = lκmax + κ are

the nodal values of the κth derivatives of the funtion Φh(z) (inluding the funtion Φh(z) itself for κ = 0) at the
points zl.
The basis funtions Ng

µ(z) ≡ Ng
lκmax+κ(z) are pieewise polynomials of the given order p′, their derivative of the

order κ at the node zl equals one, and the derivative of the order κ′ 6= κ at this node equals zero, while the values of

the funtion Ng
µ(z) with all its derivatives up to the order (κmax− 1) equal zero at all other nodes zl′ 6= zl of the grid

Ωp

hj(z)
, i.e.,

dκNl′κmax+κ′

dzκ

∣

∣

∣

z=zl
= δll′δκκ′

, l = 0, . . . , np, κ = 0, . . . , κmax − 1.

For the nodes zl of the grid (29) that do not oinide with the mesh points zmax
j of the grid (20), i.e., at l 6= jp,

j = 1 . . . n− 1, the polynomial Ng
µ(z) at µ = ((j − 1)p+ r)κmax + κ has the form

Ng

(p(j−1)+r)κmax+κ
(z) =

{

Nκmaxr+κ(z, z
min
j , zmax

j ), z ∈ ∆j ;
0, z 6∈ ∆j ,

(31)

i.e., it is de�ned as the IHP Nκmaxr+κ(z, z
min
j , zmax

j ) in the interval z ∈ ∆j and zero otherwise. Sine the points zmin
j

and zmax
j are nodes of multipliity κmax

, suh pieewise polynomial funtions and their derivatives up to the order

κmax − 1 are ontinuous in the entire interval ∆.

For the nodal points of the grid zl of the grid (29) that oinide with one of the mesh points zmax
j of the grid (20),

belonging to two elements ∆j and ∆j+1, j = 1 . . . n− 1 , i.e., for l = jp, the polynomial, whose derivative of the order

κ equals one at the node zl, has the form

Ng
pκmaxj+κ(z) =







Nκmaxp+κ(z, z
min
j , zmax

j ), z ∈ ∆j ;
Nκ(z, z

min
j+1, z

max
j+1 ), z ∈ ∆j+1;

0, z 6∈ ∆j ∪∆j+1.
(32)
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κmax = 2
p = 1
p′ = 3

κmax = 2
p = 2
p′ = 5

κmax = 2
p = 3
p′ = 7

FIG. 2: The interpolation Hermite polynomials with the multipliity of nodes κmax = 2 (left), their �rst (entre) and seond

(right) derivatives at zmin

j = 0 zmax

j = 6.

In other words, it is onstruted by joining the polynomial Npκmax+κ(z, z
min
j , zmax

j ) de�ned in the element ∆j with

the polynomial Nκ(z, z
min
j+1, z

max
j+1 ) de�ned in the element ∆j+1. These basis pieewise polynomial funtions Ng

µ(z) ≡
Ng

lκmax+κ(z) are also ontinuous with all its derivatives of the order κmax − 1 in the interval z ∈ ∆.

As an example, Figs. 4, 5 è 6 present the basis funtions Ng
µ(z) a pieewise ontinuous polynomials of the order p′

with IHPs with di�erent κmax
and p on the grid (29) of the three �nite elements n = 3.

Fig. 4 shows the basis funtions of Lagrangian elements of the �rst p′ = 1, the seond p′ = 2 and the fourth p′ = 4
order: (κmax, p) = (1, 1), (κmax, p) = (1, 2), (κmax, p) = (1, 4). It is evident that at the boundary points of the �nite

elements, marked by vertial lines, the basis funtions are ontinuous, and the fratures indiate the fat that their

�rst derivatives are disontinuous.

Fig. 5 shows the basis funtions of the third order p′ = 3 with Lagrangian elements (κmax, p) = (1, 3), and the

Hermitian elements (κmax, p) = (2, 1). Fig. 6 shows the basis funtion of the �fth order p′ = 5 with Lagrangian

elements (κmax, p) = (1, 5), and the Hermitian elements (κmax, p) = (2, 2) and (κmax, p) = (3, 1). It is evident that

the Hermitian elements, in ontrast to the Lagrangian ones, in the boundary points of the �nite elements have no

fratures, i.e., both the basi funtions and their �rst derivatives are ontinuous.

The modulo of the division number of basis funtions µ on κmax
shows the funtion (if µ is a multiple of κmax

) or a

derivative of order κ (if the modulo is equal to κ) in one of the nodes is taken as equal to unity: for basis funtions

with Hermitian elements with κmax = 2, the �rst derivatives in one of the nodes take the value equal to one, marked

by odd numbers, but for the basis funtions of a Hermitian elements of a κmax = 3, the �rst and seond derivatives

in one of the nodes take the value equal to one, marked with numbers 1,4,7,10 and 2,5,8,11, respetively.

The substitution of the expansion (30) into the variational funtional (5), (6) redues the solution of the problem

(1)�(4) to the solution of the generalized algebrai eigenvalue problem with respet to the desired set of eigenvalues
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κmax = 3
p = 1
p′ = 5

κmax = 3
p = 2
p′ = 8

FIG. 3: The interpolation Hermite polynomials with the multipliity of nodes κmax = 3 (left), their �rst (entre) and seond

(right) derivatives at zmin

j = 0 zmax

j = 6.

E and eigenvetors {{Φh
νµ}Nν=0}L−1µ=0 :

(Ã− 2EB)Φh = 0. (33)

Here Ã = A(2)+A(1)+V+Mmin−Mmax
and positive de�ned B are symmetri LN×LN sti�ness and mass matries

of dimension NL×NL

A
(2)
ν1,ν2;µ1+1,µ2+1 =

∑

(j,l1,l2)∈D

A
(2)j
ν1,ν2;l1,l2

, A
(2)j
ν1,ν2;l1,l2

=

zmax
j
∫

zmin
j

δν1ν2fA(z)
dNl1(z, z

min
j , zmax

j )

dz

dNl2(z, z
min
j , zmax

j )

dz
dz,

A
(1)
ν1,ν2;µ1+1,µ2+1 =

∑

(j,l1,l2)∈D

A
(1)j
ν1,ν2;l1,l2

, A
(1)j
ν1,ν2;l1,l2

=

zmax
j
∫

zmin
j

fA(z)Nl1(z, z
min
j , zmax

j )Qν1ν2(z)
dNl2(z, z

min
j , zmax

j )

dz
dz

−
zmax
j
∫

zmin
j

fA(z)
dNl1(z, z

min
j , zmax

j )

dz
Qν1ν2(z)Nl2(z, z

min
j , zmax

j )dz,

Vν1,ν2;µ1+1,µ2+1 =
∑

(j,l1,l2)∈D

V j
ν1,ν2;l1,l2

, V j
ν1,ν2;l1,l2

=

zmax
j
∫

zmin
j

fB(z)dzNl1(z, z
min
j , zmax

j )Vν1ν2(z)Nl2(z, z
min
j , zmax

j ),

Bν1,ν2;µ1+1,µ2+1 =
∑

(j,l1,l2)∈D

Bj
ν1,ν2;l1,l2

, Bj
ν1,ν2;l1,l2

=

zmax
j
∫

zmin
j

δν1ν2fB(z)Nl1(z, z
min
j , zmax

j )Nl2(z, z
min
j , zmax

j )dz, (34)

where D = {j ∈ {1, ..., n}, l1 ∈ {0, ..., p′}, l2 ∈ {0, ..., p′}|µ1 = pκmax(j − 1) + l1, µ2 = pκmax(j − 1) + l2}.
The matries Mmax

and Mmin
with the dimension NL × NL have only one nonzero N × N sub-matries eah:

Mmin
ν1,ν2;11 = fA(z

min)Rν1,ν2(z
min) and Mmax

ν1,ν2;L+1−κmax,L+1−κmax = fA(z
max)Rν1,ν2(z

max), respetively.

1. If the oe�ients of the equation (33) are given in the tabular form, then we use the following matrix elements
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FIG. 4: The basis funtions Ng
µ(z) of a Lagrangian elements of the �rst p′ = 1, the seond p′ = 2 and the fourth p′ = 4 order:

(κmax, p) = (1, 1), (κmax, p) = (1, 2), (κmax, p) = (1, 4) at n = 3 �nite elements, marked by vertial lines.

(κmax, p) = (1, 3) (κmax, p) = (2, 1)

FIG. 5: The basis funtion Ng
µ(z) of �fth order p′ = 3 with Lagrangian elements (κmax, p) = (1, 4), and Hermitian elements

(κmax, p) = (2, 1) at n = 3 �nite elements, marked by vertial lines.

(κmax, p) = (1, 5) (κmax, p) = (2, 2) (κmax, p) = (3, 1)

FIG. 6: The basis funtion Ng
µ(z) of �fth order p′ = 5 with Lagrangian elements (κmax, p) = (1, 5), and Hermitian elements

(κmax, p) = (2, 2) and (κmax, p) = (3, 1) at n = 3 �nite elements, marked by vertial lines.

Vl1;l2(z
min, zmax) from (34):

∫ zmax
j

zmin
j

fB(z)dzNL1
(z, zmin

j , zmax
j )V (z)NL2

(z, zmin
j , zmax

j ) =

p
∑

r=0

κmax−1
∑

κ=0

W j
l1;l2;κmaxr+κ(z

min
j , zmax

j )V (κ)(z(j−1)p+r),

where W j
l1;l2;l3

(zmin
j , zmax

j ) are determined by the integrals with IHPs

W j
l1;l2;l3

(zmin
j , zmax

j ) =

∫ zmax
j

zmin
j

fB(z)Nl1(z, z
min
j , zmax

j )Nl2(z, z
min
j , zmax

j )Nl3(z, z
min
j , zmax

j )dz.

The obtained expression will be exat for polynomial potentials of the order smaller than p′. Generally this deompo-

sition leads to numerial eigenfuntions and eigenvalues with the auray of the order about p′ + 1. If the integrals
annot be alulated in the analytial form, then the Gauss integration rule [7℄ with p′ + 1 nodes is applied and held



12

FIG. 7: The struture of the matries BL1L2
and AL1L2

for the potential V (z) = 0 and Q(z) = 0 for the number of elements

n = 6 in the entire interval (zmin, zmax) and di�erent values of the multipliity of nodes κmax
and the number of subintervals

p. From left to right: (κmax, p) = (1, 7), (κmax, p) = (2, 3), (κmax, p) = (4, 1), the dimension of the matries are L × L, L =
κmax(np+1), equal to 43×43, 38×38, 28×28, the total number of elements within bloks (n(p2+2p)+1)(κmax)2 = 379, 364, 304
and bandwidth 2(p′ + 1)− κmax = 15, 14, 12, respetively. At N > 1 eah blok is a matrix of dimension N ×N , i.e. B and A

are matries of the dimension of the matrix NL×NL to the total number of elements within bloks N2(n(p2+2p)+1)(κmax)2

and bandwidth N(2(p′ + 1)− κmax).

the theoretial estimations (35)

A
(2)j
ν1,ν2;l1,l2

=

p′

∑

g=0

δν1ν2wgfA(zg)
dNl1(z, z

min
j , zmax

j )

dz

∣

∣

∣

∣

∣

z=zg

dNl2(z, z
min
j , zmax

j )

dz

∣

∣

∣

∣

∣

z=zg

A
(1)j
ν1,ν2;l1,l2

=

p′

∑

g=0

wgfA(zg)Nl1(zg, z
min
j , zmax

j )Qν1ν2(zg)
dNl2(z, z

min
j , zmax

j )

dz

∣

∣

∣

∣

∣

z=zg

−
p′

∑

g=0

wgfA(zg)
dNl1(z, z

min
j , zmax

j )

dz

∣

∣

∣

∣

∣

z=zg

Qν1ν2(zg)Nl2(zg, z
min
j , zmax

j )

V j
ν1,ν2;l1,l2

=

p′

∑

g=0

wgfB(zg)NL1
(zg, z

min
j , zmax

j )V (zg)NL2
(zg, z

min
j , zmax

j ),

Bj
ν1,ν2;l1,l2

=

p′

∑

g=0

δν1ν2wgfB(zg)Nl1(zg, z
min
j , zmax

j )Nl2(zg, z
min
j , zmax

j )

where zg = (p′ − g)zmin + gzmax
and wg, g = 0, p′ are gaussian nodes and weights of an orthogonal polynomial of

degree p′ + 1, on the element z ∈ (zmin
j , zmax

j ).

Note, using the loal oordinate η ∈ [−1, 1] related to the absolute oordinate z as z = zmin
j +hj(1+η)/2, dz

dη
= hj/2,

one should ordinary exploit the following expansions of the funtion and its �rst derivative

Φ̂(z) =

p
∑

r=0

κmax−1
∑

κ=0

Φ̂κmaxr+κNκmaxr+κ(η,−1, 1)
(

dz

dη

)κ

,

dΦ̂(z)

dz
=

p
∑

r=0

κmax−1
∑

κ=0

Φ̂κmaxr+κ

dNκmaxr+κ(η,−1, 1)
dη

(

dz

dη

)κ−1

.

3 . The matries Ãν1,ν2;l1,l2 , Bν1,ν2;l1,l2 è Vν1,ν2;l1,l2are symmetri, their dimension isNL×NL, where L = κmax(np+1).
They onsist of n sub-matries with the dimension κmax(p+1)× κmax(p+1). The intersetions of these sub-matries

are bloks having the dimension κmax × κmax
. These bloks inlude elements that equal zero in both matries
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Bν1,ν2;l1,l2 and Ãν1,ν2;l1,l2 for V (z) = 0 and beome nonzero in the matrix Ãν1,ν2;l1,l2 , when V (z) 6= 0. The existene
of suh elements is a manifestation of the IHPs symmetry. The total number of elements in all these bloks is

(n(p2 + 2p) + 1)(κmax)2. Examples of banded matrix strutures are shown in Fig. 7.

4. In the ase of BC (II) the matrix elements of (34) are unhanged. To impose the BC (I) in zmin
one should omit

the �rst row and the �rst olumn, while to apply the BC (I) in zmax
one should omit the row and the olumn with

the number L+1− κmax
. To impose the BC (III) in zmin

one should apply Ãν1,ν2;1,1 → Ãν1,ν2;1,1 + fA(z
min)R(zmin),

while to impose the BC (III) in zmax
one should apply Ãν1,ν2;L+1−κmax,L+1−κmax → Ãν1,ν2;L+1−κmax,L+1−κmax −

fA(z
max)R(zmax).

5. For small matrix dimensions ∼ 100, the desired solution of the problem generated at Step 2.3 is performed

using the built-in proedures of the Maple LinearAlgebra pakage. For large matrix dimensions ∼ 100÷ 1000000, the
subspae iteration method is used, implemented in the Fortran program SSPACE [7℄ whih is e�ient for large-sale

eigenvalue problems with symmetri band matries[9℄.

The theoretial estimate for theH0
norm of the di�erene between the exat solution Φm(z) ∈ H2

2 and the numerial

one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m − Em| ≤ c1 h

2p′

,
∥

∥Φh
m(z)− Φm(z)

∥

∥

0
≤ c2h

p′+1, (35)

where h = max1<j<n hj is the maximal step of the grid [2℄.

C. The alulation sheme of multihannel sattering problem

We onsider the solution of the algebrai problem with respet to the matrix solution Φh ≡ ((χ(1))h, . . . , (χ(No))h)

GpΦh ≡ (Ap − EBp)Φh = MΦh, (36)

obtained by disretization with the help of Finite Element Method of high order of auray of variational funtional

(5), (6) orresponding to BVP (1), (4) that approximate of multihannel problem at �xed E. The matries Ap =
A(2) +A(1) +V and M = Mmax −Mmin

of dimension NL×NL are given in (34). Matries Mmax
and Mmin

arise

due to the approximation of boundary onditions of the third kind at the left and right boundaries of the interval

z ∈ (zmin, zmax)

dΦh(z)

dz
= (G(z) +Q(z))Φh(z), z = zmin, z = zmax. (37)

The elements of the matrix M = {Ml′
1
,l′
2
}NL
l′
1
,l′
2
=1 equal zero exept those, for whih both indexes l′1 = (l1 − 1)N + ν1,

l′2 = (l2 − 1)N + ν2 belong to the interval 1, ..., N or to the interval (L− κmaxN) + 1, ..., (L− κmaxN) +N , where N
is the number of equations (1) and L is a number of basis funtions Ng

µ(z) in expansion of desired solutions (30) on

interval z ∈ ∆ = [zmin, zmax]. .
We rewrite the problem (36) in the following form





Gp
aa G

p
ab 0

G
p
ba G

p
bb G

p
bc

0 G
p
cb Gp

cc









Φa

Φb

Φc



 =





−Gp
min 0 0

0 0 0

0 0 Gp
max









Φa

Φb

Φc



 . (38)

The matries G
p
bb of the dimension (L− 2N)× (L− 2N), Gp

ba and G
p
bc of the dimension (L− 2N)×N , G

p
ab and G

p
cb

of the dimension N × (L− 2N) ,Gp
aa, G

p
cc, of the dimension N ×N are determined from �nite element approximation

and onsidered as known. Existene of zero submatries are onneted with band struture of matrix Gp
from (38).

Matries Gmin and Gmax of the dimension N ×N , and Φa and Φc of the dimension N × 1, should be onneted by

with asymoptoti expansion and will be onsidered below, matrix Φb of the dimension (L − 2N) × 1 are derived by

droping submatries Φa and Φc from matrix-solution.

We rewrite the problem (38) in the expliit form

Gp
aaΦa +G

p
abΦb = −Gp

minΦa,

G
p
baΦa +G

p
bbΦb +G

p
bcΦc = 0, (39)

G
p
cbΦb +Gp

ccΦc = Gp
maxΦc.

Let us eliminate Φb from the problem. From the seond equation the expliit expression follows

Φb = −(Gp
bb)
−1G

p
baΦa − (Gp

bb)
−1G

p
bcΦc, (40)
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however, it requires the inversion of a large-dimension matrix. To avoid it, we onsider the auxiliary problems

G
p
bbF ba = G

p
ba, G

p
bbF bc = G

p
bc. (41)

Sine G
p
bb is a nondegenerate matrix, eah of the matrix equations (41) havs a unique solution

F ba = (Gp
bb)
−1G

p
ba, F bc = (Gp

bb)
−1G

p
bc. (42)

Then, for the funtion Φb we have the expression

Φb = −F baΦa − F bcΦc, (43)

and the problem (39) takes the form

Gp
aaΦa −G

p
abF baΦa −G

p
abF bcΦc = −Gp

minΦa,

−Gp
cbF baΦa −G

p
cbF bcΦc +Gp

ccΦc = Gp
maxΦc.

Thus, the algebrai problem (38) with the matrix of the dimension L×L is redued to two algebrai problems with

the matries of the dimension N ×N

Yp
aaΦa +Yp

acΦc = −Gp
minΦa, (44)

Yp
caΦa +Yp

ccΦc = Gp
maxΦc.

where Y
p
∗∗ is determined via the solutions F ba and F bc of problems (41)

Yp
aa = Gp

aa −G
p
abF ba, Yp

ac = −Gp
abF bc, (45)

Yp
ca = −Gp

cbF ba, Yp
cc = Gp

cc −G
p
cbF bc.

Let us onsider the solution (10) for the inident wave travelling from left to right

Φ→(z → ±∞) =

{

X
(→)
max(z)T→ +X

(c)
max(z)Tc

→, z > 0,

X
(→)
min (z) +X

(←)
min (z)R→ +X

(c)
min(z)R

c
→, z < 0

(46)

and solution (11) for inident wave from right to left

Φ←(z → ±∞) =

{

X
(←)
max(z) +X

(→)
max(z)R← +X

(c)
max(z)Rc

←, z > 0,

X
(←)
min (z)T← +X

(c)
min(z)T

c
←, z < 0.

(47)

Here Φ→(z → ±∞) and Φ←(z → ±∞) are the matrix solutions of the dimension 1 × NL
o and 1 × NR

o . In other

words, there are NL
o linearly independent solutions, desribing the inident wave traveling from left to right and NR

o

linearly independent solution, desribing the inident wave traveling from right to left, respetively. The matries

X
(→)
min (z), X

(←)
min (z) of the dimension 1 × NL

o and the matries X
(→)
max(z), X

(←)
max(z) of the dimension 1 ×NR

o represent

the fundamental asymptoti solution at the left and right boundaries of the interval, desribing the motion of the

wave in the arrow diretion. The matries X
(c)
min(z) of the dimension 1 × (N − NL

o ) and X
(c)
max(z) of the dimension

1 × (N − NR
o ) are fundamental asymptotially dereasing solutions at the left and right boundaries of the interval.

The elements of these matries are olumn matries of the dimension N × 1.
It follows that the matries of re�etion amplitudes R→ and R← are square matries of the dimension NL

o × NL
o

and NR
o × NR

o , while the matries of transmission amplitudes T→, T← � are retangular matries of the dimension

NR
o × NL

o are NL
o × NR

o . The auxiliary matries Rc
→, T

c
→, R

c
← and Tc

← are retangular matries of the dimension

(N −NL
o )×NL

o , (N −NR
o )×NL

o , (N −NR
o )×NR

o è (N −NL
o )×NR

o .

Then the omponents of the wave funtion take the form

(Φa)ioiLo = X
(→)

ioiLo
(zmin) +

NL
o
∑

i′o=1

X
(←)
ioi′o

(zmin)R
(→)

i′oi
L
o
+

N−NL
o

∑

i′c=1

X
(c)
ioi′c

(zmin)R
(c→)

i′ci
L
o
,

(Φc)ioiLo =

NR
o
∑

i′o=1

X
(←)
ioi′o

(zmax)T
(→)

i′oi
L
o
+

N−NR
o

∑

i′c=1

X
(c)
ioi′c

(zmax)T
(c→)

i′ci
L
o

,

(Φa)ioiRo =

NL
o
∑

i′o=1

X
(→)
ioi′o

(zmin)T
(←)

i′oi
R
o
+

N−NL
o

∑

i′c=1

X
(c)
ioi′c

(zmin)T
(c←)

i′ci
R
o

, (48)

(Φc)ioiRo = X
(←)

ioiRo
(zmax) +

NR
o
∑

i′o=1

X
(→)
ioi′o

(zmax)R
(←)

i′oi
R
o
+

N−NR
o

∑

i′c=1

X
(c)
ioi′c

(zmax)R
(c←)

i′ci
R
o
,
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where the asymptoti solutions X(→)(z) ≡ X(+)(z), X(←)(z) ≡ X(−)(z) of the boundary value problem at z ≤ zmin

and/or z ≥ zmax
are given by Eqs. (12)�(13).

For the right-hand side of Eqs. (44) we have

(Gp
minΦa)ioiLo = X ′

(→)

ioiLo
(zmin) +

NL
o
∑

i′o=1

X ′
(←)
ioi′o

(zmin)R
(→)

i′oi
L
o

+

N−NL
o

∑

i′c=1

X ′
(c)
ioi′c

(zmin)R
(c→)

i′ci
L
o

,

(Gp
maxΦc)ioiLo =

NR
o
∑

i′o=1

X ′
(←)
ioi′o

(zmax)T
(→)

i′oi
L
o

+

N−NR
o

∑

i′c=1

X ′
(c)
ioi′c

(zmax)T
(c→)

i′ci
L
o

,

(Gp
minΦa)ioiRo =

NL
o
∑

i′o=1

X ′
(→)
ioi′o

(zmin)T
(←)

i′oi
R
o

+

N−NL
o

∑

i′c=1

X ′
(c)
ioi′c

(zmin)T
(c←)

i′ci
R
o

, (49)

(Gp
maxΦc)ioiRo = X ′

(←)

ioiRo
(zmax) +

NR
o
∑

i′o=1

X ′
(→)
ioi′o

(zmax)R
(←)

i′oi
R
o

+

N−NR
o

∑

i′c=1

X ′
(c)
ioi′c

(zmax)R
(c←)

i′ci
R
o

.

Substituting the equalities (48) and (49) into Eq. (44) we arrive at the system of nonhomogeneous equations R
(→)

i′oi
L
o
,

T
(→)

i′oi
L
o
, R

(←)

i′oi
R
o
, T

(←)

i′oi
R
o
, R

(c→)

i′ci
L
o
, T

(c→)

i′ci
L
o
, R

(c←)

i′ci
R
o
, T

(c←)

i′ci
R
o
, whih has a unique solution.

When solving the problem in the semiaxis with the Neumann or the third-kind boundary onditions an the boundary

zmin
or zmax

of the semiaxis, the role of independent variables is played by the elements of the matries Φa or Φc,

instead of R and T, while for the Dirihlet boundary onditions we have Φa = 0 or Φc = 0, so that in this ase the

orresponding equation is not taken into aount.

D. Algorithm for alulating the omplex eigenvalues and eigenfuntions of metastable states

To alulate the omplex eigenvalues and the orresponding eigenfuntions of metastable states we solve the algebrai

problem (33) for the equation with respet to the pair of unknowns u = {λh,Φh}:
{ (

Ã− λhB
)

Φh = 0, λ = 2Eh,
(

Φh,BΦh
)

− 1 = 0.
(50)

The equation of the Continuous Analog of Newton Method in the viinity of the solution u = {λh
∗ ,Φ

h
∗} with respet

to the unknowns u(t) = {Φ(t), λ(t)}, 0 ≤ t <∞ has the form

{ (

Ã− λB
)

dΦ
dt
− dλ

dt
BΦ = −

(

Ã− λB
)

Φ,

2
(

dΦ
dt

,BΦ
)

= 1− (Φ,BΦ) ,
(51)

where λ(0) and Φ(0) denote the known initial approximation for the eigenvalue and the eigenfuntion. Using the

disrete representation of derivatives

dΦ

dt

∣

∣

∣

tk
≈ Φk+1 −Φk

τk
= vk ,

dλ

dt

∣

∣

∣

tk
≈ λk+1 − λk

τk
= µk, (52)

the disrete analog of Eq.(51) obtained using the grid tk+1 = tk + τk with the step τk with respet to the pair of

unknowns µk vk takes the form

{ (

Ã− λkB
)

vk − µkBΦk = −rk,
2 (vk,BΦk) = 1− (Φk,BΦk) ,

(53)

where λ0 = λ(0) and Φ0 = Φ(0) are initial approximation to the eigenvalue and the eigenvetor. The iteration

orretions rk and vk are given by formulas

rk =
(

Ã− λkB
)

Φk, vk = −Φk + µkΘk. (54)
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The iteration orretions Θk and µk to the eigenvetor Φk and to the eigenvalue λk are alulated from the algebrai

problem

{ (

Ã− λkB
)

Θk = BΦk,

2µk (Θk,BΦk) = 1 + (Φk,BΦk) ,
(55)

whereas the iteration orretions µk is alulated by means of the formula

µk =
1 + (Φk,BΦk)

2 (Θk,BΦk)
. (56)

This option in the program is implemented, by default, when the value of the key mukopt=1.

The transition from Φk, λk at k-th step to Φk+1, λk+1 at k + 1-th step is exeuted by using the formulas

{

Φk+1 = Φk + τkvk = (1− τk)Φk + τkµkΘk,
λk+1 = λk + τkµk.

(57)

Calulation of the optimal iteration step τk. To alulation the optimal iteration step τk, we use the following
representation of the quantity rk+1 at the k + 1-th step

rk+1 =
(

Ã− λk+1B
)

Φk+1 =
(

Ã− (λk + τkµk)B
)

((1 − τk)Φk + τkµkΘk) = (1− τk)rk − τ2kµkBvk. (58)

Then the expression for the disrepany ‖rk+1‖2 takes the form

‖rk+1‖2 = (1 − τk)
2‖rk‖2 − 2(1− τk)τ

2
kµk(rk,Bvk) + τ4kµ

2
k‖Bvk‖2. (59)

We denote f(τk) = ‖rk+1‖2 and alulate its derivative

f ′(τk) = 2(τk − 1)‖rk‖2 − 2(2τk − 3τ2k )µk(rk,Bvk) + 4τ3kµ
2
k‖Bvk‖2

= 4µ2
k‖Bvk‖2 τ3k + 6µk(rk,Bvk) τ

2
k + 2

[

‖rk‖2 − 2µk(rk,Bvk)
]

τk − 2‖rk‖2. (60)

We see that f ′(0) = −2‖rk‖2 < 0 and f ′(2) = 2f(2) > 0. Hene, the funtion f(τk) has at least one minimum in the

interval (0,2). Thus, it is possible to �nd an optimum value of the iteration parameter τk = τ∗k , alulating the roots
of the ubi equation f ′(τ∗k ) = 0. If it has three real roots, one should hoose the one lose to 1. In the program the

option of hoosing the optimal step τk is implemented with the key value of mukopt=1. By default, the program

sets the value τk = 1 when the value of the key ismukopt=0. The iterative proess (55)�(57) is terminated, provided

that ‖rk+1‖2 ≤ ǫ, where 0 < ǫ≪ 1 spei�es the auray of the approximate solution.

Remark. Let Ã, λ, Φ be omplex numbers. Then µk, vk, rk are omplex numbers and the disrepany is

determined by the relation

‖rk+1‖2 = ((1− τk)r
∗
k − τ2kµ

∗
kBv∗k)((1− τk)rk − τ2kµkBvk)

= (1 − τk)
2‖rk‖2 − 2(1− τk)τ

2
kℜ(r∗k, µkBvk)1 + τ4k‖µkBvk‖2, (61)

where ‖a‖2 = (a†, a)1, and (a,b)1 = a†b.

The iteration orretions Θk and µk to the eigenvetor Φk and to the eigenvalue λk are alulated instead of (53)

from the following algebrai problem:







(

Ã− λkB
)

Θk = BΦk,

(Φk,BΦk)µk =
(

Φk,
(

Ã− λkB

)

Φk

)

,
(62)

whereas the iteration orretions µk is alulated using the formula

(Φk,BΦk) = 1, µk =

(

Φk,
(

Ã− λkB
)

Φk

)

(Φk,BΦk)
=

(Φk, rk)

(Φk,BΦk)
= (Φk, rk) . (63)

In the program this option is implemented, when the value of the key muk=0. The transition from Φk, λk at the

k-th step to Φk+1, λk+1 at the k + 1-th step is exeuted by means of the formulas

{

Φ̃k+1 = Φk + τkvk = (1− τk)Φk + τkµkΘk, Φk+1 = Φ̃k+1√
(Φ̃k+1,BΦ̃k+1)

,

λk+1 = λk + τkµk,
(64)
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with the iteration step τk alulated using the formula [8℄

τk =
‖rk‖2

‖rk‖2 + ‖r̃k+1‖2
≤ 1, (65)

where

r̃k+1 =
(

Ã− λk+1B
)

Φk+1, (66)

and Φk+1, λk+1 alulated by formula (64) at τk = 1. In program the option of hoosing the optimal step τk is

implemented with the key value of mukopt=1. By default, the program made the value τk = 1 when the value of

the key mukopt=0.

The iterative proess (62)�(65) in whih µk is alulated using the formula (63) is terminated, using Eq. (66), under

the ondition that ‖rk+1‖2 ≤ ǫ, where 0 < ǫ≪ 1 is the spei�ed auray of the approximate solution.
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IV. INPUT AND OUTPUT

This arhive ontains

File �kantbp4m.mwt� with proedure hermites() for solution of boundary problem for paragraph I,

Files with examples �examplexx.txt�.

In the proess of work the program generates the work and output �les, for example,

�hermites.dat� ontains interpolation Hermite polynomials,

�inta.dat� ontains integrals between polynomials Hermite and/or their derivatives, from whih the sti�ness and

mass matrix are onstruted,

�wfunts**.dat� ontains eigenvalues and eigenfuntions of the solved problem.

Aessing the program is as follows:

1. read �kantbp4m.mwt�; initialization of proedure;

2. ... (list of input data); input data;

3. hermites(); exeution of proedure;

4. (output data); output data

the steps 2-4 are repeated.

A. List of input and output data

keypot (by default 1)

0 � approximation of a funtion by the interpolation Hermite polynomials,

1 � solution of the eigenvalue problem (alulations of �rst eigenvalues and eigenfuntions),

2 � solution of the sattering problem,

3 � solution of the eigenvalue problem by Newton method,

4 � matries A and B from (33)�(34) are alulated and written in �les �afem.dat� and �bfem.dat�.

z independent variable.

INPUT:

�lenameh, �lenamew, �lenamea, �lenamei (by default �hermites.dat�, �wfunts*.dat�, �abfem.dat� and

�inta.dat�, respetively) �les for storing of intermediate and �nal results (see. below), where * means the value

of ounter nexe.

nexe ounter (by default at the �rst start 1, further it is inreased by 1) * in the name of �le �wfunts*.dat�

takes values equal nexe.

zpoints (at keypot=0)

ontains a list of nodes, in whih the values of the approximated funtion and its derivatives is given in the

form: zpoints:=[z1,z2,...,zn℄.

fpoints (at keypot=0)

a list, ontaining the values of the approximated funtion and its derivatives in the points from the list zpoints

is given in the form: fvalsz:=[[f(z1),f
′(z1),...,f

(κ1)(z1)℄,[f(z2),...,f
(κ2)(z2)℄,...,[f(zn),...,f

(κn)(zn)℄℄.

psubint (by default 3)

the number of subintervals on p �nite element (21), i.e. the number of nodes equals to psubint+1.

kappamax (by default 2)

multipliity of nodes.

intprep (by default 1)

0 � integrals A, B and V , from whih the sti�ness and mass matrix are read from �le �lenamei. It used if

previous exeution was performed with same psubint and kappamax.

1 � integrals A, B and V are alulate and write to the �le �lenamei.
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femmatal (by default 0)

-1 � the sti�ness matrix (AFEM) and the mass matrix (BFEM) without boundary onditions are read from �le

�lenamea.

0 � the sti�ness and the mass matrix are alulated, but are not written in �le �lenamea.

1 � the sti�ness and the mass matrix are alulated, and are written in �le �lename, after that femmatal takes

value -1.

grid11(r0), r0=0,1,...,psubint, grid11(0):=-1, grid11(psubint):=1

distribution of the nodes in the interval [-1,1℄ (by default distribution of nodes is equidistant).

eqs (by default 0)

1,2,3,..., the number of equations N in (1)

0 one equation, at this indies of vpot, RBoundL, RBoundR are not written.

nmesh (by default 0)

1,2,3,..., the number of subintervals on domain z ∈ [zmin, zmax] whih divided on �nite elements of equal length

0 on domain z ∈ [zmin, zmax] the equidistant grid is used.

zmin, zmax (at nmesh=0)

boundary points zmin
and zmax

.

zmesh(r0), r0=0,1,. . . ,nmesh, (at nmesh=1,2,3,. . . )

boundary points of nmesh subintervals

ngrid the number of �nite elements on interval [zmin, zmax℄. At nmesh=1,2,. . . is given in the form of array

ngrid(1), . . . , ngrid(nmesh) where ngrid(r0), r0=1,. . . ,nmesh means the number of �nite elements on subinterval

[zmesh(r0-1), zmesh(r0)℄,

vpot are elements of matrix of e�etive potentials Vij of the problem (1). Is given in the form:

vpot=. . . at nmesh=0 and eq=0

vpot(i0)= . . . ; i0=1..nmesh; at nmesh=1,2,. . . and eq=0

vpot(i1,i2)= . . . ; i1,i2=1. . . eq; at nmesh=0 and eq=1,2,. . .

vpot(i1,i2,i0)= . . . ; i1,i2=1. . . eq; i0=1. . . nmesh; at nmesh=1,2,. . . at eq=1,2,. . . .

Qap (at eqs=1,2,3,. . . , by default 0)

If matrix of e�etive potentials Qij is exist (1-yes, 0 - no).

qpot (at Qap=1)

are elements of matrix of e�etive potentials Qij of the problem (1). Is given in the form:

qpot(i1,i2)= . . . ; i1,i2=1. . . eq; at nmesh=0 and eq=1,2,. . .

qpot(i1,i2,i0)= . . . ; i1,i2=1. . . eq; i0=1. . . nmesh; at nmesh=1,2,. . . and eq=1,2,. . . .

FFA (by default 1)

funtion fA(z). At nmesh=1,2,. . . and FFAD=-1 is given in the form of array FFA(1),. . . ,FFA(nmesh).

FFB (by default 1)

funtion fB(z). At nmesh=1,2,. . . and FFBD=-1 is given in the form of array FFB(1),. . . ,FFB(nmesh).

FFAD (by default 0, if fA(z) is monom of z, else 1)
0 � integrals A from (33)�(34)are alulated, using expliit expressions for FFA,

± 1 � integrals A are alulated, using expansions of FFA by interpolation Hermite polynomials, FFAD< 0
involves pieewise ontinuous fA(z).

FFBD (by default 0, if fB(z) is monom of z, else 1)
0 � integrals B, V and Q from (33)�(34) are alulated, using expliit expressions for FFB

± 1 � integrals B, V and Q are alulated, using expansions FFB and FFB*vpot by interpolation Hermite

polynomials, FFBD< 0 involves pieewise ontinuous fB(z).

DirL, DirR (by default 2 at keypot=1 or 3 and 0 at keypot=2)

boundary ondition in the left and right points of interval:

1 � Dirihlet ondition,

2 � Neumann ondition ,

3 � ondition of third type,
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0 � ondition of third type that determined from the asymptoti solution (10), (11) of the multihannel sattering

problem.

RBoundL, RBoundR (are given by user at DirL=3 and DirR=3, respetively, by default 0)

relation R(z) of derivative of the solution to the solution see formula (4). At keypot=3 them may expliitly

depend on formal parameter EEh, whih orrespond to the values of Eh. At eqs=1,2,. . . , are given in the form

of matrix with dimension eqs × eqs: RBoundL(l1,l2), RBoundR(l1,l2).

asymexp (at keypot=2, by default 0)

0 � asymptoti solutions of sattering problem are given by formulas (12) and (13),

1 � asymptoti solutions of sattering problem are given by user.

Lp2OC(l1) (at keypot=2, DirL=0, array of the dimension max(1,eqs), is given by user at asymexp=1)

the square of the wave number (ptl1) at z ≤ zmin
(see (12)), if > 0, hannel l1 is opened, if ≤ 0, hannel l1 is

losed.

Rp2OC(l1) (at keypot=2, DirR=0, array of the dimension max(1,eqs), is given by user at asymexp=1)

the square of the wave number (ptl1) at z ≥ zmax
(see (12)), if > 0, hannel l1 is opened, åñëè ≤ 0, hannel l1 is

losed.

LBoundLR(l1,l2), LBoundRL(l1,l2), LBoundC(l1,l2) (at keypot=2, DirL=0, are matries of the dimension

max(1,eqs) × max(1,eqs), in whih the �rst index indiates the number of hannel, and the seond � the number

of omponent of solution, are given by user at asymexp=1)

asymptoti solutions at z ≤ zmin
, desribing the waves inident from left to right, the waves inident from right

to left and dereasing solutions for losed hannels, respetively (see (12) and (13)).

DLBoundLR(l1,l2), DLBoundRL(l1,l2), DLBoundC(l1,l2) (at keypot=2, DirL=0, are matries of the di-

mension max(1,eqs) × max(1,eqs), are given by user at asymexp=1)

derivatives of asymptoti solutions LBoundLR(l1,l2), LBoundRL(l1,l2), LBoundC(l1,l2) (see (12) and (13)).

RBoundLR(l1,l2), RBoundRL(l1,l2), RBoundC(l1,l2), DRBoundLR(l1,l2), DRBoundRL(l1,l2),

DRBoundC(l1,l2) (at keypot=2, DirR=0, are given at asymexp=1)

the same as LBoundLR(l1,l2), LBoundRL(l1,l2), LBoundC(l1,l2), DLBoundLR (l1,l2),

DLBoundRL(l1,l2), DLBoundC(l1,l2) but at z ≥ zmax
(see (12) and (13)).

numberf ( at keypot=1 by default 5)

the number of eigenfuntions.

grprint (by default 1)

Are the graphis of eigenfuntions displayed (1-yes, 0 - no, -1 (at keypot=1 or 2) the program alulates only

eigenvalues or S - matrix, 2 (at keypot=3) displayed intermediate results).

Eh (at keypot=2 or 3)

a �xed value of the energy E for the of sattering problem (at keypot=2) or an initial approximation for the

eigenvalue (at keypot=3).

Phink (at keypot=3)

the initial approximation for eigenfuntion, at eqs=1,2,. . . is given in the form of array Phink(1),. . . ,Phink(eqs).

itermax (at keypot=3, by default 20)

the number of iterations, the alulations are also terminated at the ahievement of auray 103−Digits
.

muk (at keypot=3, by default 1)

method of alulation of iteration orrestion µk (1 � by formula (56), 0 � by formula (63)).

mukopt (ïî óìîë÷àíèþ 0)

Is the optimal value of iteration step τk alulated (1- yes, 0 - no).

gropts

a set of options for drawing, by default the real and imaginary parts of the solutions are displayed by the solid

and dashed lines, and the olor is hanged from red for the �rst omponent to violet for the last omponent.

infopr (by default at the �rst exeution is 1, after 0)

Is auxiliary information displayed (1-yes, 0 - no).
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infoerr (at keypot=3, by default 1)

Are the intermediate eigenvalues, orretions and iteration step displayed (1 - yes, 0 - no).

normtp (at keypot 1 or 3, by default 1)

normalization ondition (1 � by formula (15), 0 � by formula (16) )

OUTPUT:

IHP (written to the �le �lenameh)

interpolation Hermite polynomials (25).

fun (at keypot=0, global)

the funtion, whih interpolated from values fpoints on a grid zpoints.

eigvxx, xx=1,. . . ,numberf (at keypot=1, written to the �le �lenamew)

the eigenvalues.

eigfxx, xx=1,. . . ,numberf (at keypot=1, written to the �le �lenamew)

the eigenfuntions in the form of pieewise ontinuous polynomial. At eqs=1,2,. . . the number of omponents

are added in parentheses: eigfxx(1), . . . , eigfxx(eqs)

eigfLRr, eigfLRi, eigfRLr, eigfRLi (at keypot=2 è weigf>-1, written to the �le �lenamew)

the real and imaginary parts of the eigenfuntions Φh
← and Φh

→.

NOpenL, NOpenR, NCloseL, NCloseR (ïðè keypot=2, global)

the numbers of open and losed hannels.

RLRsat, RRLsat, TLRsat, TRLsat, RLRsat, RRLsat, TLRsat, TRLsat (at keypot=2,

global, also written to the �le �lenamew)

the matries of the re�etion and transmission amplitudes, and the matries of oe�ients of asymptoti solutions

in losed hannels: R→(E), R←(E), T→(E), T←(E), Rc
←(E), Rc

→(E), T c
←(E), T→(E)c, respetively.

Smatr (at keypot=2, global)

S - matrix (8).

eigv (at keypot=3, written to the �le �lenamew)

the eigenvalue.

eigf (at keypot=3, written to the �le �lenamew)

the eigenfuntions in the form of pieewise ontinuous polynomial, the number of omponents are added in

parentheses eigf(1), . . . , eigf(max(1,eqs)).

Eh (at keypot=3, global)

eigenvalue of the disrete spetrum problem.

B. Notes

For suh variables, when keypot are not spei�ed, it is means that keypot>0.
For a short time, you an get results with an auray of the order of 8 signi�ant digits. If you want to get results

with a greater auray and the number of equations in the system is large, for example, suh that the number of

elements of the eigenvetor in solving algebrai problem exeeds NL > 103, the alulation is best done in Fortran

using a software pakage KANTBP [9℄.

Time of �silene� program when it is exeuted for the sample is not more than 1-3 minutes, long �silene� or hang

an be aused by either too muh order p′ = κmax(p+ 1)− 1 of the FEM sheme (p′ is displayed as �Order of Finite

Element Sheme�), or variable Digits or dimension of the algebrai problem NL×NL (NL is displayed as �Dimension

of algebrai eigenvalue problem�), or the elements of the matrix algebrai problem is not alulated in the form of

numbers, for example, presented as formal expressions. In the latter ase it is reommended to start the program

with keypot=4 and view the elements of the matries in the �les �afem.dat� and �bfem.dat�.
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V. EXAMPLES

Sample �les are loated in the same arhive and alled examplexx.txt (xx=01�16). For exeution of the ode

for a seleted examplexx.txt user should opy it to Maple worksheet via �opy/paste�, or use Maple ommand <<
read �examplexx.txt� >>, or open �le examplexx.txt by Maple hoosing <<Maple Input >>.

Examples of numerial solution of boundary value problems for systems of ODE on a �nite interval with

boundary onditions of the �rst, seond and third type, that approximate the test quantum mehanial eigenvalue

problems and the sattering problems on an in�nite interval, and the problem of alulating the metastable states on

a su�iently large but �nite interval. To ontrol of an auray of the numerial solution omputed error obtained

when substituting the ODE, ε̄m(z) = |(D(z) − Eh
m)Φh

m(z)|, z ∈ (zmin, zmax). If the test problem has an analytial

solution, it is alulated as the absolute value of the di�erene between the numerial and the known analyti solutions

εm(z) = |Φh
m(z) − Φexact

m (z)|, z ∈ (zmin, zmax), m = 1, 2, ...,numberf. Plots of alulated errors ε̄m(z) and εm(z) of
eigenfuntions are displayed on the omputer sreen.

Sine the eigenfuntions of the disrete spetrum of deay exponentially Φas
m (z) ∼ exp(−

√
−Em|z|) in the

z → ∞, then the original problem is redued to a boundary value problem for bound states in a �nite interval with

Dirihlet or Neumann onditions at the boundary points zmin
and zmax

interval and the normalization ondition

(15). Solutions of the redued boundary problem di�ers from the solution of the original problem of the order of

ǫ
(1)
m =

∫ zmin

−∞
Φas

m (z)Φas
m (z)dz +

∫ +∞

zmax Φ
as
m (z)Φas

m (z)dz and atually determined by the sum of the exponents ǫ
(1)
m ≈

(|Φas
m (zmin)| + |Φas

m (zmax)|)/(−2
√
−Em) in the boundary points of the interval. For a given value of error ǫ

(1)
m , we

have the estimate of required values of the boundary points zmin
and zmax

of a �nite interval.
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Example 01. The interpolation of funtion by the given values of the funtion and its derivatives on the grid

restart;read "kantbp4m.mwt";keypot:=0; 1

2

vv:=-99/8/osh(z)^2; 3

zpoints:=[0, 5/4, 5/2, 3℄; 4

fpoints:=[[subs(z=zpoints[1℄,vv)℄ 5

,[subs(z=zpoints[2℄,vv),seq(subs(z=zpoints[2℄,diff(vv,z$i)),i=1..4)℄ 6

,[subs(z=zpoints[3℄,vv),subs(z=zpoints[3℄,diff(vv,z))℄ 7

,[subs(z=zpoints[4℄,vv),subs(z=zpoints[4℄,diff(vv,z)),subs(z=zpoints[4℄,diff(vv,z,z))℄ 8

℄; 9

hermites(); 10

fun1:=fun; 11

plot([fun1,vv℄,z=0..3);plot([fun1-vv℄,z=0..3); 12

Line 1: Initialization proedure.

Line 3: An approximated funtion.

Lines 4-9: It is assumed that there is a set of values of the funtion and its derivatives in the mesh points of a

grid named 'zpoints': in �rst point value of funtion is given, in seond point the values of funtion of the derivatives

up to fourth order are given, in third point the values of funtion of the derivatives up to �rst order are given, and in

forth point the values of funtion of the derivatives up to seond order are given.

Lines 10-12: interpolation of the funtion and veri�ation : graphis of the alulated funtion and a di�erene

between the alulated and approximated funtion
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Example 02. Solution of the eigenvalue problem with Dirihlet, Neumann and third kind boundary onditions

Program alulates solutions of the eigenvalue problem (1) with the potential V (z) = 0 for di�erent boundary

onditions: Dirihlet, Neumann, and the third kind, for whose eigenvalues and funtions are known in analytial

form, for example, En = 1, 4, 9, 16, . . . of Dirihlet boundary onditions and En = 0, 1, 4, 9, . . . for Neumann boundary

onditions.

restart;read "kantbp4m.mwt"; 1

psubint:=3; kappamax:=2; 2

vpot:=0; 3

ngrid:=4;zmin:=-Pi/2;zmax:=Pi/2; 4

numberf:=5; 5

6

DirL:=1;DirR:=1; 7

hermites(); 8

9

DirL:=2;DirR:=2; 10

hermites(); 11

12

DirL:=3;DirR:=3;RBoundL:=5;RBoundR:=5; 13

hermites(); 14

15

16

read "wfunts1.dat": 17

for ii from 1 to numberf do 18

plots[logplot℄([abs(abs(eigf||ii)-abs(sin(ii*z+Pi*ii/2)/sqrt(Pi/2)))℄,z=zmin..zmax 19

,title=at("test by omparison with ",onvert(ii,string),"-th exat w.f.")); 20

plots[logplot℄([abs(-diff(eigf||ii,z,z)-eigv||ii*eigf||ii)℄,z=zmin..zmax 21

,title=at("test by substitution of ",onvert(ii,string),"-th solution to ODE")); 22

od; 23

24

read "wfunts2.dat": 25

for ii from 1 to numberf do 26

plots[logplot℄([abs(abs(eigf||ii)-abs(os((ii-1)*z+Pi*(ii-1)/2)/sqrt(Pi/`if`(ii=1,1,2))))℄ 27

,z=zmin..zmax 28

,title=at("test by omparison with ",onvert(ii,string),"-th exat w.f.")); 29

plots[logplot℄([abs(-diff(eigf||ii,z,z)-eigv||ii*eigf||ii)℄,z=zmin..zmax 30

,title=at("test by substitution of ",onvert(ii,string),"-th solution to ODE")); 31

od; 32

Lines 1-2: Initialization of proedure, and the hoie of parameters of �nite element method.

Line 3: the e�etive potential of the problem.

Line 4: Selet of the interval of integration and partition it into 4 equal sub-interval.

Line 5: Selet the number of desired eigenfuntions.

Lines 7-8: The solution of the problem with Dirihlet boundary onditions. The eigenfuntions and eigenvalues

are written to the �le 'wfunts1.dat' (see. �lenamew).

Lines 10-11: The solution of the same problem, but with the Neumann boundary onditions. The eigenfuntions

and eigenvalues are written to the �le 'wfunts2.dat'.

Lines 13-14: The solution of the same problem, but with boundary onditions of the third kind Φ′(z) = 5Φ(z)
in the z = zmin

and z = zmax
. The eigenfuntions and eigenvalues are written to the �le 'wfunts3.dat'.

Lines 17-23: Display graphs of disrepany of eigenfuntions for the problem with Dirihlet boundary onditions.

The absolute value of the di�erene between the numerial and the known analyti solutions εm(z) = |Φnum
m (z) −

Φexact
m (z)|, z ∈ (zmin, zmax), m = 1, 2, ...,numberf and auray of numerial solutions obtained when substituting the

TAC, ε̄m(z) = |(D(z)− Em)Φnum
m (z)|, z ∈ (zmin, zmax).

Lines 25-32: Display graphs of disrepany of eigenfuntions εm(z) and ε̄m(z) for a problem with Neumann

boundary onditions.
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Example 03. The solution of the eigenvalue problem for the Shr�odinger equation with the one-dimensional

harmoni osillator potential and the radial equation for the d-dimensional harmoni osillator

The original problem for bound states is formulated for the Shr�odinger equation of d-dimensional harmoni

osillator

(D− Em)Φm(z) =

(

− 1

zd−1
d

dz
zd−1

d

dz
+ z2 − Em

)

Φm(z) = 0,

has an analytial solution - the eigenvalues Eexact
m and the eigenfuntions of Φexact

m (z), normalized by the ondition

(15) on in�nite interval z ∈ (−∞,+∞) at d = 1 (Eexact
m = 1, 3, 5, 7, . . .), or semi-in�nite interval z ∈ (0,+∞) at

d ≥ 2 (Eexact
m = d, d+ 4, d+ 8, . . .).

The original problem is reformulated as eigenvalues problem (1) with boundary onditions (2) and the normal-

ization ondition (15) (if d ≥ 2, then at z = z min
the boundary ondition (3) is applied), at fB(z) = fA(z) = zd−1,

N = 1, V (z) ≡ V11(z) = z2.

restart;read "kantbp4m.mwt"; 1

psubint:=3;kappamax:=2; 2

vpot:=(z)^2; 3

ngrid:=14;zmin:=-7;zmax:=7; 4

numberf1:=10;numberf:=numberf1;filenamew:="1dos.dat"; 5

hermites(); 6

7

intprep:=1;ddim:=5;filenamew:="5dos.dat"; 8

vpot:=(z)^2; ngrid:=7; 9

FFA:=z^(ddim-1);FFB:=z^(ddim-1); 10

zmin:=0;zmax:=7;numberf2:=5;numberf:=numberf2; 11

hermites(); 12

13

read "1dos.dat": 14

osfun1(0):=0; 15

for ii from 1 to numberf1 do 16

osfun1(ii):=`if`(ii=1 17

,exp(-z^2/2)/sqrt(sqrt(Pi)) 18

,sqrt(2)*z/sqrt(ii-1)*osfun1(ii-1)-sqrt(ii-2)/sqrt(ii-1)*osfun1(ii-2)); 19

plots[logplot℄([abs(abs(eigf||ii)-abs(osfun1(ii)))℄,z=zmin..zmax 20

,title=at("1d os: test by omparison with ",onvert(ii,string),"-th exat w.f.")); 21

print(%); 22

plots[logplot℄([abs(-diff(eigf||ii,z,z)+z^2*eigf||ii-Re(eigv||ii)*eigf||ii)℄,z=zmin..zmax 23

,title=at("1d os: test by substitution of ",onvert(ii,string),"-th solution to ODE")); 24

print(%); 25

od: 26

27

28

read "5dos.dat": 29

for ii from 1 to numberf2 do 30

osfun(ii):=sqrt(2*GAMMA(ii-1+(ddim)/2)/GAMMA((ii-1) +1)) 31

/GAMMA(ddim/2) 32

*exp(-z^2/2)*hypergeom([-ii+1℄,[ddim/2℄,z^2); 33

plots[logplot℄([abs(abs(eigf||ii)-abs(osfun(ii)))℄,z=zmin..zmax 34

,title=at(onvert(ddim,string),"d os: test by omparison with " 35

,onvert(ii,string),"-th exat w.f.")); 36

print(%); 37

plots[logplot℄([abs(-1/FFB*diff(FFA*diff(eigf||ii,z),z)+z^2*eigf||ii-Re(eigv||ii)*eigf||ii)℄ 38

,z=zmin..zmax,title=at(onvert(ddim,string),"d os: test by substitution of " 39

,onvert(ii,string),"-th solution to ODE")); 40

print(%); 41

od: 42

Lines 1-2: Initialization of proedures, and the hoie of parameters of �nite element method.
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Line 3: The e�etive potential of the problem.

Line 4: Selet the interval of integration tasks and splitting it into 14 equal intervals.

Lines 5-6: Calulation of the �rst 10 of the eigenfuntions and eigenvalues of a one-dimensional harmoni

osillator.

Lines 8-12: Calulating the �rst 10 eigenfuntions and eigenvalues of the problem for the d-dimensional harmoni

osillator. The matrix elements are re-read again. This is important, if FFAD=0 or FFBD=0.

Lines 14-26: Display of plots of errors εm(z) and ε̄m(z) for the one-dimensional harmoni osillator.

Lines 29-42: Display of plots of errors eigenfuntions εm(z) and ε̄m(z) for the d-dimensional harmoni osillator.
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Example 04. The solution of the eigenvalue problem for the radial equation with Coulomb potential

The original problem for bound states is formulated for the Shr�odinger equation with Coulomb potential

(D− En)Φn(z) =

(

− 1

zd−1
d

dz
zd−1

d

dz
− 2

z
− En

)

Φn(z) = 0,

whih has an analytial solution � eigenvalues Eexact
n and the eigenfuntions of Φexact

n (z), normalized by the ondition

(15) in the semi-in�nite interval z ∈ (0,+∞) in the (d ≥ 2) -dimensional spae, In partiular, for the d = 3,
Eexact

n = −1/n2
, n = 1, 2, ...

Firstly, the eigenvalue problem (1) with boundary onditions (3) and the normalization ondition (15) at

fB(z) = fA(z) = z2, N = 1, V (z) ≡ V11(z) = −2/z is solved, then the boundary onditions (3) are replaed by

boundary onditions (4), depending on the eigenvalue En, and the solutions are performed by Newton method.

restart; read "kantbp4m.mwt"; 1

psubint:=3; kappamax:=2; 2

3

FFA:=z^2;FFB:=FFA; 4

FFAD:=0; FFBD:=0; #hoose 1 or 0; 5

6

nmesh:=12; for i from 1 to nmesh do vpot(i):=-2/(z);ngrid(i):=1;od; 7

8

zmesh(0):=1/32;for i from 1 to nmesh do zmesh(i):=zmesh(i-1)+2^i/64;od; 9

10

numberf:=5; hermites(); 11

12

read "wfunts1.dat": 13

for i from 1 to nmesh do ngrid(i):=4;od; 14

15

DirL:=3;DirR:=3;keypot:=3; 16

17

18

RBoundL := (-1-(1/3*(EEh-2))*zmesh(0) 19

+(1/6*(2*EEh-1))*zmesh(0)^2 20

+(1/90*(-10*EEh+2+3*EEh^2))*zmesh(0)^3) 21

/(1-zmesh(0)-(1/6*(EEh-2))*zmesh(0)^2+(1/18*(2*EEh-1))*zmesh(0)^3 22

+(1/360*(-10*EEh+2+3*EEh^2))*zmesh(0)^4); 23

24

RBoundR:=-sqrt(-EEh+subs(z=zmesh(nmesh),vpot(nmesh))); 25

Digits:=16; 26

for ii from 1 to numberf do 27

Phink:=eigf||ii: 28

Eh:=eigv||ii; 29

hermites(); 30

od: 31

32

for ii from 1 to numberf do 33

read at("wfunts",onvert(ii+1,string),".dat"): 34

plots[logplot℄([abs(abs(eigf(1))-abs(2/ii^(3/2)*exp(-z/ii)*hypergeom([-ii+1℄,[2℄,2*z/ii)))℄ 35

,z=zmesh(0)..zmesh(nmesh) 36

,title=at("test by omparison with ",onvert(ii,string),"-th exat w.f.")); 37

print(%); 38

plots[logplot℄([abs(-1/z^2*diff(z^2*diff(eigf(1),z),z)-2/z*eigf(1)-eigv*eigf(1))℄ 39

,z=zmesh(0)..zmesh(nmesh) 40

,title=at("test by omparison with ",onvert(ii,string),"-th exat w.f.")); 41

print(%); 42

od: 43

Lines 1-2: Initialization of proedure, and the hoie of parameters of �nite element method.
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Line 4: Determination of fA(z) and fB(z)
Line 5: Choosing a method of alulating of the integrals to generate algebrai problem.

Lines 7 and 9: Firstly, the problem with Neumann boundary onditions is solved on a nonuniform grid Ωz =
{1/32, 1/16, 1/8, ..., 64, 128}, the e�etive potential should be set on on eah of the sub-intervals.

Line 11: First �ve eigenfuntions and eigenvalues are alulated and written to the �le 'wfunts1.dat' (see.

�lenamew) .

Line 13: First �ve eigenfuntions and eigenvalues are read from the �le 'wfunts1.dat' .

Line 14: Sets a more dense irregular grid Ω′z = {1/32, 5/128, 3/64, 7/128, 1/16, 5/64, 3/32, 7/64,
1/8, ..., 64, 80, 96, 112, 128}, where eah subinterval Ωz divided into 4 parts.

Line 16: Selet the options for solving the problem by Newton's method with boundary onditions of the third

kind.

Lines 19-25: Sets the asymptoti terms of the asymptoti expansions of the solution at z → 0 and z → +∞.

Lines 26-31: Preision of the �rst �ve eigenfuntions and eigenvalues of Newton's method.

Lines 33-43: Displaying of graphs of errors εn(z) and ε̄n(z) of eigenfuntions for solving the problem by Newton's

method.
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Example 05. The solution of the eigenvalue problem with a one-dimensional P�oshl-Teller potential

The original problem for bound states is formulated on an in�nite interval of z ∈ (−∞,+∞) for the Shr�odinger
equation with the P�oshl-Teller potential

(D− Em)Φm(z) =

(

− d2

dz2
+
−λ(λ− 1)

cosh(z)2
− Em

)

Φm(z) = 0, (67)

with solutions are known in analytial form � eigenvalues Eexact
m and the eigenfuntions of Φexact

m (z) normalized

by the ondition (15) at zmin → −∞ and zmax → +∞. For the hosen λ = 11/2, there are �ve eigenvalues

Eexact
m = [−20.25,−12.25,−6.25,−2.25,−0.25].

The eigenvalues problem (1) with boundary onditions (3) and the normalization ondition (15) at fB(z) =

fA(z) = 1, N = 1 and V (z) ≡ V11(z) =
−λ(λ−1)
cosh(z)2 is solved. The program alulates �ve numerial eigenfuntions and

eigenvalues.

A.A. Gusev, et al, Leture Notes in Computer Siene 8660, pp. 138�154 (2014)

restart;read "kantbp4m.mwt"; 1

psubint:=3;kappamax:=2; 2

3

nmesh:=5; 4

for i from 1 to nmesh do ngrid(i):=4;vpot(i):=-99/4/osh(z)^2;od; 5

zmesh(0):=-20;zmesh(1):=-5;zmesh(2):=-1; 6

zmesh(3):=1;zmesh(4):=5;zmesh(5):=20; 7

8

numberf:=5;hermites(); 9

10

read "wfunts1.dat": 11

ptfun(1) := (8/35)*sqrt(70)/(osh(z)^(9/2)*sqrt(Pi)); 12

ptfun(2) := (8/5)*sqrt(10)*sinh(z)/(osh(z)^(9/2)*sqrt(Pi)); 13

ptfun(3) := -(2/7)*sqrt(14)*(-8+7*osh(z)^2)/(osh(z)^(9/2)*sqrt(Pi)); 14

ptfun(4) := -(2/5)*sqrt(10)*sinh(z)*(-8+5*osh(z)^2)/(osh(z)^(9/2)*sqrt(Pi)); 15

ptfun(5) := (1/5)*sqrt(5)*(16-20*osh(z)^2+5*osh(z)^4)/(osh(z)^(9/2)*sqrt(Pi)); 16

17

for ii from 1 to 5 do 18

plots[logplot℄([abs(abs(eigf||ii)-abs(ptfun(ii)))℄,z=zmesh(0)..zmesh(nmesh) 19

,title=at("PT: test by omparison with ",onvert(ii,string),"-th exat w.f.")); 20

print(%); 21

plots[logplot℄([abs(-diff(eigf||ii,z,z)+vpot(1)*eigf||ii-Re(eigv||ii)*eigf||ii)℄ 22

,z=zmesh(0)..zmesh(nmesh) 23

,title=at("PT: test by substitution of ",onvert(ii,string),"-th solution to ODE")); 24

print(%); 25

od: 26

Lines 1-2: Initialization of proedure, and the hoie of parameters of �nite element method.

Lines 4-7: The problem is solved in the quasi-uniform grid Ωz = {−20(4)− 5(4)− 1(4)1(4)5(4)20}, where the
number in parentheses denotes the number of subinterval �nite element, eah of nmesh: = 5 subintervals e�etive

potential must be spei�ed.

Line 9: The solution of the problem with Neumann boundary onditions. Calulation of �rst �ve eigenfuntions

and eigenvalues.

Lines 11-26: Display graphs errors εm(z) and ε̄m(z) of eigenfuntions.
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Example 06. The solution of the eigenvalue problem with a one-dimensional potential Sarf (omplex

P�oshl-Teller potential)

The original problem for bound states is formulated on an in�nite interval z ∈ (−∞,+∞) for the Shr�odinger
equation with the Sarf potential

(D− Em)Φm(z) =

(

− d2

dz2
+

V1

cosh(z)2
+ ı

V2 sinh(z)

cosh(z)2
− Em

)

Φm(z) = 0, (68)

solutions are known in analytial form: - eigenvalues Eexact
m and the eigenfuntions of Φexact

m (z) normalized by the

ondition (16) at zmin → −∞ and zmax → +∞.

The eigenvalue problem (1) with boundary onditions (3) and the normalization ondition (16) at fB(z) =

fA(z) = 1, N = 1 and V (z) ≡ V11(z) =
V1

cosh(z)2 + ıV2 sinh(z)
cosh(z)2 is solved.

A.A. Gusev, et al, Leture Notes in Computer Siene 9301, pp. 182�197 (2015);

restart;Digits:=12; read "kantbp4m.mwt"; 1

keypot:=1;psubint:=3;kappamax:=2; 2

3

nmesh:=3; 4

ngrid(1):=4;ngrid(2):=ngrid(1);ngrid(3):=ngrid(1); 5

zmesh(0):=-12;zmesh(1):=-2;zmesh(2):=2;zmesh(3):=12; 6

V1:=2;V2:=3; 7

vpot(1):=-V1/osh(z)^2-V2*I*sinh(z)/osh(z)^2; 8

vpot(2):=vpot(1);vpot(3):=vpot(1); 9

10

numberf:=2;hermites(); 11

12

for n from 0 to numberf-1 do 13

En:=evalf(-(n+1/2-1/2*(sqrt(1/4+V1+V2)+sqrt(1/4+V1-V2)))^2); 14

od; 15

16

read "wfunts1.dat": 17

for ii from 1 to numberf do 18

plots[logplot℄([abs(-diff(eigf||ii+I*eigfi||ii,z,z) 19

+(vpot(1)-eigv||ii)*(eigf||ii+I*eigfi||ii))℄,z=zmesh(0)..zmesh(nmesh) 20

,title=at("Sarf: test by substitution of ",onvert(ii,string),"-th solution to ODE")); 21

od; 22

Lines 1-2: Initialization of proedure, and the hoie of parameters of �nite element method.

Lines 4-9: The problem is solved in the quasi-uniform grid Ωz = {−12(4)− 2(4)2(4)12}, where the number in
brakets denotes the number of subinterval �nite element, eah of nmesh:=3 subintervals e�etive potential must be

spei�ed.

Line 11: Calulating and writing to the �le 'wfunts1.dat' (see. �lenamew) two eigenfuntions and eigenvalues.

Lines 13-15: The analytial expressions for the eigenvalues Em are given to verify the auray of approximate

eigenvalues Eh
m.

Lines 17-22: Display graphs of error of numerial solution ε̄m(z).
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Example 07. The solution of the sattering problem for one-dimensional P�oshl-Teller potential

The original sattering problem is formulated on an in�nite interval z ∈ (−∞,+∞) for the Shr�odinger equation
with the P�oshl-Teller potential

(D− E)Φ(z) =

(

− d2

dz2
+
−λ(λ− 1)

cosh(z)2
− E

)

Φ(z) = 0, (69)

and has solutions known in analytial form: eigenfuntions Φexact
m (z), and the transmission Tv re�etion and Rv.

Beause the e�etive potential symmetri with respet to z = 0 solution of the problem an be onstruted

from even and odd solutions of the original sattering problems, but on a semiaxis z ∈ (0,+∞), with the Neumann

or the Dirihlet boundary onditions at z = 0, respetively.
The boundary value problem (1) with boundary onditions (3) whih are determined from the asymptoti

solution (10), (11), of sattering problem fB(z) = fA(z) = 1, N = 1 and V (z) ≡ V11(z) =
−λ(λ−1)
cosh(z)2 is solved.

restart;Digits:=16; read "kantbp4m.mwt"; 1

keypot:=2;psubint:=2;kappamax:=3; 2

3

lambda:=11/2; 4

#lambda:=1/2+7/sqrt(2)*I; 5

vpot:=-expand(lambda*(lambda-1))/osh(z)^2; 6

7

Eh:=7.0; 8

zmin:=0;zmax:=8;ngrid:=12;DirL:=1; 9

hermites();Rrl1:=RRLsat; 10

11

DirL:=2; hermites();Rrl2:=RRLsat; 12

13

zmin:=-8;zmax:=8;DirL:=0;ngrid:=24; hermites(); 14

15

"tests"; 16

"|R<-|^2+|T<-|^2-1"=abs(TRLsat[1,1℄)^2+abs(RRLsat[1,1℄)^2-1; 17

"|R->|^2+|T->|^2-1"=abs(TLRsat[1,1℄)^2+abs(RLRsat[1,1℄)^2-1; 18

"|Reven|^2-1"=abs(Rrl1[1,1℄)^2-1; "|Rodd|^2-1"=abs(Rrl2[1,1℄)^2-1; 19

"( Reven+Rodd)/2-R<-"=(Rrl1[1,1℄+Rrl2[1,1℄)/2-RRLsat[1,1℄; 20

"(-Reven+Rodd)/2-T<-"=(-Rrl1[1,1℄+Rrl2[1,1℄)/2-TRLsat[1,1℄; 21

"(Reven+Rodd)/2-T->"=(Rrl1[1,1℄+Rrl2[1,1℄)/2-RLRsat[1,1℄; 22

"(-Reven+Rodd)/2-T->"=(-Rrl1[1,1℄+Rrl2[1,1℄)/2-TLRsat[1,1℄; 23

24

k:=sqrt(Eh):p:=evalf(sinh(Pi*k)/sin(Pi*lambda)): 25

"|Rexat|^2-|R<-|^2"=1/(1+p^2)-abs(RRLsat[1,1℄)^2; 26

"|Texat|^2-|T<-|^2"=p^2/(1+p^2)-abs(TRLsat[1,1℄)^2; 27

28

read "wfunts1.dat": 29

plots[logplot℄([abs(-diff(eigfRLr(1,1)+I*eigfRLi(1,1),z,z) 30

+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))℄,z=0..zmax 31

,title=at("PT: test by substitution of odd solution to ODE")); 32

33

read "wfunts2.dat": 34

plots[logplot℄([abs(-diff(eigfRLr(1,1)+I*eigfRLi(1,1),z,z) 35

+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))℄,z=0..zmax 36

,title=at("PT: test by substitution of even solution to ODE")); 37

38

read "wfunts3.dat": 39

plots[logplot℄([abs(-diff(eigfRLr(1,1)+I*eigfRLi(1,1),z,z) 40

+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))℄,z=zmin..zmax 41

,title=at("PT: test by substitution of RL solution to ODE")); 42

plots[logplot℄([abs(-diff(eigfLRr(1,1)+I*eigfLRi(1,1),z,z) 43



32

+(vpot-Eh)*(eigfLRr(1,1)+I*eigfLRi(1,1)))℄,z=zmin..zmax 44

,title=at("PT: test by substitution of LR solution to ODE")); 45

Lines 1-2: Initialization of proedure, and the hoie of parameters of �nite element method.

Lines 4-6: The e�etive potential of the problem.

Line 8: Sets the �xed value of the energy for the sattering problem

Lines 9-10: solving boundary value problems (1) on a uniform grid with Dirihlet boundary onditions (2) at

z = 0 and the third kind (4) at z = zmax
with asymptoti solutions of the sattering problem on the semiaxis (9),

(12).

Line 12: The deision of the boundary problem (1) on a uniform grid with Neumann boundary onditions (3)

at z = 0 and the third kind (4) at z = zmax
with asymptoti solutions of the sattering problem on the semiaxis (9),

(12).

Line 14: The deision of the boundary problem (1) on a uniform grid with the boundary of the Third Kind (4)

at z min
and z = zmax

with asymptoti solutions sattering on the axis (7), (12).

Lines 16-27: Cheking errors (≃ 0) of implementation relations for the amplitudes of the re�etion and

transmission |R←|2 + |T←|2 − 1 = 0, |R→|2 + |T→|2 − 1 = 0, |Reven|2 − 1 = 0, |Rodd|2 − 1 = 0, Communi-

ation between the amplitudes of re�etion on the half and amplitudes of the re�etion and transmission axis

(Reven+Rodd)/2−R← = 0, (−Reven+Rodd)/2−T← = 0, (Reven+Rodd)/2−R→ = 0, (−Reven+Rodd)/2−T→ = 0, and
omparing the re�etion and transmission oe�ients with known analytial value |Rexact

→ |2 = |Rexact
← |2 = 1/(1 + p2),

|T exact
→ |2 = |T exact

← |2 = p2/(1 + p2), p = sinh(π
√
E)/ sin(πλ).

Lines 29-45: displaying graphs of error of numerial solution ε̄m(z).
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Example 08. The solution of the sattering problem for one-dimensional Sarf potential

The original sattering problem is formulated on an in�nite interval z ∈ (−∞,+∞) for the Shr�odinger equation
with the Sarf potential

(D− E)Φ(z) =

(

− d2

dz2
+

V1

cosh(z)2
+ ı

V2 sinh(z)

cosh(z)2
− E

)

Φ(z) = 0, (70)

and has solutions known in analytial form: eigenfuntions Φexact
m (z), and the transmission Tv re�etion and Rv.

The boundary value problem (1) with boundary onditions (3) whih are determined from the asymptoti

solution (10), (11), of sattering problem at fB(z) = fA(z) = 1, N = 1, V (z) ≡ V11(z) =
V1

cosh(z)2 + ıV2 sinh(z)
cosh(z)2 is solved.

restart;Digits:=12;read "kantbp4m.mwt"; 1

keypot:=2; psubint:=2; kappamax:=3; 2

3

V1:=2;V2:=3; 4

vpot:=V1/osh(z)^2+V2*I*sinh(z)/osh(z)^2; 5

6

Eh:=2.0; 7

zmin:=-12;zmax:=12;ngrid:=60; 8

hermites(); 9

10

"tests"; 11

k:=sqrt(Eh); 12

gp:=sqrt(V1+V2-1/4): 13

gm:=sqrt(V1-V2-1/4): 14

TK:=evalf((sinh(2*Pi*k))^2 15

/((sinh(2*Pi*k))^2+2*osh(2*Pi*k)*osh(Pi*gp)*osh(Pi*gm)+osh(Pi*gp)^2+osh(Pi*gm)^2)); 16

RL:=evalf((2*osh(Pi*gp)*osh(Pi*gm)+osh(Pi*gp)^2*exp(-2*Pi*k)+osh(Pi*gm)^2*exp(2*Pi*k)) 17

/((sinh(2*Pi*k))^2+2*osh(2*Pi*k)*osh(Pi*gp)*osh(Pi*gm)+osh(Pi*gp)^2+osh(Pi*gm)^2)); 18

RR:=evalf((2*osh(Pi*gp)*osh(Pi*gm)+osh(Pi*gp)^2*exp(2*Pi*k)+osh(Pi*gm)^2*exp(-2*Pi*k)) 19

/((sinh(2*Pi*k))^2+2*osh(2*Pi*k)*osh(Pi*gp)*osh(Pi*gm)+osh(Pi*gp)^2+osh(Pi*gm)^2)); 20

"|Texat|^2-|T->|^2"=TK-abs(TLRsat[1,1℄)^2; 21

"|Texat|^2-|T<-|^2"=TK-abs(TRLsat[1,1℄)^2; 22

"|Rexat|^2-|R->|^2"=RL-abs(RLRsat[1,1℄)^2; 23

"|Rexat|^2-|R<-|^2"=RR-abs(RRLsat[1,1℄)^2; 24

25

read "wfunts1.dat": 26

plots[logplot℄([abs(-diff(eigfRLr(1,1)+I*eigfRLi(1,1),z,z) 27

+(vpot-Eh)*(eigfRLr(1,1)+I*eigfRLi(1,1)))℄,z=zmin..zmax 28

,title=at("Sarf: test by substitution of RL solution to ODE")); 29

plots[logplot℄([abs(-diff(eigfLRr(1,1)+I*eigfLRi(1,1),z,z) 30

+(vpot-Eh)*(eigfLRr(1,1)+I*eigfLRi(1,1)))℄,z=zmin..zmax 31

,title=at("Sarf: test by substitution of LR solution to ODE")); 32

Lines 1-2: - Initialization proedures, and the hoie of parameters of �nite element method.

Lines 4-5: The e�etive potential of the problem.

Line 7: Setting a �xed value of the energy for the sattering problem

Lines 8-9: The deision of the boundary problem (1) on a uniform grid with the boundary of the third kind

(4) at zmin
and z = z max

with asymptoti solutions of the sattering problem for axis (7), (12).

Lines 11-24: A omparison of the re�etion oe�ients and passing to known analytial values |Rexact
→ |2,

|Rexact
← |2, |T exact

→ |2 = |T exact
← |2.

Lines 26-32: displaying graphs of error of numerial solution ε̄m(z).
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Example 09. The solution of the eigenvalue problem for square well potential

The original problem for bound states is formulated on an in�nite interval z ∈ (−∞,+∞) for the Shr�odinger
equation with the pieewise onstant potential

(D− Em)Φm(z) =

(

− d2

dz2
+ V (z)− Em

)

Φm(z) = 0, V (z) = {V0, |z| ≤ a; 0, otherwise},

solutions are known in analytial form: � eigenvalues Eexact
m and the eigenfuntions of Φexact

m (z) normalized by the

ondition (16) at zmin → −∞ and zmax → +∞.

The eigenvalue problem (1) with boundary onditions (3) and the normalization ondition (16) at fB(z) =
fA(z) = 1, N = 1 with the above V (z) is solved.

restart;read "kantbp4m.mwt"; 1

psubint:=6; kappamax:=1; 2

3

V:=-50;a:=1; 4

nmesh:=3; vpot(1):=0;vpot(2):=V;vpot(3):=0; 5

ngrid(1):=10;ngrid(2):=20;ngrid(3):=10; 6

zmesh(0):=-5;zmesh(1):=-a;zmesh(2):=a;zmesh(3):=5; 7

8

numberf:=5;hermites(); 9

10

"test"; 11

eq3:=tan(sqrt(E-V)*a)=sqrt(-E)/sqrt(E-V): 12

eq3a:=tan(sqrt(E-V)*a)=-sqrt(E-V)/sqrt(-E): 13

ExatEigenvalues=sort({seq(fsolve(eq3,E=V+n^2/a^2),n=1..eil(evalf(a*sqrt(-V)))) 14

,seq(fsolve(eq3a,E=V+n^2/a^2),n=1..eil(evalf(a*sqrt(-V))))}); 15

Lines 1-2: Initialization proedures, and the hoie of parameters of �nite element method.

Lines 4-7: The problem is solved in the quasi-uniform grid Ωz = {−5(10)− a(20)a(10)5}, where the number in
brakets indiates the number of �nite elements eah of nmesh: = 3 subintervals. It is important to point potential

breaks oinide with nodes zmesh(*).

Line 9: Calulation and write to the �le 'wfunts1.dat' (see. �lenamew) �ve eigenfuntions and eigenvalues.

Lines 11-15: the exat eigenvalues of the problem is the solution of algebrai equations 'eq3' and 'eq3a' for the

depth of the potential well V and a width 2a.
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Example 10. The solution of the eigenvalue problem for the system of equations with square well potentials

The original problem for bound states is formulated on an in�nite interval z ∈ (−∞,+∞) for the system of

equations

−d2Φ1(z)

dz2
+ V11(z)Φ1(z) + V12(z)Φ2(z) + . . .+ V1N (z)ΦN(z)− EΦ1(z) = 0,

−d2Φ2(z)

dz2
+ V21(z)Φ1(z) + V22(z)Φ2(z) + . . .+ V2N (z)ΦN(z)− EΦ2(z) = 0,

.

.

.

−d2ΦN (z)

dz2
+ VN1(z)Φ1(z) + VN2(z)Φ2(z) + . . .+ VNN (z)ΦN (z)− EΦN (z) = 0,

with the matrix of pieewise onstant potentials

Vij(z) = Vji(z) = {Vij;1, z ≤ z1;Vij;2, z ≤ z2; . . . ;Vij;k−1 , z ≤ zk−1;Vij;k, z > zk−1}.

The set of eigenvalues Eex
1 < Eex

2 < ... < Eex
m and the eigenfuntions of Φex

1 (z), Φex
2 (z), ... ,Φex

m (z) normalized by the

ondition (15) at zmin → −∞ and zmax → +∞, an be alulated at fB(z) = fA(z) = 1, N = 3 using a representation
of their eigenfuntions as a linear ombination of trigonometri and exponential funtions depending on the spetral

parameter E, with unknown oe�ients. However, the need to �nd the roots of nonlinear equations, whih is the

required 'exat' eigenvalues of the original problem.

Sine the eigenfuntions of the disrete spetrum deay exponentially as z → ∞, then the original problem

is redued to a boundary value problem (1) with the above Vij(z) = 0 and Qij(z) = 0 for bound states in a �nite

interval with Dirihlet onditions at the boundary points zmin < z1 and zmax > zk−1, the interval and the normalization

ondition (15) that is solved numerially by �nite element method using KANTBP 4M .

restart;read "kantbp4m.mwt";Digits:=12; 1

eqs:=3;psubint:=8;kappamax:=1; 2

keypot:=1;DirL:=1;DirR:=1; 3

4

nmesh:=3; ngrid(1):=10;ngrid(2):=10;ngrid(3):=10; 5

zmesh(0):=-12;zmesh(1):=-2;zmesh(2):=2;zmesh(3):=12; 6

7

vpot(1,1,1):=0;vpot(2,2,1):=5;vpot(3,3,1):=10; 8

vpot(1,2,1):=0;vpot(1,3,1):=0;vpot(2,3,1):=0; 9

vpot(2,1,1):=0;vpot(3,1,1):=0;vpot(3,2,1):=0; 10

11

vpot(1,1,2):=-5;vpot(2,2,2):=0;vpot(3,3,2):=10; 12

vpot(1,2,2):=4;vpot(1,3,2):=4;vpot(2,3,2):=4; 13

vpot(2,1,2):=4;vpot(3,1,2):=4;vpot(3,2,2):=4; 14

15

vpot(1,1,3):=0;vpot(2,2,3):=0;vpot(3,3,3):=0; 16

vpot(1,2,3):=0;vpot(1,3,3):=0;vpot(2,3,3):=0; 17

vpot(2,1,3):=0;vpot(3,1,3):=0;vpot(3,2,3):=0; 18

19

numberf:=5; hermites(); 20

21

read "example10test.txt"; 22

Lines 1-3: The initialization of proedure, the hoie of options for solving the problem on their eigenvalues for

the three equations with Dirihlet boundary onditions and the hoie of parameters of �nite element method.

Lines 4-5: The problem is solved in the quasi-uniform grid Ωz = {−6(10)− 2(10)2(10)6}, where the number

in brakets denotes the number of subinterval �nite element, eah of nmesh:=3 sub-intervals must be given e�etive

potentials. It is important to point potential breaks oinide with nodes zmesh(*).

Lines 8-18: Setting the e�etive potentials.

Line 20: Calulation, display and reording in a �le 'wfunts1.dat' (see �lenamew) �ve eigenfuntions Φh
1 (z),

... ,Φh
5 (z) and its eigenvalues of Eh

1 < Eh
2 < ... < Eh

5 .
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Line 22: File "example10test.txt" ontains a helper program for example10test for systems of nonlinear equa-

tions with thirteen trigonometri and exponential funtions, depending on the desired spetral parameter, and 12

linear with respet to the unknown parameters the expansion oe�ients of the desired eigenvetor - funtion of the

original problem on their eigenvalues on the axis. This program is designed for the alulation of the spetrum only

in a speial ase, eqs=3 and nmesh=3 and vpot(i,j,1)=vpot(i,j,3)=0 for i 6=j and may be at be �nalized by the user.

The �rst step to using the built-in proedures dsolve sought the general solution of the ODE with onstant

oe�ients vpot(i,j,2) whih is valid on the interval z ∈[zmesh(1),zmesh(2)℄, the derivative of the solution is alulated

also.

The seond step uses the asymptoti solutions proportional A||(i)*exp(sqrt(-Eh+vpot(i,i,1))*xmin) and

A||(i+3)*exp(-sqrt(-Eh+vpot(i,i,3))*xmax), just under z ≤zmesh(1) and z ≥zmesh(2) and their derivatives of z.
In the third step alulates the di�erene between the solutions obtained in the �rst step and asymptoti

solutions in the third step, and the di�erene between the derivatives thereof, whereupon the di�erene values with

the substitution z =zmesh(1) or z =zmesh(2) equal to zero.

After the third step, we have a system of nonlinear equations with thirteen trigonometri and exponential

funtions, depending on the desired spetral parameter E, and 12 linear with respet to the unknown parameters

(A||(1),...,A||(6) of the asymptoti solutions and _C||(1),...,_C||(6) from the general solution of the ODE). In order

to alulate the non-trivial solutions, in the system of equations adding Equation A||(1)

2+,...,+A||(6)2 − 1 = 0.. The
result is a rather ompliated system of nonlinear equations.

In the fourth step, the system of nonlinear equations for thirteen unknowns 13 (the spetral parameter E, 12
and the parameters (A||(1),...,A||(6), _C||(1),...,_C||(6)) solved numerially using the built-in proedure fsolve. As

ompared values desired spetral parameter E, displays only the value of the desired spetral parameter E. What

would be an iterative proess for solving nonlinear problems onverge to di�erent values of the spetral parameter

E, the initial onditions for the unknown oe�ients in a system of nonlinear equations are randomly generated by a

built-in proedure rand, with the proedure for solving fsolve run 2*numberf times.

During testing, it beame lear that to ompute eigenvalues Eex
1 < Eex

2 < ... < Eex
m , whih are displayed on the

sreen for omparison with the eigenvalues of Eh
1 < Eh

2 < ... < Eh
5 , alulated by �nite element method, the number

of repetitions 2*numberf not enough ie too often the solution onverges to one of the eigenvalues. In this ase, the

ommand ¾ read "example10test.txt"; ¿ to be repeated again. As a reminder of this output displays the following

warning:

"Eigenvalues given by solution of set of exat equations:"; "if not all, please repeat ommand ¾ read" "exam-

ple10test.txt" "; ¿";

Attempts should be disontinued if the user sees all the eigenvalues alulated by the �nite element method, or

the user will bother to run this ommand.
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Example 11. The solution of the multihannel sattering problem for the system of equations with square

well potentials

The original multihannel sattering problem at �xed E is formulated on an in�nite interval z ∈ (−∞,+∞)
for the system of equations

−d2Φ1(z)

dz2
+ V11(z)Φ1(z) + V12(z)Φ2(z) + . . .+ V1N (z)ΦN(z)− EΦ1(z) = 0,

−d2Φ2(z)

dz2
+ V21(z)Φ1(z) + V22(z)Φ2(z) + . . .+ V2N (z)ΦN(z)− EΦ2(z) = 0,

.

.

.

−d2ΦN (z)

dz2
+ VN1(z)Φ1(z) + VN2(z)Φ2(z) + . . .+ VNN (z)ΦN (z)− EΦN (z) = 0,

with the matrix of pieewise onstant potentials

Vij(z) = Vji(z) = {Vij;1, z ≤ z1;Vij;2, z ≤ z2; . . . ;Vij;k−1 , z ≤ zk−1;Vij;k, z > zk−1},

solutions of them are alulated using a representation of eigenfuntions as a linear ombination of trigonometri and

exponential funtions with unknown oe�ients.

The boundary value problem (1) with the above Vij(z) = 0 and Qij(z) = 0 with boundary onditions (4) whih

are determined from the asymptoti solution (10), (11), of multihannel sattering problem at fB(z) = fA(z) = 1,
N = 3.

restart;read "kantbp4m.mwt";Digits:=12; 1

eqs:=3;psubint:=8;kappamax:=1; 2

keypot:=2;DirL:=0;DirR:=0; 3

4

nmesh:=3; 5

ngrid(1):=10;ngrid(2):=10;ngrid(3):=10; 6

zmesh(0):=-6;zmesh(1):=-2;zmesh(2):=2;zmesh(3):=6; 7

8

vpot(1,1,1):=0;vpot(2,2,1):=5;vpot(3,3,1):=10; 9

vpot(1,2,1):=0;vpot(1,3,1):=0;vpot(2,3,1):=0; 10

vpot(2,1,1):=0;vpot(3,1,1):=0;vpot(3,2,1):=0; 11

12

vpot(1,1,2):=-5;vpot(2,2,2):=0;vpot(3,3,2):=10; 13

vpot(1,2,2):=4;vpot(1,3,2):=4;vpot(2,3,2):=4; 14

vpot(2,1,2):=4;vpot(3,1,2):=4;vpot(3,2,2):=4; 15

16

vpot(1,1,3):=0;vpot(2,2,3):=0;vpot(3,3,3):=0; 17

vpot(1,2,3):=0;vpot(1,3,3):=0;vpot(2,3,3):=0; 18

vpot(2,1,3):=0;vpot(3,1,3):=0;vpot(3,2,3):=0; 19

20

Eh:=3.8; 21

hermites(); 22

23

"tests:"; 24

"S-S^T"=Smatr-Transpose(Smatr); 25

"S.S^\dag-I"=Smatr.HermitianTranspose(Smatr)-Matrix(NOpenR+NOpenL,shape=identity); 26

27

read "example11test.txt"; 28

Lines 1-3: The initialization of proedure, the hoie of options for solving of the sattering problem for 3

equations on the axis, and the hoie of parameters of �nite element method.

Lines 4-5: The problem is solved in the quasi-uniform grid Ωz = {−6(10)− 2(10)2(10)6}, where the number in
brakets denotes the number of subinterval �nite element, eah of nmesh:=3 subintervals e�etive potentials must be

spei�ed. It is important to point potential breaks oinide with nodes zmesh(*).
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Lines 9-19: Setting the e�etive potentials.

Line 21: Sets the �xed value of the energy for the sattering problem.

Line 22: The solution of the boundary problem (1) in the quasi-uniform grid with the boundary of the third

kind (4) at zmin
and z = zmax

with asymptoti solutions of the sattering problem for axis (7), (12). Displays the

S-matrix and its eigenfuntions.

Lines 24-26: Cheking unitary and the symmetry of the S-matrix.

Line 28: The alulation of the S-matrix elements using a representation of eigenfuntions as a linear om-

bination of trigonometri and exponential funtions, and their omparison with the output to the sreen with the

previously ounted using KANTBP 4M, alulated by FEM.
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Example 12. The solution of the eigenvalue problem for the system of equations obtained by Kantorovih

method for the Helmholtz equation in a retangular region

We onsider approximate solution of boundary value problem for the Helmholtz equation in a square with a

side equal to π in new oordinates z = (x + y)/
√
2, z′ = (x − y)/

√
2 whih are diagonals of square, with Dirihlet

onditions on boundary of the region. The solution Ψ(z, z′) is sought in the framework of Kantorovih expansions

Ψ(m)(z, z′) =
∑N

j=1 Φj(z; z
′)Ψ

(m)
j (z) over basis funtions Φi (z

′; z), z′max(z) = π/
√
2 − |z|, z′min(z) = −π/

√
2 + |z|,

orresponding to eigenvalues ǫi (z) at eah value of parameter z ∈ (zmin, zmax):

ǫi (z)=
π2i2

(z′max(z)− z′min(z))2
, Φi (z

′; z) =

√
2 sin

(

πi(z′ − z′
min

(z))

z′max(z)− z′min(z)

)

√

z′max(z)− z′min(z)
, (71)

Substitution of expansion to Helmholtz equation and averaging over basis Φi (z
′; z) redues to system of ODE

w.r.t. z ∈ (zmin, zmax):

−d2Φ
(m)
1 (z)

dz2
+ V11(z)Φ

(m)
1 (z) + V12(z)Φ

(m)
2 (z) +Q12(z)

dΦ
(m)
2 (z)

dz
+

dQ12(z)Φ
(m)
2 (z)

dz
+ . . .− EmΦ

(m)
1 (z) = 0,

−d2Φ
(m)
2 (z)

dz2
+ V21(z)Φ

(m)
1 (z) +Q21(z)

dΦ
(m)
1 (z)

dz
+

dQ21(z)Φ
(m)
1 (z)

dz
+ V22(z)Φ

(m)
2 (z) + . . .− EmΦ

(m)
2 (z) = 0,

.

.

.

−d2Φ
(m)
N (z)

dz2
+ VN1(z)Φ

(m)
1 (z) +QN1(z)

dΦ
(m)
1 (z)

dz
+

dQN1(z)Φ
(m)
1 (z)

dz

+ VN2(z)Φ
(m)
2 (z) +QN2(z)

dΦ
(m)
2 (z)

dz
+

dQN2(z)Φ
(m)
2 (z)

dz
+ . . .− EmΦ

(m)
N (z) = 0, (72)

where e�etive potentials Qij(z) and Vij(z) are given by analyti expressions

Qij(z) = −
4ij

i2 − j2
1

π
√
2− 2|z|

|z|
z
, Vij(z) = −

16ij(i2 + j2)

(i2 − j2)2
1

(π
√
2− 2|z|)2

,

Vii(z) =
4π2i2 + 3

3

1

(π
√
2− 2|z|)2

, j 6= i, j − i mod 2 = 0.

This system is divided into two subsystems of whih are determined by the even (with odd indies j and i) and odd

solutions (with even indies j and i). The program alulates approximate even and odd eigenvalues Em that may

be ompared with known one Eexact
m = 2, 5, 5, 8, 10, 10, . . . � the sum of squares of natural numbers, and one an see

that Em − Eexact
m ∼ N−3.

The ode solves the eigenvalues problem for the system of equations (72) with Dirihlet onditions (2) at

zmin = −π/
√
2 and zmax = π/

√
2 and normalization onditions (15).

restart;read "kantbp4m.mwt"; 1

eqs:=6; 2

psubint:=7; kappamax:=1; 3

nmesh2:=2;nmesh:=2*nmesh2; 4

Qap:=1; 5

6

DirL:=1;DirR:=1; 7

8

for i0 from 1 to nmesh do ngrid(i0):=4;od; 9

zmesh(0):=-Pi/sqrt(2)+1/20; 10

zmesh(1):=zmesh(0)*7/8; 11

zmesh(2):=0; 12

zmesh(3):=-zmesh(1); 13

zmesh(4):=-zmesh(0); 14

15
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for par from 0 to 1 do 16

for nn1 from 1 to eqs do 17

for nn2 from 1 to eqs do 18

n1:=2*nn1-1+par; 19

n2:=2*nn2-1+par; 20

if (n1=n2) 21

then 22

for i0 from 1 to nmesh2 do 23

vpot(nn1,nn1,nmesh2+i0):=(1/3)*(4*n1^2*Pi^2+3)/(Pi*sqrt(2)-2*z)^2; 24

vpot(nn1,nn1,i0):=(1/3)*(4*n1^2*Pi^2+3)/(Pi*sqrt(2)+2*z)^2; 25

qpot(nn1,nn1,i0):=0;qpot(nn1,nn1,nmesh2+i0):=0; 26

od; 27

else 28

for i0 from 1 to nmesh2 do 29

vpot(nn1,nn2,nmesh2+i0):=(16*(n1^2+n2^2))*n1*n2/((n1-n2)^2*(n1+n2)^2*(Pi*sqrt(2)-2*z)^2);30

vpot(nn1,nn2, i0):=(16*(n1^2+n2^2))*n1*n2/((n1-n2)^2*(n1+n2)^2*(Pi*sqrt(2)+2*z)^2);31

qpot(nn1,nn2,nmesh2+i0):= 4*n1*n2/((n1+n2)*(n1-n2)*(Pi*sqrt(2)-2*z)); 32

qpot(nn1,nn2, i0):=-4*n1*n2/((n1+n2)*(n1-n2)*(Pi*sqrt(2)+2*z)) ; 33

od; 34

fi; 35

od;od: 36

numberf:=5; 37

hermites(); 38

od; 39

Lines 1-4: The initialization of proedure and the hoie of the number of equations in the system and the

parameters of the �nite element method.

Line 5: Seleting the availability of e�etive potentials Qij in the ODEs.

Line 7: Setting the Dirihlet boundary onditions.

Lines 9-14: Setting the quasi-uniform grid with four �nite elements on eah of the sub-intervals. Sine e�etive

potentials are interrupted at z = 0, it is important that one of zmesh (*) was zero.

Lines 16-39: The solution of the problem at �rst for the even, and then to the odd sub-systems, whih are

written to �les 'wfunts1.dat' and 'wfunts2.dat' (see. �lenamew). It inludes job e�etive potentials (lines 17-36)

and the alulation of the �ve eigenfuntions and eigenvalues (lines 37-38).



41

Example 13. The solution of the multihannel sattering problem of tunneling of two idential partiles with

the osillator interation through the potential barrier

Code solves the multihannel sattering problem on an axis for a system of equations (1) at Qij(z) = 0,
fA(z) = fB(z) = 1 and Vij(z), given in analytial form, with asymptoti boundary onditions (10)�(13), obtained by

Galerkin method for the problem of tunneling of two idential partiles with oordinates x1 è x2 the harmoni osilla-

tor interation Vosc(x1−x2) = (x1−x2)
2/2 through the Gaussian potential barrier Vg(xs) = α/(σ

√
2π) exp(−x2

s/σ
2),

s = 1, 2, σ = 0.1, α=alpha (in this example alpha=5). Beause the e�etive potentials Vij(z) are symmetri with

respet to z = 0: Vij(z) =
∫ +∞

−∞
dxΦosc

i (x)(Vg((z − x)/
√
2) + Vg((z + x)/

√
2))Φosc

j (x), where Φosc
j (x) are even eigen-

funtions of harmoni osillator with potentialVosc(x) = x2
and eigenvalues Eosc

i =1,5,9,13,17,... (whih determine

threshold energies E), then in the example under onsideration the program alulates solutions Φeven and Φodd of

the multihannel sattering problems, respetively, on a semiaxis z ∈ (0,+∞), with the Neumann or the Dirihlet

boundary onditions at z = 0. In the example under onsideration the heking the unitarity and symmetry of the

S-matrix and the relations between the matries of re�etion amplitudes on the semiaxis and the matries of re�etion

and transmission amplitudes on the axis, (Reven +Rodd)/2−R← = 0, (−Reven +Rodd)/2−T← = 0 is performed.

The problem was formulated in: A.A. Gusev et al, Resonant tunneling of the few bound partiles through

repulsive barriers, Physis of Atomi Nulei 77, pp. 389�413 (2014).

restart;read "kantbp4m.mwt";Digits:=8; 1

eqs:=5;psubint:=3;kappamax:=2;keypot:=2; 2

3

alpha:=5; 4

vpot(1, 1) := (10/51)*2^(1/2)*51^(1/2)*exp(-(50/51)*z^2)/Pi^(1/2); 5

vpot(2, 1) := 6

... 7

vpot(5, 5) := ...; 8

9

for i from 1 to eqs do 10

for i1 from i+1 to eqs do 11

vpot(i1,i):=alpha*vpot(i1,i);vpot(i,i1):=vpot(i1,i); 12

od; 13

vpot(i,i):=alpha*vpot(i,i)+[1,5,9,13,17℄[i℄; 14

od; 15

16

Eh:=5.45; 17

zmin:=-6;zmax:=6;ngrid:=40; 18

DirL:=0;DirR:=0; 19

hermites();NOpen:=NOpenL+NOpenR; 20

RLRsat0:=RLRsat; TLRsat0:=TLRsat;RRLsat0:=RRLsat;TRLsat0:=TRLsat;Smatr0:=Smatr; 21

22

DirL:=1;zmin:=0;ngrid:=20; 23

hermites();RRLsat1:=RRLsat;Smatr1:=Smatr; 24

25

DirL:=2; 26

hermites();RRLsat2:=RRLsat;Smatr2:=Smatr; 27

28

"tests;"; 29

"S.S^\dag-I"=HermitianTranspose(Smatr0).Smatr0-Matrix(NOpen,shape=identity); 30

"even: S.S^\dag-I"=HermitianTranspose(Smatr1).Smatr1-Matrix(NOpenR,shape=identity); 31

"odd: S.S^\dag-I"=HermitianTranspose(Smatr2).Smatr2-Matrix(NOpenR,shape=identity); 32

"S-S^T"=Transpose(Smatr0)-Smatr0; 33

"even: S-S^T"=Transpose(Smatr1)-Smatr1; 34

"odd: S-S^T"=Transpose(Smatr2)-Smatr2; 35

"( Reven+Rodd)/2-R<-"=( RRLsat1+RRLsat2)/2-RRLsat0; 36

"(-Reven+Rodd)/2-T<-"=(-RRLsat1+RRLsat2)/2-TRLsat0; 37

Lines 1-2: - The initialization of proedure, the hoie of options for solving the sattering problem for 5

equations and parameters of the �nite element method.
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Lines 4-15: Setting the e�etive potentials Vij(z) (see �le 'example13.txt')

Line 17: Sets the �xed value of the energy for the sattering problem

Lines 18-21: The solution of the boundary problem (1) on a uniform grid with the boundary of the third kind

(4) at zmin
and z = zmax

with asymptoti solutions (7), (12)of the sattering problem on an axis. Assigning variables

RLRsat0, TLRsat0, RRLsat0, TRLsat0, Smatr0, the matries of re�etion and transmission amplitudes and the

S - matrix.

Lines 23-24: The deision of the boundary problem (1) on a uniform grid with Dirihlet boundary onditions

(2) at z = 0 and the third kind (4) at z = zmax
 asymptoti solutions (9), (12) of the sattering problem on a

semiaxis. Assigning variables RRLsat1, Smatr1, the matrix of re�etion amplitudes and S - matrix.

Lines 26-27: The deision of the boundary problem (1) on a uniform grid with Neumann boundary onditions

(3) at z = 0 and the third kind (4) at z = zmax
 asymptoti solutions (9), (12) of the sattering problem on a

semiaxis. Assigning variables RRLsat2, Smatr2, the matrix of re�etion amplitudes and S - matrix.

Lines 29-37: Cheking unitarity and the symmetry of the S-matrix and the relations between the matries of

re�etion amplitudes on the semiaxis and the matries ofre�etion and transmission amplitudes on the axis: (Reven+
Rodd)/2−R← = 0, (−Reven +Rodd)/2−T← = 0.
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Example 14. Calulation of metastable states (as the initial approximation the resonane transmission

solution of the sattering problem is taken)

The example of alulation of metastable states for two barriers ( P�oshl-Teller or Sarf potentials), loated at

a distane 2d

(D− Em)Φm(z) =

(

− d2

dz2
+

V1

cosh(z−d)2+ı
V2 sinh(z−d)
cosh(z−d)2 +

V1

cosh(z+d)2
+ ı

V2 sinh(z+d)

cosh(z+d)2
−Em

)

Φm(z) = 0. (73)

As the initial approximation to Newtonian sheme the resonane transmission solution of the sattering problem

loalized between barriers is taken.

See for details:

A.A. Gusev, et al, Leture Notes in Computer Siene 9301, pp. 182�197 (2015)

restart;Digits:=12;read "kantbp4m.mwt"; 1

keypot:=2;psubint:=6;kappamax:=1; 2

zmin:=-20;zmax:=20;ngrid:=80;DirL:=0;DirR:=0; 3

4

#hoose one of four 5

#V1:=2;V2:=1;d12:=7/2;Eh:=0.360240; 6

V1:=2;V2:=1;d12:=7/2;Eh:=1.036324; 7

#V1:=2;V2:=0;d12:=7/2;Eh:=0.310918; 8

#V1:=2;V2:=0;d12:=7/2;Eh:=1.025359; 9

vpot:=V1/osh(z-d12)^2+V2*I*sinh(z-d12)/osh(z-d12)^2 10

+V1/osh(z+d12)^2+V2*I*sinh(z+d12)/osh(z+d12)^2; 11

12

hermites(); 13

abs(TLRsat[1,1℄)^2; 14

15

read "wfunts1.dat": 16

keypot:=3; 17

Phink:=eigfRLr(1,1)+I*eigfRLi(1,1): 18

DirL:=3;DirR:=3; 19

RBoundL:=-sqrt(-EEh);RBoundR:=sqrt(-EEh); 20

normtp:=0; 21

itermax:=20; 22

hermites(); 23

Lines 1�14 Calulation of initial approximation.

Lines 16�23 Calulation of metastable states.

Lines 1-3: Initialization of proedure seletion of options for solving the problem of sattering on the axis with

the boundary onditions of the third kind, and the hoie of parameters of �nite element method and a uniform grid.

Lines 5-11: Setting the e�etive potential and its eigenvalues (It is also the initial approximation for the

eigenvalue in the Newtonian sheme). The eigenvalues of the orresponding resonant transmission seleted in advane.

A hoie of 4 sets of parameters.

Lines 13-14: The solution of the sattering problem on the axis and hek that there is a omplete transmission

(resonane transpareny).

Line 16: Read �le with the solution of the sattering problem.

Line 17: Selet the options to larify solution by Newton's method.

Frame 18: The initial approximation for eigenfuntions.

Lines 19-20: Setting the boundary onditions of the third kind.

Lines 21-23: Seleting the type of the normalization, the maximum number of iterations and the solution of

the problem by Newton's method.
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Example 15. Calulation of metastable states (as the initial approximation the solution of the eigenvalue

problem is taken)

The example of alulation of metastable states for two barriers ( P�oshl-Teller or Sarf potentials), loated at

a distane 2d

(D− Em)Φm(z) =

(

− d2

dz2
+

V1

cosh(z−d)2+ı
V2 sinh(z−d)
cosh(z−d)2 +

V1

cosh(z+d)2
+ ı

V2 sinh(z+d)

cosh(z+d)2
−Em

)

Φm(z) = 0. (74)

As the initial approximation for the Newtonian sheme the resonane solution of the eigenvalue problem loalized

between barriers is taken.

See for details:

A.A. Gusev, et al, Leture Notes in Computer Siene 9301, pp. 182�197 (2015)

restart;Digits:=12; 1

read "kantbp4m.mwt"; 2

keypot:=1;psubint:=6;kappamax:=1; 3

4

zmin:=-20;zmax:=20;ngrid:=20;numberf:=13; 5

DirL:=3;DirR:=3; 6

RBoundL:=-0.04-0.4*I;RBoundR:=0.04+0.4*I; 7

#V1:=2;V2:=1;d12:=7/2;sts:=7,12; 8

V1:=2;V2:=0;d12:=7/2;sts:=7,12; 9

vpot:=V1/osh(z-d12)^2+V2*I*sinh(z-d12)/osh(z-d12)^2 10

+V1/osh(z+d12)^2+V2*I*sinh(z+d12)/osh(z+d12)^2; 11

12

hermites(); 13

14

read "wfunts1.dat": 15

keypot:=3; 16

zmin:=-20;zmax:=20;ngrid:=80; 17

normtp:=0; 18

itermax:=20; 19

RBoundL:=-sqrt(-EEh);RBoundR:=sqrt(-EEh); 20

for ii in sts do 21

Eh:=eigv(ii); 22

Phink:=eigf(1,ii)+I*eigfi(1,ii): 23

hermites(); 24

od: 25

Lines 1�13 Calulation of initial approximation.

Lines 15-25 Calulation of omplex eigenvalues and eigenfuntions of metastable states.

Lines 1-3: - Initialization proedure, the key task keypot: = 1; for solving the boundary value problem with the

boundary onditions of the third kind: alulating a set of omplex eigenvalues and the orresponding eigenfuntions,

and the hoie of parameters of �nite element method.

Lines 5-7: Setting a uniform grid, the amount alulated the disrete spetrum and the boundary onditions

of the third kind, whih, unlike the boundary onditions of the third kind, de�ned in the line 20, does not depend on

the desired eigenvalue. Note. In this example, the potential for exponentially dereasing initial approximation to the

desired solution alulated for a given boundary ondition of the third kind with oe�ients R(z max) = −R(zmin) =√
−E0, where the value of E0 hosen from the viinity of the desired eigenvalues E1 and E2.

Lines 8-11: Assignment of the e�etive potential. A hoie of 2 sets of parameter values. List of rooms

eigenfuntions loalized between the barriers (they are also the initial approximation for eigenfuntions) is the value

hosen in advane loal variable sts

Line 13: Solution of the disrete spetrum.

Line 15: Read �le with the solution of the disrete spetrum.

Line 16: Choosing options to re�ne the solution by Newton's method.

Line 17: Speifying the new uniform grid.

Lines 18-19: The hoie of the normalization ondition and the maximum number of iterations.
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Line 20: Set a new boundary onditions of the third kind, whih in ontrast to the boundary onditions of the

third kind, given in line 7, depend on the desired eigenvalue.

Lines 21�25: Deision of the boundary problem by Newton's method, where the primary approximations used

its eigenfuntion, from the list of sts, loalized at the origin and the orresponding eigenvalues.
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Example 16. Appliation of program for solving the boundary value problem for the Shr�odinger equation

with ubi nonlinearity

The program an be used to prepare solutions of the boundary problem in the interval z ∈ (0, 8) nonlinear
Shr�odinger equation

(

− 1

2z

d

dz
z
d

dz
+

z2

2
−Em

)

Φm(z) + λ(Φm(z))3 = 0, lim
z→0

z
dΦm(z)

dz
= 0, Φm(8) = 0,

∫ 8

0

zdz|Φm(z)|2 = 1. (75)

For this, the equation (75) an be rewritten in the form

(

− 1

2z

d

dz
z
d

dz
+

z2

2
+ λ(Φm(z))2−E

)

Φm(z) = 0, lim
z→0

z
dΦm(z)

dz
= 0, Φm(8) = 0,

∫ 8

0

zdz|Φm(z)|2 = 1 (76)

and solve it by the method of simple iterations.

As a �rst approximation Φ
(0)
m (z) we use solutions (75) at λ = 0

(

− 1

2z

d

dz
z
d

dz
+

z2

2
−E(0)

m

)

Φ(0)
m (z) = 0, lim

z→0
z
dΦ

(0)
m (z)

dz
= 0, Φ(0)

m (8) = 0,

∫ 8

0

zdz|Φ(0)
m (z)|2 = 1,

eah next approximation Φ
(k)
m (z), E

(k)
m is given from the previous one Φ

(k−1)
m (z), E

(k−1)
m by solving the Newton's

method the following boundary value problem:

(

− 1

2z

d

dz
z
d

dz
+

z2

2
+ λ(Φ(k−1)

m (z))2−E(k)
m

)

Φ(k)
m (z) = 0, lim

z→0
z
dΦ

(k)
m (z)

dz
= 0, Φ(k)

m (8) = 0,

∫ 8

0

zdz|Φ(k)
m (z)|2 = 1.

restart;Digits:=16; 1

read "kantbp4m.mwt"; 2

psubint:=10;kappamax:=1; 3

4

zmin:=0;zmax:=8;ngrid:=4; 5

FFA:=z;FFB:=2*z; 6

DirL:=2;DirR:=1; 7

lambdaa:=2;eps:=10^(-6); 8

filenamew:="init.dat"; 9

eqs:=1; 10

vpot(1,1):=z^2/2; 11

numberf:=4; 12

keypot:=1; 13

hermites(); 14

15

keypot:=3; 16

grprint:=0; 17

for ii from 1 to numberf do 18

filenamew:=at("fun",onvert(ii,string),".dat"); 19

itermax:=5; iters:=0; 20

read "init.dat"; 21

vpot(1,1):=z^2/2+(eigf||ii(1))^2*lambdaa; 22

Eh:=eigv||ii; 23

Phink(1):=(eigf||ii(1)): 24

hermites(); 25

Ehs:=Eh;ii1:=0;itermax:=2; 26

while ii1=0 do 27

iters:=iters+1; 28

print("iteration=", iters); 29

read filenamew; 30

vpot(1,1):=z^2/2+eigf(1)^2*lambdaa; 31

Eh:=eigv; 32
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Phink(1):=eigf(1): 33

hermites(); 34

if(abs(Ehs-Eh)<eps) then ii1:=1; fi; 35

Ehs:=Eh; 36

od:od: 37

38

for ii from 1 to numberf do 39

read at("fun",onvert(ii,string),".dat"); 40

plot(eigf(1),z=zmin..zmax); 41

plots[logplot℄(abs(-1/2/z*diff(z*diff(eigf(1),z),z) 42

+(z^2/2-eigv)*eigf(1)+eigf(1)^3*lambdaa),z=zmin..zmax); 43

od; 44

Lines 1-3: Initialization proedures, and the hoie of parameters of �nite element method.

Line 5: Setting a uniform grid.

Line 6: Identify fA(z) and fB(z)
Line 7: Setting the boundary onditions Neumann-Dirihlet.

Line 8: Setting parameters of problem.

Line 9: Speify the �le name to be written in the �rst approximations to the desired solutions.

Lines 10-11: Seleting eqs=1 for solutions of one equation, while, in ontrast to eqs=0, vpot is an array of the

dimension 1x1.

Lines 12-13: Seleting alulate a set of four of eigenfuntions and eigenvalues.

Line 14: The solution of the eigenvalue problem.

Lines 16-17: The hoie of options re�nement solutions by Newton's method without displaying the plots of

alulation results on the sreen.

Lines 18 and 37: The beginning and end of a yle in whih the omputed solution of the boundary problem

for the nonlinear Shr�odinger equation.

Line 19: For eah from numberf solutions the name of �le for storing next approximations (the �le will be

overwritten eah time).

Lines 20 and 26: Set the number of iterations to perform the Newton's method.

Lines 20 and 28�29: Count the number of iterations.

Lines 21 and 30: read a �le from the �rst and (k − 1)-th approximations.

Lines 22 and 31: Overriding e�etive potential for the alulation of the next approximation.

Lines 23 and 32: The initial approximation for the eigenvalue for further re�nement solving the boundary

problem by Newton's method.

Lines 24 and 33: The initial approximation for the eigenfuntion for later re�nement solving the boundary

problem by Newton's method.

Lines 25 and 34: Clari�ation of boundary problem solution by Newton.

Lines 35 and 36: Chek the ondition of the ompletion of an iteration proess.

Lines 39-44: Display graphs of four omputed eigenfuntions and errors ε̄m(z) of the numerial solution.


