THE TAO
LANGUAGE

 Pier Stanislao Paolucci, 		Roberto D'Autilia,
Gian Marco Todesco, 		 Simone Cabasino

Quadrics and TAO are trademarks of Alenia Spazio S.p.A.
APE100 and ZZ are project names of the I.N.F.N. (Istituto Nazionale di Fisica Nucleare)

Preliminary Edition: December 1993
First Edition: April 1994
 Last Printing: March 1995

APE100 is the parallel computer architecture designed by the I.N.F.N.
Quadrics is the family of parallel computers of the Alenia Spazio S.p.A.
This document describes the TAO programming language used on the Quadrics/APE100 computers.
The TAO programming language and the ZZ compiler were originally designed by S. Cabasino, P. S. Paolucci and G. M. Todesco of the I.N.F.N. in the framework of the I.N.F.N. APE100 parallel computing project.
�

THE TAO LANGUAGE

based on language

designed by

S. Cabasino, G. M. Todesco, P. S. Paolucci

with an introduction to the

Data Parallel programming techniques

on APE100/Quadrics parallel computers.

�

�

 E’ questa vita un lampo
 ch’all’apparir dispare
 in questo mortal campo:
 ché, se miro, il passato
 è già morto, il futuro ancor non nato,
 il presente sparito
 non ben anco apparito.
 Ahi lampo fuggitivo! e sì m’alletta,
 e dopo il lampo viene la saetta!

 									Angelo Grillo

�
�Contents

�SOM \o�Contents	7
I. Introduction.	10
The TAO language.	10
Complex systems.	21
The Quadrics parallel computer.	24
Parallel programming techniques.	27
II. Data Distribution Strategy.	28
The Architectural Keystone.	28
Minimisation of computing and memory inefficiencies.	29
MIMD and SIMD machines.	30
The Art of Parallel Programming.	32
Performance evaluation ingredients.	32
The Quadrics topology	33
Slices of processing nodes	35
Data Parallel SIMD Execution	35
Something about data input/output.	37
A sample data parallel program.	38
Data declaration meaning.	39
Remote access mechanism on Quadrics machines.	41
An operational classification of data distribution strategies.	43
Category I. "Gibbs Ensemble" situation Replica Method.	44
Category II. Complete locality situation Obvious Method.	45
Category III. Completely connected situation Slice Method.	47
Category IV. Local connectivity with a Low Number of data per problem site Frame Method.	54
Category V. Local connectivity with a High Number of data per Problem Site Remote Addressing Method.	60
III. The elementary TAO syntax.	62
Notation.	62
The TAO Language Predefined Libraries.	63
To compile a TAO program	65
To execute a TAO program.	65
The program structure.	65
An overview of elementary data types.	66
Standard predefined language constructs.	69
Reserved key words and identifiers.	69
Identifiers.	71
Numerical constants.	72
The symbolic declaration of constant values.	72
Declaration of static variables, arrays and matrices of predefined data types.	74
Declaration of variables stored on registers, whose content will be lost on optimization block boundaries.	75
Real and imaginary part extraction postfix operators.	77
Complex conjugation postfix operator.	77
Arithmetic operators.	78
The do loops, an elementary issue of the global flow control.	79
Relational operators and elementary logical conditions.	80
Boolean operators producing composed logical conditions.	82
Conversion of local to global conditions.	82
Global flow control.	83
Local flow control statement.	84
The Subroutines.	86
The record statement.	90
The matrix statement.	94
The type M is made of T statement.	95
The extract and replace statements.	96
The multindex statement.	100
Topology System Variables.	102
The broadcast statement.	103
The timer function.	104
The pseudo random number generator.	105
IV.The input/output syntax.	108
The <stdio> library.	108
Opening and closing files.	109
Interactive and file directed input/output.	110
Reading or writing a single item.	110
To read or write a list of items.	112
Reading and writing a block of array elements.	113
To read or write data from a single node	116
To read or write data to or from a slice of nodes.	117
Remote addressing inside input/output statements.	119
The & sign.	119
Slice data storage format.	121
V. A language extension library <qcd>.	122
Arithmetic operators.	125
<qcd> reserved keywords and identifiers.	126
Declaration of static variables, arrays and matrixes.	127
Declaration of variables stored on registers, whose content will be lost on optimization block boundaries.	127
The trace operator.	128
The diag operator.	129
The clear operator.	129
The color_spin_saturate operator.	130
The gamma family of operators.	131
Subelements postfix extraction operator for su3, spinor, color_spin and spinspin variables and matrix elements.	132
The dag operator.	134
Real and imaginary part extraction postfix operators.	134
Hermitian conjugation postfix operator.	135
References	137
Index	140
�
��sommvoce "I. Introduction."�I. Introduction.

	This introduction will give a brief itinerary through the TAO language structure, its ''evolving'' features and its parallel computing motivations providing information about the Quadrics/APE100 [1][2][3] architecture.
	The second chapter (Data Distribution Strategy) describes the fundamental concepts of data parallel programming, as well as some useful techniques for designing algorithms for 3-D SIMD machines.
	A systematic view of the elementary TAO syntax and input/output features follows.
	The last chapter introduces an example of a language extension library, introducing new data type and operators: <qcd>. <qcd> was designed to facilitate the work of physicists at the�indvoce " I.N.F.N."� I.N.F.N. (Istituto Nazionale di Fisica Nucleare) which originated the Quadrics parallel architecture in a project named APE.

�sommvoce "The TAO language."�The TAO language.

	The �indvoce "TAO"�TAO language is a very high level language. By this we mean a language closer to that of the user than other languages such as �indvoce "FORTRAN"�FORTRAN or the �indvoce "C"�C languages. If we wanted to describe in a few words the main structural characteristics of the �indvoce "FORTRAN"�FORTRAN language, we could say that it is a formula translator capable of managing input and output procedures, the fundamental flow control structures, basic types, vectors and matrixes. We could also say that the �indvoce "C"�C language possesses all the capabilities of �indvoce "FORTRAN"�FORTRAN, with the additional possibility of making use of structures, trees, graphs etc. In this conceptual framework, �indvoce "TAO"�TAO is a language whose basic form is a �indvoce "FORTRAN"�FORTRAN-like syntax but with simple commands for managing the parallel structures of the �indvoce "Quadrics"�Quadrics computer, and a mechanism to introduce new data types, operators and statements. The parallel programming practice using non-parallel languages usually requires spending computing time in library calls, as well as paying for additional programming time, obtaining unclear codes, in comparison with conventional programming. On the contrary, the

where(condition),
if any(condition),
if all(condition),
read [machine region],
write [machine region],
right, left, front, back, up and down

statements of the �indvoce "TAO"�TAO language allow homogeneous formalism and management of �indvoce "Quadrics"�Quadrics parallel features without any waste of computer time.
	The other important characteristic of the �indvoce "TAO"�TAO language is that it allows the definition of new types of data structures, operators, and statements. The �indvoce "TAO"�TAO language inherits these evolutionary features directly from the tool used to build the language �indvoce "compiler"�compiler: the �indvoce "ZZ"�ZZ �indvoce "compiler"�compiler construction language. Likewise the �indvoce "ZZ"�ZZ language, the syntax of the �indvoce "TAO"�TAO language can be extended at any time during compilation. The focus of this introductory book, however, will be centered only on the basic form of �indvoce "TAO"�TAO and on the strategy of SIMD parallel algorithm design. We would like to use this introduction to make a short trip through these feature of "evolvence", which we plan to describe in detail in a following edition of this book. Therefore we will give here (and in few section of this edition) only a first view of the advanced features of evolution possibility of �indvoce "TAO"�TAO and �indvoce "ZZ"�ZZ. The reader interested in the present status of the theoretical aspects of evolving grammars, dynamic parsers and �indvoce "ZZ"�ZZ can find more informations in references [4][5].
	The �indvoce "TAO"�TAO �indvoce "compiler"�compiler is a dynamic �indvoce "compiler"�compiler capable of learning the syntactic rules, with which it analyses a source file directly when reading it. In other words, we can define new syntactic rules to be used in our code simply by writing them directly into the code. If we introduce new rules for the language syntax, the text following the definitions will be analysed using these new rules. We can illustrate this point with a simple example.
	Let us suppose we wish to write a code to compute the following algorithm
						�\INCORPORA Equation ���

assuming that this mathematical object exists. By the �\INCORPORA Equation ���symbol we mean the scalar product between real three-dimensional vectors.
We said that the basic (unevolved) �indvoce "TAO"�TAO language has a �indvoce "FORTRAN"�FORTRAN flavour. Actually, both in �indvoce "FORTRAN"�FORTRAN, and in TAO we could write:

�indvoce "real"�real ax,ay,az, bx,by,bz, cx,cy,cz, dx,dy,dz
�indvoce "real"�real s
s=ax*(bx+cx)+ay*(by+cy)+az*(bz+cz)
s=s/(dx*ax+dy*ay+dz*az)

	However we may wish to write a code that more closely resembles the equation written on paper. An example of the desired program could be:

point a,b,c,d
�indvoce "real"�real s
s=(a,b+c)/(d,a)
�	The �indvoce "TAO"�TAO �indvoce "compiler"�compiler allows us to write this program if we first write in the same code the following lines:

�indvoce "record"�record point
 �indvoce "real"�real x,y,z
endrecord

This declare a new data type named point, composed of three real numbers. We could then introduce the + operator between points using the following code:

/point_expr-> point_expr^u “+” point_term^v {
	 temporary point ris
	 ris.x=u.x+v.x
	 ris.y=u.y+v.y
	 ris.z=u.z+v.z
	 rreturn ris
	}

Actually, when a programmer uses the record statement to introduce a new data type, the TAO compiler also introduces the sum of records defined by the previous lines. Therefore, we do not actually need to use them to define a sum between points; we have shown them here because they illustrate the style one can use to introduce a new operator in TAO. In the particular case of the record sum the work is done, this way, by the compiler itself.
	The first line of this segment indicates the new syntax to be recognized, while the following lines describe explicitly the calculation to be performed when the syntax is used.
	In this example, the post-fixes _expr and _term are post-posed to the user-defined syntactic class name point; This is the present strategy adopted in TAO to manage precedence problems.
	To clarify the problem, consider for example that when we write something like a=b+c*d+e*f we obviosly want the multiplications to be performed before the sums. But if we introduce new operators, we need an instrument to specify the precedence of the new operator inside the general hierarchy. In TAO the _expr, _term, _fact, _fun postfixes are used to specify the desired precedence levels.
	Now we can instruct the �indvoce "compiler"�compiler to obtain a �indvoce "real"�real object (the result of a scalar product between two points) by substituting in �\INCORPORA Equation ���the dot “.“ with two objects of point type:

/real_fun->“(“point_expr^a“,” point_expr^b“)”{
	 rreturn a.x*b.x+a.y*b.y+a.z*b.z
	}

	If, in our program, the computation of scalar products of 3D points is rare, it will be preferable to use the basic (non evolved) �indvoce "TAO"�TAO language.
	But if we wrote an "extension library" including this syntax extension, the next time we need to compute any scalar product we can simply write the formula that you need, using the syntax �\INCORPORA Equation ��� for the scalar product.
	For example, it is now possible to write:

point e,f,g,h
�indvoce "real"�real t,u,v
e = f+g+h
t = (e,f)+u+v

	Of course the + operator mantains its conventional meaning when it is used to sum up simple �indvoce "real"�real numbers, as in the last line of the previous code segment. This is an example of syntax "�indvoce "overloading"�overloading".
	Let us now introduce a brief guide to TAO operator design. Suppose we have a number of data types: type_1, type_2, This data types could be pre-defined or user-defined. We will describe here how the user should proceed to introduce operators of the following categories: �indvoce "prefixes"�prefixes, �indvoce "postfixes"�postfixes, �indvoce "n-infixes"�n-infixes, �indvoce "n-circumfixes"�n-circumfixes, �indvoce "0-operators"�0-operators. 	Let us show some examples illustrating these operator classes.

prefixes�e.g.:�Tr a �-a��� ��postfixes� ""�a˜�a%�����n-infixes� ""�a?b:c�a*b�a+b����n-circumfixes� ""�f(a,b,c)�Tr(a)�|a|�<x|A|y>�(a,b)��0-operators� ""�external field��
	The user has a certain freedom in the choice of new operator class. As an example the trace of a matricial expression could be introduced as a prefix operator (i.e. Tr a) or as an 1-circumfix operator (i.e. Tr(a)). We suggest to avoid the introduction of infix operators adopting symbols already used in more elementary operators (e.g. introducing both the binary infix operators * (a*b) and + (a+b) both a ternary infix form a*b+c). Moreover the user should avoid to introduce operators with operands separated only by spaces. 0-operators can be useful to create functions without arguments which returns numerical values.
	We will restrict type_1, type_2, ... to data types composed of numeric variables. Therefore, in our context, an operator is a symbolism which represent the action of a scalar or vectorial function over scalar or vectorial variables. The result of the operator will be an object of the class type_dest.
	Apart from considerations related to symbolism and precedencies, operators represent functions:
type_dest = f(type_1, type_2, ...). We can now distinguish homogeneous operators (i.e. type_dest= type_1= type_2= ...) from operators which mix types. Let us restrict for a while to homogeneous operators and start from 2-infix operators. Let us consider the homogeneous operators + and * fixingtype = real. Arithmetic operators on real variables are predefined in TAO, but we will use them as a clear conceptual guide. We desire to associate a higher precedence to the * and a lower precedence to the + operator. In other words an expression like a + b * c should be evaluated in the following order: first b * c, then the addition with a. When we declare a new data type, TAO predefines a set of synctactal links, and among them: type�indvoce "_expr"�_expr, type�indvoce "_term"�_term, type�indvoce "_fact"�_fact, type�indvoce "_fun"�_fun (in this case �indvoce "real_expr"�real_expr, �indvoce "real_term"�real_term, �indvoce "real_fact"�real_fact, �indvoce "real_fun"�real_fun). "�indvoce "Non terminals"�Non terminals" is the technical name of these synctactic links in formal language theory. We can achieve the desired �indvoce "precedence scheme"�precedence scheme adopting the following schema:

/type_expr -> type_expr^a "+" type_term^b {
 temporary type result
 !! TAO code which produces the result, using
 !! a and b (and/or their fields)
 ...
 rreturn result
 }

/type_term -> type_term^a "*" type_fact^b

As in the * example, we will hereon omit the synopsis of the semantic action to be described by mean of the TAO code inside { and } .

type_fun is associated to an higher precedency level. For example :

/real_fun -> "sin(" real_expr^a ")"

is a typical form to declare a circumfix operator which will be evaluated with priority higher than _term and _fact.
	 Here follows a syntactic scheme for type homogeneous operators.

prefix operators:
/type_fun -> op type_fun^a

/type_fact-> op type_fact^a
		(prec. -; standard for prefix operators)

postfix operators:
/type_fun -> type_fun^a op
		(prec. ~; standard for postfix operators)

/type_fact -> type_fact^a op

2-infix operators:
/type_expr -> type_expr^a op type_term^a
		(prec. +)

/type_term -> type_term^a op type_fact^a
		(prec. *)

/type_fact -> type_fact^a op type_fun^a
		(not advisable)

n-infix operators:
/t_expr->t_expr^a op1 t_expr^b...opn t_term^n
		(prec. +)

/t_term->t_term^a op1 t_term^b...opn t_fact^n
		(prec. *)

n-circumfixes:
/t_fun ->op1 t_expr^a op2 t_expr^b...opn
	(e.g. /real_fun-> "sin("real_expr ")")

0-operators:
/t_fun -> op

	Let us now treat operators mixing different types. A safe approach is to adopt circumfix operators:

/type1_fun ->op1 type2_expr^a op2
	(e.g. /real_fun-> "|"complex_expr "|")

	Another approach is to adopt to use hierarchic schemes similar to that described for homogeneous operators. For example:

/complex_term -> real_term^a "*" complex_fact^b{
 temporary complex result
 result.re = a * b.re
 result.im = a * b.im
 rreturn result
}

	With this example of data type and operator introduction, let us make a simple example of a definition of a new statement. Let us suppose we need a new statement to scan a tridimensional grid. A �indvoce "FORTRAN"�FORTRAN code could be the following

�indvoce "real"�real Local_Magnetization(10,10,10)
do i=1,10
 do j=1,10
 do k=,10
 Local_Magnetization(i,j,k)=1.0
 enddo
 enddo
enddo

which is very similar to the corresponding elementary (non evolved) �indvoce "TAO"�TAO code

�indvoce "real"�real Local_Magnetization[10,10,10]
do i=0,9
 do j=0,9
 do k=0,9
 Local_Magnetization[i,j,k]=1.0
 enddo
 enddo
enddo

	A �indvoce "TAO"�TAO code written using the extension possibilities of �indvoce "TAO"�TAO could be

�indvoce "real"�real Local_Magnetization[10,10,10]
integer i,j,k
for each site i,j,k {
 Local_Magnetization[i,j,k]=1.0
}

if we inserted the definition (the three dots “...” are the �indvoce "TAO"�TAO continuation line symbol):

/stat->for each site ...
 int^a“,”int^b“,”int^c list_e^d {
 do a=0,9
 do b=0,9
 do c =0,9
 /execute d
 enddo
 enddo
 enddo
}

	 With these flexible features it is useful, in large programming projects, to develop libraries of syntactical extension (or to use them, if they are already available) and obtain a programming tool closer to the language adopted in the mathematical references of our specific project. This book will present an example of language extension library: as previously mentioned, it was developed to facilitate research by the I.N.F.N. APE group. These physicists are involved in subnuclear simulations in a framework ruled by Quantum Chromo Dynamics. Hence this extension library is named <qcd>. To sum up, this introduction let us say that �indvoce "TAO"�TAO is a very-high-level formula translator with a basic �indvoce "FORTRAN"�FORTRAN-like flavour and dedicated statements to obtain a direct control over the �indvoce "Quadrics"�Quadrics parallel architecture. Moreover, �indvoce "TAO"�TAO has the capability of transforming itself to recognize more abstract formalisms.

�sommvoce "Complex systems."�Complex systems.

	In recent years, scientists involved in research in a variety of disciplines have faced a class of problems with large computational needs. A computational requirement, in this context, is the need for enormous amount of operations (and hence computer time) to extract information from a system.
	Given the present state of the science, the understanding of such systems cannot be reached only through the exclusive use of mathematical tools. The only way to understand these problems is to study them from the computational point of view. An example of one application requiring strong computational power is the subnuclear simulation [6][7][8][9] which, to satisfy its own needs, determined the birth of the I.N.F.N APE100 project.
	Another example is the theoretical study of biological systems, systems that we can represent schematically as many elements interacting in a very complex fashion [17][10][11][12], and giving rise to interesting behaviours very difficult to predict or to understand.
	So, in order to study the evolution of these physical systems, they must be “simulated” in some way by computers, while at the same time very complex models (which are the paradigm for the description of some real systems, but are also interesting individually) have been studied through computer simulations. As an example of the impressive contribution of this technique has made to the knowlege of these systems, we can cite the very new field of theoretical biology [12][13][14].
 	After several years of research in various directions, and after several years of reciprocal estrangement, different disciplines have again come together to face a common problem: the need for computer performances greater than the performances available on conventional (non parallel) architectures.
	To give an example of a system that can benefit from parallel computers, we would like to describe the very simple paradigm of the Ising model. Suppose we have a square lattice in three dimensions: a set of contiguous cubes whose vertex we call the lattice sites. Let us also suppose that on the lattice sites are arranged quantities which take only one of the two values, �\INCORPORA Equation ��� o �\INCORPORA Equation ���. It is possible to show that, depending on the interaction among these quantities (interaction which we postulate to define a particular model), the behaviour of the whole system exhibits many different phenomena, like the changing state of boiling water or the complex structure of biological systems.
	This model introduces important concepts: we will see in the following chapters the analogies with the architecture of the Quadrics parallel computer. The order of magnitude of the computational problem shown by this very simple system can be easily understood if one wishes, for example, to enumerate the possible configurations of the system: the possible combinations of �\INCORPORA Equation ��� and �\INCORPORA Equation ���, for a cube with only �\INCORPORA Equation ��� sites on each edge: a system with �\INCORPORA Equation ��� sites.
	We can immediately recognise that these configurations are �\INCORPORA Equation ���, a number that make it impossible to make an exhaustive study of the system. It is then necessary to make use of statistical methods in order to find the most probable configurations. In this way, if we have enough computational power, we can simulate the behaviour of the system, observing it long enough to collect all the information needed. At the same time, we have the problem of availability to large computational power.
	Because of the technological limits of the computational speed of a single processor, and since costs increase at a higher rate than the single processor processing power, a new computer architecture is being developed to tackle the growing demand in application fields: this is parallel computing [15][16].
	It is easy to argue that the ideal computer for performing the task of complex system simulation should be a parallel computer, composed of a large number of processors running independent programs and sharing their memories without any limitations to simultaneous read access. Computational speed for this ideal computer is obtained by multiplying the computational speed of the single processor by the number of processors. Unfortunately there are technological and economical constrains which make impossible to build and use this ''ideal'' parallel computer.
	Nevertheless it is possible to make the following considerations. Many physical systems can be represented by a set of sub-systems that evolve simultaneously (i.e. in parallel) by following the same rule. This property is often associated to the characteristics of locality: every subsystem interacts only with the nearest subsystems. Therefore the ideal parallel computer, at least for these problems, is not necessary.
	For example, we can build a parallel computer whose processors can perform only the same program (in general with different parameters) with the possibility of sharing informations with the nearest nodes. We will see in the next chapter that often the locality of the interaction is a condition which can be relaxed working on the mapping of the real system on its representation inside the computer [12][18][19][20][15][16].
	It is appropriate to spend here a few words on the “philosophical” importance of the development of new technologies for parallel computing (but the argument applies also to other technologies). In general it is never possible to establish in advance the line of development of a science. Sometimes, problems that do not seem to be of any interest, when inserted in a different context (for example, high-power computer experiments) show some completely new aspects, and rapidly become the border lines of the big science. It happened for example with the development of the complex systems that we described in the previous section.
	Technological progress contributes to the changing of scientific view points, acting as a link between different disciplines. There are many purely theoretical ideas born of new technological tools, which changed the way problems were previously perceived. For example, the need to find a suitable language for the �indvoce "Quadrics"�Quadrics parallel computer brought the invention of a dynamic parser and evolving languages, which are a step forward in the theory of formal languages.

�sommvoce "The Quadrics parallel computer."�The Quadrics parallel computer.
	
	The �indvoce "Quadrics"�Quadrics parallel computer is not the ideal (and still inexistent) parallel computer in the sense described above, but it can be considered an excellent compromise for overcoming the economic and technological obstacles to the realisation of an ideal parallel computer. It is a high performance (and low cost) machine well suited for major computing challenges in several applicative fields.
	A �indvoce "Quadrics"�Quadrics machine is a parallel computer which processes the same code on every one of its sub-elements, elements that from here on we will call nodes and that directly share information with the nearest nodes.
	We said that a lot of interesting physical systems can be simulated in a ‘‘natural’’ way by using Quadrics computers, and that many others can be represented using a suitable data distribution strategy. Before discussing the structure of the TAO language it is necessary to give some information about the structure of the computer. This information is important since it influences the structure of the programming language. In the next chapter we will give a detailed perspective of the �indvoce "Quadrics"�Quadrics architecture from the programmer’s point of view. However, in this introduction, we will give an overview of the �indvoce "Quadrics"�Quadrics machine.
	At present, �indvoce "Quadrics"�Quadrics is a machine that can be used only by one user at a time, and is controlled by a host machine through which all input and output operations (such as writing in a file) are performed. Hence, the system commands needed to write and to run a �indvoce "TAO"�TAO program are system command of the host machine. �indvoce "Quadrics"�Quadrics is a Single Instruction Multiple Data Massive Parallel Computer (SIMD). The major characteristic of a SIMD machine is that a SIMD program is composed of a unique flow of instructions, and the same instruction is executed simultaneously by all the different processors. The �indvoce "Quadrics"�Quadrics computer is built with a tridimensional architecture based on a cubic lattice of nodes, similar to the geometry of the Ising model described previously. Each node is connected to the six nearest nodes, which is the natural connection in tridimensional cubic geometry.
	 In order for every node to be connected to six nodes, those placed on the exterior of the lattice have to be connected to each other in some way. Connections for the external nodes are made in a very simple way: by linking, in a ring-like form, the external nodes with the nodes at the opposite end of the lattice. The boundary connections obtained in this way (we call them periodical boundary conditions) guarantee that every node is linked to its six nearest neighbours.
	The �indvoce "Quadrics"�Quadrics processing nodes are composed of a proprietary floating point processor, called �indvoce "MAD "�MAD (Multiply and Add Device), a local memory and a custom communication chip, named Commuter, which allows each node the direct viewing of the memories of its own six neighbouring nodes).
	The processors are controlled by a Central Processing Unit (�indvoce "CPU"�CPU) that supervises all the global functions of the machine (flow control and data addressing). The CPU can process only integer numbers, so every time we perform operations involving integer numbers, these actions are performed by the CPU. In �indvoce "TAO"�TAO language, program flow is controlled by global conditions but the �indvoce "Quadrics"�Quadrics architecture has the hardware ability to transform conditions local to the processors into global conditions. Moreover, we can condition the execution of a code portion on each node, using conditions on the data hosted by that node. As noted above processors execute the same code, processing the data contained in that particular node. Every time a programmer declares a data structure of floating points, a suitable amount of memory is allocated on every node. The single nodes can process only floating point data numbers, while declared variables or matrix of integer numbers are allocated and processed by the �indvoce "CPU"�CPU.
	The data stored on the single node can be shared with the six nearest neighbours, but the memory accesses, which are part of the global code, are made by all the processors at the same time, in the same direction and by accessing data at the same local address on all the nodes. This means that if the data are taken from a right side node, the data at the same address have be given to the left side node. Every node is identified by its three spatial coordinates in the lattice.
	At present (March 1995) the architecture of �indvoce "Quadrics"�Quadrics span from �\INCORPORA Equation ��� to �\INCORPORA Equation ��� nodes. We note that �\INCORPORA Equation ��� is one billion floating point operations per second, while �\INCORPORA Equation ��� is one million floating point operations per second.
	The largest configuration is composed by �\INCORPORA Equation ��� nodes, �\INCORPORA Equation ��� �\INCORPORA Equation ��� and �\INCORPORA Equation ��� �\INCORPORA Equation ���. Three important parameters in every parallel architecture are the quantity of memory and Flops per unit of volume and energy dissipation. A �\INCORPORA Equation ��� node, �\INCORPORA Equation ���, �\INCORPORA Equation ��� Quadrics machine is contained in a �\INCORPORA Equation ��� volume and dissipates �\INCORPORA Equation ��� . Due to the modular Quadrics architecture, the volumes vary according to computational power (and memory). Other informations about �indvoce "Quadrics"�Quadrics will be given in the following chapters as needed.

��sommvoce "Parallel programming techniques."�Parallel programming techniques.

	A programmer using the �indvoce "Quadrics"�Quadrics computer and the �indvoce "TAO"�TAO language has one hurdle to overcome: changing a problem under study into a problem that is as homogeneous and as local as possible. The details of this technique will be explained in the next chapters and they are addressed to the creativity of the programmer.

��sommvoce "II. Data Distribution Strategy."�II. Data Distribution Strategy.

�sommvoce "The Architectural Keystone."�The Architectural Keystone.

	An ideal massive parallel computer could have a global memory capable of serving simultaneous read requests from a high number �\INCORPORA Equation ��� of processors. This way, each processor could obviously deal with the evolution of a portion of the system to be simulated. It is easy to argue how this technique would impose technological and financial requirements far beyond the reasonable for large number �\INCORPORA Equation ��� of processors. As a consequence, contemporary massive parallel computers adopt a local memory strategy. This means that, on real massive parallel computers, each processor can, as a minimum requirement, perform very fast access to local memories. This allows each processor to execute an efficient program, acting on data stored on its own local memory.
	This could all be sufficient on a limited class of problems (and we will give here some ideas of application fields that satisfy this constraint). This consideration justifies an ecological survival niche for non-communicating parallel nachines, but it should be a serious constraint against a more general use of parallel computers. Therefore real parallel computers adopt strategies that permit each processor to access the local memory of other processors.
	The �indvoce "connection"�connection topology between processors is an architectural keystone of parallel computers. Usually �indvoce "remote access"�remote access happens at a slower speed than that of �indvoce "local accesses"�local accesses. Moreover, the remote access speed often depends on the particular couple of nodes involved. This means that the nodes can be arranged logically in some hierarchical way.
	The higher the ratio between remote access speed and local access speed, the greater will be the flexibility of the parallel computer architecture. The �indvoce "connection topology"�connection topology defines the closest neighbours of each processing node (i.e. the set of processors whose local memories can be accessed with a single remote access operation) as well as the limitations to the way different processors can simultaneously use the connection network itself. Another essential characteristic of parallel architecture is the number of simultaneous transfers per time unit. The higher the versatility of the connection topology, the lower this number will be.

�sommvoce "Minimisation of computing and memory inefficiencies."�Minimisation of computing and memory inefficiencies.

	The connection topology and the ratio between remote and local access speed create an interesting set of problems which are very difficult to identify: the problems on which a specific parallel computer can work with reasonable computing and storage efficiency.
	We could identify this set using a quantitative approach. Let us introduce �\INCORPORA Equation ��� to express the ratio between �\INCORPORA Equation ��� (the time wasted in remote accesses, or other computing or input-output inefficiencies) and �\INCORPORA Equation ��� (the time used in program segments which perform calculations).
	It is clear that in optimal situations �\INCORPORA Equation ���. While one can say that �\INCORPORA Equation ��� denotes a bad situation, it is arbitrary to define a range of acceptable values for �\INCORPORA Equation ���.
	We suggest considering as acceptable situations in which �\INCORPORA Equation ���: in this case, one reduces the peak performances of the machine by a factor two, but massive parallel computing engines should have significantly higher top speeds than the corresponding peak of conventional computers. In fact, using half the budget to make impossible things come true through the superior processing power of a parallel computer, could be an acceptable investment.
	Trough repeated remote access steps, one can usually reach every processor in the machine. Hence it is typically possible to run a program which requires access to data not directly accessible through a single step along the connection topology; in these situations, particular care should be taken to obtain an acceptable �\INCORPORA Equation ��� value.
	Another interesting quantity that we can introduce is �\INCORPORA Equation ���. It indicates the ratio between �\INCORPORA Equation ��� (the memory wasted due to data replication in the parallel distribution) and �\INCORPORA Equation ��� (the memory needed to describe the system to be simulated, which would be used also on ideal computing engines). Again it will be �\INCORPORA Equation ��� in optimal data distribution strategies, while �\INCORPORA Equation ��� will denote bad situations. And again you can consider accepting �\INCORPORA Equation ��� situations. Below, we will show some examples of data distributions and related �\INCORPORA Equation ��� and �\INCORPORA Equation ��� estimates.
	To summarise: the main objective of a good Data Distribution Strategy is the minimisation of �\INCORPORA Equation ��� and �\INCORPORA Equation ��� .

�sommvoce "MIMD and SIMD machines."�MIMD and SIMD machines.

	We must now review another architectural classification. A conventional computer composed of a single processor acting on data stored on a single memory, could be named a �indvoce "SISD"�SISD computer (Single Instruction Single Data machine). If each processor of a parallel computer can execute a different program, we have a �indvoce "MIMD "�MIMD machine (Multiple Instruction Multiple Data machine).
	If all the processors basically execute the same program instruction at the same time, we will have a �indvoce "SIMD"�SIMD (Single Instruction Multiple Data machine).
	However, as we have seen in the previous chapter, a �indvoce "SIMD"�SIMD machine too has specific statements to execute a code portion only on a set of processors (the �indvoce "where"�where statement on �indvoce "Quadrics"�Quadrics), or to alter the global program flow on the basis of local conditions (the �indvoce "any"�any, �indvoce "all"�all and none �indvoce "Quadrics"�Quadrics clauses). Multiple data, in these acronyms, means that each processor can act on different data, which, under typical operating conditions, are stored in the local memory or in the remote memories to which the connection topology provides a direct access path.
	Difficult and interesting programming problems arise when the different programs executing on a �indvoce "MIMD "�MIMD machine must perform remote communications and reciprocal synchronisation. Moreover, when �\INCORPORA Equation ��� is in the range of the hundreds or thousands, as in massive parallel computers, it is difficult to design and to produce a realistic situation in which �\INCORPORA Equation ��� individual different programs are in simultaneous execution. This is one of the reasons why the �indvoce "MIMD "�MIMD machines are often programmed according to the �indvoce "SIMD"�SIMD style. We will concentrate here on data parallel �indvoce "SIMD"�SIMD programming technique.

	�sommvoce "The Art of Parallel Programming."�The Art of Parallel Programming.

	On a �indvoce "SIMD"�SIMD machine, the best way to conceive a program is to find a partition of the data describing the system, so that by assigning one of these portions to each processor, we obtain situations in which a large portion of the work can be done by a single processor acting only on its own portion of the system. Data Parallel Programming is this technique and Data Parallelism should communicate the feeling of a great number of processors which execute operations on unconnected sets of data.
	A data distribution strategy could require storing in local memories data previously stored in other processor memories (or even multiple copies of global information). This implies situations in which �\INCORPORA Equation ���. Usually, higher priority is given to the minimisation of execution time (�\INCORPORA Equation ��� minimisation as the higher priority target), but when the problem under study requires a large amount of data memory, it may be appropriate to begin with an attempt to reduce memory redundancy (�\INCORPORA Equation ���).

�sommvoce "Performance evaluation ingredients."�Performance evaluation ingredients.

	Usually, the number of mathematical operations to be performed to simulate a system, as well as the memory required, can be characterised by some function of �\INCORPORA Equation ��� (where �\INCORPORA Equation ��� is the problem "dimension": it could be the number of particles of the system to be studied, or the size of a mesh, etc.). One can often express the efficiency ratios mentioned above in terms of the problem dimension �\INCORPORA Equation ���, of the number �\INCORPORA Equation ��� of processors, of the computational speed �\INCORPORA Equation ��� per processor, and of the remote transmission speed �\INCORPORA Equation ��� (per processor, and along the available direct connection topology).
	Moreover, �\INCORPORA Equation ��� (the memory available per processing node) will impose some constrains on the problem size which must be taken into account, or it may be impossible to reach those regions of �\INCORPORA Equation ��� in which the efficiency ratios are satisfying.

�sommvoce "The Quadrics topology"�The Quadrics topology

	We can imagine a number of interesting connection topologies: a tree of processors, rings, stars, hypercubes, totally connected networks, and many others. We will treat here the connection topology of the �indvoce "Quadrics"�Quadrics machines: a tridimensional mesh of processors with periodic boundary conditions. This means that the whole machine can be viewed as formed by a tridimensional grid, and that in each point of this grid there is a processing node with its own local memory.
	A processing node will be identified by a triplet [i,j,k] of integer numbers which specify the position of the processing node in this 3D-grid. A given �indvoce "Quadrics"�Quadrics machine contains a certain number �\INCORPORA Equation ��� of processors. Let us examine some examples. A �\INCORPORA Equation ��� nodes machine is available as a grid �\INCORPORA Equation ��� (or �\INCORPORA Equation ���, depending on the model) while the single �indvoce "Quadrics"�Quadrics processing board (the minimal Quadrics machine) is an eight-node machine normally configured as a �\INCORPORA Equation ��� grid.	
	The �\INCORPORA Equation ��� configuration implies, in the �indvoce "Quadrics"�Quadrics notation, that a valid node specification triplet [i,j,k] has a correct meaning only if �\INCORPORA Equation ��� �\INCORPORA Equation ��� �\INCORPORA Equation ���.
	One of the processors is arbitrarily assumed to be the origin of this grid and is labeled [0,0,0]. �indvoce "Quadrics"�Quadrics associates to the three spatial axes the names �indvoce "right"�right, �indvoce "front"�front and �indvoce "up"�up to indicate the direction of increasing �\INCORPORA Equation ��� and the names �indvoce "left"�left, �indvoce "back"�back and �indvoce "down"�down to denote decreasing �\INCORPORA Equation ���. This convention can be changed by the programmer but we will adopt it in the examples that follow. We note here that the triplet numbering convention [i,j,k],on the contrary, cannot be modified easily by the programmer on �indvoce "Quadrics"�Quadrics machines.
	One should always keep in mind that the processing node grid is connected by periodic boundary conditions. This means that if we assume that in the right direction relative to the processor [i,j,k] one usually finds the processor named [i+1,j,k], when considering an �\INCORPORA Equation ��� machine the processors numbered [7,j,k], we will find the processor [0,j,k] to its right.
	In the case of the �\INCORPORA Equation ��� machine, the periodic boundary situation makes the nodes see to their �indvoce "right"�right and �indvoce "left"�left the same node (the same circumstance happens in the �indvoce "front"�front �indvoce "back"�back and �indvoce "up"�up �indvoce "down"�down directions). Note that in some realistic problems, periodic boundary conditions are often assumed; we anticipate here that when the user needs to impose non periodic boundary conditions, the programmer can do so by using appropriate �indvoce "where"�where statements.
	The operating system may configure a machine composed of �\INCORPORA Equation ��� processors, either to form a machine made up of all the processors, (e.g. a �\INCORPORA Equation ��� or a �\INCORPORA Equation ��� machine), or to decompose the net into a set of �\INCORPORA Equation ��� machines (these correspond to the �indvoce "Quadrics"�Quadrics processing board, which contains �\INCORPORA Equation ��� nodes and which can be closed on themself to obtain periodic boundary conditions on each board). Moreover �indvoce "Quadrics"�Quadrics machines can obviously be used as a set of �\INCORPORA Equation ��� independent and non intercommunicating processors executing the same instruction on different data, simply by writing and executing a program that does not perform remote accesses.
	In this case the tridimensional connection has no longer any significance or use. If the memory per node is sufficient to describe a copy of the system under study (and if we need statistics on different initial conditions or parameters) this simple machine configuration can provide the parallel programmer with a great satisfaction.

�sommvoce "Slices of processing nodes"�Slices of processing nodes

	Given a tridimensional mesh of processors (e.g a �\INCORPORA Equation ��� node �\INCORPORA Equation ��� machine) we may need to identify a portion of processing nodes. Let us introduce the notations and the restrictions adopted to identify �indvoce "Quadrics"�Quadrics machine slices. We have already seen that a processing node can be identified by a �indvoce "triplet"�triplet [i,j,k]. A pair of triplets[i,j,k][l,m,n] identifies a parallelepiped of processing nodes whose vertices are [i,j,k] and [l,m,n], containing �\INCORPORA Equation ��� nodes.
	When �\INCORPORA Equation ��� the pair [i,j,k][l,m,n] identifies a tridimensional portion of the machine. Obviously when only two of the coordinate pairs are different, we will have a rectangle of processors; when only one of them is different, we will have a processor line pointing in one of the three spatial directions.

�sommvoce "Data Parallel SIMD Execution"�Data Parallel SIMD Execution

	To explain in detail the concept of data parallel execution ruled by a single program (the �indvoce "SIMD"�SIMD situation) let us focus our attention on one of the processors in a �indvoce "SIMD"�SIMD parallel computer. This processor will not have any particular characteristic, with respect to the other processors. It will be only a mental reference point.
	A i.SIMD; program is executed essentially in the same way on all the processors, with the few exceptions depicted above, and therefore you can always keep in mind the program flow in terms of what is happening, at any given moment, on a generic processor. Let us see what happens to the [0,0,0] processing node. We can imagine it roughly the same way as a �indvoce "FORTRAN"�FORTRAN program executing on a conventional computer. Consider this �indvoce "Quadrics"�Quadrics minimal program (executed by all the processors):

�indvoce "real"�real radius
�indvoce "constant"�constant pi=3.141562
�indvoce "real"�real area_circuli
radius = 2.0
area_circuli = pi*radius*radius

A dull but clear translation of this program, as seen by our reference processor [0,0,0], is: reserve local memory locations to store the real variables radius and area_circuli, and another one to store the constant pi; then calculate the area of the circle. Remember that a �indvoce "Quadrics"�Quadrics program is composed by an single file: a single flow of instructions executed by all the processors simultaneously. 	Since in this example the only input parameter is the circle radius, and everywhere on the machine the statement radius = 2.0 will be executed the same way, this algorithm produces the same results on all the nodes.

	In this case, if we do not assign different radius values to the processors, we will not have any Data Parallel strategy at all. Suppose we assign a different radius value to each processor: in this case, each node would be capable of evaluating the area of a different circle.

��sommvoce "Something about data input/output."�Something about data input/output.

	We must now make a digression on how to read/write data from/to the processing nodes. We will indicate here only how to satisfy the following basic needs: reading a different value for a variable on each processing node and writing the value of a variable from all the nodes. The following chapters will explain all the possible �indvoce "input/output "�input/output forms.
	We remind here that a �indvoce "Quadrics"�Quadrics user should be logged on the host computer to which the �indvoce "Quadrics"�Quadrics machine is connected.
	For example we can work under the UNIX environment to prepare �indvoce "TAO"�TAO source files and data files. Then we use, always under the UNIX environment, the �indvoce "TAO"�tao command to compile the source file and the runq command to run the compiled program. �indvoce "Quadrics"�Quadrics will assume as default directory for file �indvoce "input/output"�input/output the user’s current UNIX work directory.
	Moreover, the default input device will be the user keyword on the UNIX session issuing the runq command, while the default output device will be the user terminal on the same session.
	Let us also assume we are using the smallest �indvoce "Quadrics"�Quadrics machine: the �\INCORPORA Equation ��� machine. This will reduce our typographical problems, because we must write down in our input/output examples on these pages only �\INCORPORA Equation ��� numbers at a time.
	Apart from this consideration, a well written program for a �\INCORPORA Equation ��� machine can usually be scaled up to larger machines with controlled behaviour.
	Well written program mean, at the very least, that the program should use the machine dimension as a parameter in its own data declarations and/or read this kind of informations from the available set of pre-defined topological system variables that are accessible through �indvoce "Quadrics"�Quadrics programs.

�sommvoce "A sample data parallel program."�A sample data parallel program.

	Let us prepare a file named radii.dat in the directory of the host computer on which we are working. The file could contain �\INCORPORA Equation ��� floating point numbers indicating radius values:

1.5
6.7
3.444
44.3
6.0e3
1.1
228.12
0.55

	We can rewrite now a slightly different version of the previous elementary program:

�indvoce "real"�real radius
�indvoce "constant"�constant pi=3.141562
�indvoce "real"�real area_circuli
�indvoce "open for reading"�open for reading "radii.dat" �indvoce "as"�as 10
�indvoce "read"�read from 10 [0,0,0][1,1,1] �indvoce "multidata"�multidata radius area_circuli = pi*radius*radius
�indvoce "write"�write [0,0,0][1,1,1] area_circuli

	This program associates an input channel number (10) to the file radii.dat. Then a �indvoce "read"�read from 10 is performed, loading on each processing node (in the [0,0,0][1,1,1] slice of processor, i.e. on the whole �\INCORPORA Equation ���machine) a different value for the radius variable on the �\INCORPORA Equation ��� local memories. The clause �indvoce "multidata"�multidata specifies that the user wants to load different data on each processor: this is a necessary specification, because in many situations the user may whish to initialise a variable to the same value on several processors. Now each processor can evaluate a different circle area.
	At the end of the program, on the user terminal (default output channel) the �\INCORPORA Equation ��� results will appear. In this elementary case the parallelization strategy is clear: give each processor a different area calculation.

�sommvoce "Data declaration meaning."�Data declaration meaning.

	When the user declares a floating point data in a �indvoce "Quadrics"�Quadrics program, space for a copy of that object is reserved on each node of the machine. In the previous example, on each node there were two variables, radius and area_circuli. In the first program, these locations contained the same values on all the nodes, in the second program they had different values. In every program, the first situation applies to a number of different purposes (parameters of the algorithms, integration steps and, more generally, global information), but what is interesting is when we identify different numeric values on the processing nodes using the same name one.
	Suppose that in a program running on a �\INCORPORA Equation ��� machine we state:

�indvoce "real"�real temperature[3,4,5]

	A first meaning of this statement is obvious: we have �\INCORPORA Equation ��� different arrays, each one representing a temperature field over a �\INCORPORA Equation ��� grid. But the question is this: are we simulating �\INCORPORA Equation ��� independent physical systems, each one living on a �\INCORPORA Equation ��� grid? Or are we treating a single system with the temperature defined on a �\INCORPORA Equation ��� grid (this declaration could thus be considered synonymous with �indvoce "FORTRAN"�FORTRAN �indvoce "real"�real temperature(6,8,10) on a conventional computer)?
	Another compatible interpretation could be a grid �\INCORPORA Equation ���(use parallelism to extend only one physical dimension!). Another could be to simulate simultaneously two systems with a grid �\INCORPORA Equation ���, the first one on the right processing slice [0,0,0][0,1,1] the second on the left slice [1,0,0][1,1,1]. We would like to stress here that great part of the meaning of a �indvoce "Quadrics"�Quadrics declaration remains in the hands of the user, who can use this freedom in parallel algorithm design.
	One of the purposes of the �indvoce "TAO"�TAO syntactical flexibility is to allow the user to define new statements, manipulating the additional freedom given by the multiple processor. A class of useful statements would then be customised forms of �indvoce "do"�do...�indvoce "enddo"�enddo, appropriate to the geometry problem. A library of these new statements can be used to separate parallelization problems from numerical problems.
	Then, in parallel to software development, the statement library can be easily modified and integrated to host new needs. Another �indvoce "TAO"�TAO advantage is that, having the possibility of writing codes in a language nearest to the abstract mathematical formulas, we will save a lot of time that can be used to face the difficult problem of parallelization. Having more formal programs, however, is an advantage independent from the parallel programming. It is a more general issue of generational evolution in programming languages. In our opinion, this could be a jump similar to the one in the transition from ASSEMBLY languages toward conventional programming languages.
	To sum up this section: it is a fact that when we declare an object on �indvoce "Quadrics"�Quadrics, we have objects with the same name physically distributed on a 3-D mesh; but, depending on individual requirements, we may decide to consider [i,j,k] as a conventional numbering but unconnected to the nature of the problem, or as a significant information (for example if we want to discretize a tridimensional system). Of course we may also adopt hybrid approaches, giving a significance only to one or two of the machine axis.

�sommvoce "Remote access mechanism on Quadrics machines."�Remote access mechanism on Quadrics machines.

	We have now to explain how to drive the �indvoce "Quadrics"�Quadrics connection network to allow a processor to perform accesses to variables stored on remote memories (the memories of the six neighbours in the three directions). Suppose we have declared on each node of a �\INCORPORA Equation ��� machine a �indvoce "real"�real array[3] (perhaps to represent a 3D vector). We have also prepared a file "array.dat" which contains the �\INCORPORA Equation ��� components to initialise this array on the �\INCORPORA Equation ��� nodes. Suppose that the task is to obtain on each node a �indvoce "real"�real array_sum[3] containing the sum of the local array[3] with the array[3] on the node to its right. This program segment performs the declarations and initialization:

�indvoce "real"�real array_sum[3], array[3]
�indvoce "open for reading"�open for reading "array.dat" �indvoce "as"�as 10
�indvoce "read"�read from 10 [0,0,0][1,1,1] �indvoce "multidata"�multidata array[0]
�indvoce "read"�read from 10 [0,0,0][1,1,1] �indvoce "multidata"�multidata array[1]
�indvoce "read"�read from 10 [0,0,0][1,1,1] �indvoce "multidata"�multidata array[2]

while the following lines perform on each node the sum between the local element and the array element on the processing node to its right:

array_sum[0]= array[0] + array[right]
array_sum[1]= array[1] + array[1+right]
array_sum[2]= array[2] + array[2+right]

	This is the simple way a processor can read (or write) from (or to) an array element on the nodes to its right, left, front, back, up and down. We just have to add these key words to the address of the array to drive a remote communication, without message passing statements or communication library calls.
	As in the previous example, we can display the result on screen using this ending program section:

�indvoce "write"�write [0,0,0][1,1,1] array_sum[0]
�indvoce "write"�write [0,0,0][1,1,1] array_sum[1]
�indvoce "write"�write [0,0,0][1,1,1] array_sum[2]

	We would like to make a technical digression here, to explain how this remote communication is driven on �indvoce "Quadrics"�Quadrics. The reader who is not interested in this subjects may skip to the next section in this chapter.
	Let us remember what happens when, on a conventional computer, a programmer writes a reference to an array element. Let us, for example, assume that we have declared a �indvoce "real"�real array[3] on our conventional computer and we write something like array[0]=array[1]+array[2]. The processor will sum up the base address at which array is located with the indexes (in this case the numbers 0, 1 and 2) to obtain a valid address, visible in its own memory. If the index is too large, a typical address violation exception will be generated. On �indvoce "Quadrics"�Quadrics, the memories of the six neighbouring nodes are directly visible on the addressing space of each processor at higher addresses with respect to the local memory. When we write something like array[2+right] we are simply summing a constant value (�indvoce "constant"�constant right=0x02000000 where 0x indicates an hexadecimal number) to a good address in the local memory (the address associated to array[2]). In fact the higher bits in a �indvoce "Quadrics"�Quadrics address drive the connection network, allowing a processor to read a neighbouring memory.
	It is important to note that, in the present �indvoce "Quadrics"�Quadrics machine, the generated address is the same on all nodes. Hence, if a processor performs an access to its right, at that moment all other processors will be doing the same.

 �sommvoce "An operational classification of .i.data distribution strategies"�An operational classification of data distribution strategies.

In our experience, the strategies adopted in solving problems with �indvoce "Quadrics"�Quadrics machines can be classified as follows. To each category a name and a mnemonic signature for the data distribution method is associated.

	Category I. "Gibbs Ensemble" Situation.
				(�indvoce "Replica Method"�Replica Method).
	Category II. Complete Locality Situation.
				(�indvoce ""Obvious" Method"�"Obvious" Method).
	Category III. Completely Connected Situation.
				(�indvoce "Slice Method"�Slice Method).
	Category IV. Local Connectivity with a Low Number of 				Data per Problem Site.
				(�indvoce "Frame Method"�Frame Method).
	Category V. Local Connectivity with a High Number of 				Data per Problem Site.
				(�indvoce "Remote Addressing Method"�Remote Addressing Method).
	

��sommvoce "Category I. "Gibbs Ensemble" situation: Replica Method."�Category I. "Gibbs Ensemble" situation Replica Method.

	Sometimes it is interesting to study the behaviour of a system under different initial conditions, either with several internal parameter configurations [10][11][12]. It is also possible to substitute an analysis over a single long term trajectory with a study of several shorter system lives. In these cases, as well as in many others, we may want a calculator performing simultaneous simulations of a set of system replicas.
	When the memory per processing node �\INCORPORA Equation ��� suffices to store the �\INCORPORA Equation ��� data which characterise the state of the single system to be studied, it is often possible to use a �indvoce "Quadrics"�Quadrics machine to perform the simultaneous simulation of such a replica set. If the program execution can proceed in a prevalently homogeneous way on the different system copies (strict control over the physical characteristics of the system under study may be needed, to identify computationally homogenous sets of replicas) high computational efficiencies can be reached. In these cases �\INCORPORA Equation ��� because the price paid is precisely �\INCORPORA Equation ��� times the memory needed to simulate a single copy of the system on a conventional computer, so as to reduce the computational time by a factor �\INCORPORA Equation ���.
	In these cases �\INCORPORA Equation ���, since no time is lost in remote communication, and the only serious sources of inefficiency may be the premature ending of the computations on some elements of the replica set. Initial data loading are less important problems as is the inefficiency needed to treat marginal heterogeneity in the replica set.
	An actual example, which runs on �indvoce "Quadrics"�Quadrics machines adopting the replica distribution method, is the simulation of the folding of stochastic polymers.
	We should always have in mind, also for problems that cannot be stored on a single memory, that the replica method can be adopted jointly with other data distribution methods. In fact, a �indvoce "Quadrics"�Quadrics machine can be viewed as a set of machines (slices of nodes), and that we can use these slices to perform a simultaneous simulation of different copies of the system.
	For example, an �\INCORPORA Equation ��� �indvoce "Quadrics"�Quadrics computer could be used to simulate �\INCORPORA Equation ��� different systems simultaneously on �\INCORPORA Equation ��� bidimensional machines. Either a system can be decomposed into slices, between which only simple communication schemes can be adopted, or the interior of each slice a complex data distribution and remote communication strategy could be necessary.

�sommvoce "Category II. Complete locality situation: Obvious Method."�Category II. Complete locality situation Obvious Method.

	Data parallel simulation can be done on a series of problems by distributing the data among �\INCORPORA Equation ��� processing nodes in a quite ovious fashion. This happens every time calculations to be performed on each element of the global system depend only on global information and on the variables associated with the �\INCORPORA Equation ��� elements making up the system. In this case, we can simply assign to each processor of the system �\INCORPORA Equation ��� data of the global system, as well as a copy of the global information.
	Each processor can execute all the calculations for the assigned portion of the system without the need for remote communication. Hence the program we write is very similar to the corresponding program on a conventional computer.
	In these cases, it will typically be �\INCORPORA Equation ���, because no time is lost in remote communication (high computational inefficiencies). If �\INCORPORA Equation ��� is the number of global data, and �\INCORPORA Equation ��� the data set size for each element of the system, it will be �\INCORPORA Equation ��� .
	A simple example of this situation is the evaluation of a scalar field (with a given explicit mathematical formulation) over a spatial domain. In this case, �\INCORPORA Equation ��� will represent the number of evaluation points over the domain, �\INCORPORA Equation ��� the number of parameters in the functional form of the scalar field. In this case �\INCORPORA Equation ���. It is clear that, when �\INCORPORA Equation ���, data distribution is optimal also from the point of view of memory efficiency.
	We would like to here one example of the application of this method. Supposing we have a molecule, and suppose that we have from previous computations an expression for the atomic orbitals of the single atoms (complex scalar fields, with several parameters, and among them the position in the space of the centre of each atom).
	Suppose now that we want to make linear combinations of these atomic orbitals to obtain a discretised version of the molecular orbitals. We have a 3D spatial domain, impose a grid on this domain and give a portion of this domain to each processor. Now, on each processor, we can make our linear combinations, which depend only on the position of the centre of the atoms (global information), on the spatial coordinates of the evaluation points (local information) and on some additional global parameters. Another example: suppose we are following the evolution of a linear ondulatory system, and assume we decomposed the field in planar waves, characterized by their temporal frequencies �\INCORPORA Equation ���, and their spatial wavenumbers �\INCORPORA Equation ���. If we assigned to each processor a subset of the wavenumbers, we will be able to follow on each processor the evolution of different waves. The superposition principle will guarantee us the whole machine correctly simulates the global behaviour.

��sommvoce "Category III. Completely connected situation: Slice Method."�Category III. Completely connected situation Slice Method.

	We will show here some different applications in which the complete connection of a system composed by �\INCORPORA Equation ��� bodies produces a data set represented by a bidimensional matrix with O(�\INCORPORA Equation ���) elements, to be processed by rows or by columns. We will treat also a situation in which the primitive data set itself is a �\INCORPORA Equation ��� matrix. In some of these situations, we can apply the slice method. The main idea of the slice data distribution strategy is to divide this matrix into �\INCORPORA Equation ��� slices on a �\INCORPORA Equation ��� processor machine; depending on the situation, these slices can be cut along the rows or along the columns of the matrix. These two approaches give rise to �\INCORPORA Equation ��� submatrices, either each one with �\INCORPORA Equation ��� rows and �\INCORPORA Equation ��� columns or with �\INCORPORA Equation ��� rows and �\INCORPORA Equation ��� columns. If we declare in a �indvoce "Quadrics"�Quadrics program a matrix with �\INCORPORA Equation ��� rows and �\INCORPORA Equation ��� columns we have actually declared a similar matrix on all the nodes. For example, if you are considering a �\INCORPORA Equation ��� system on a �\INCORPORA Equation ��� �\INCORPORA Equation ��� machine, we may it find useful to write:

�indvoce "constant"�constant N=6400
�indvoce "constant"�constant P=128
!! strategy: N rows and N/P columns per node
�indvoce "real"�real �indvoce "matrix"�matrix[N, N/P]

or

!! strategy: N/P rows and N columns per node
�indvoce "real"�real �indvoce "matrix"�matrix[N/P, N]

	There will be situations in which we can proceed with calculations separately on each submatrix, as well as situations in which we have to sum the contributes of the calculations on each processor.
	In other situations, we may need to redistribute a value obtained on a processor to all the nodes. A way to sum �\INCORPORA Equation ��� local results using the 3-D first neighbour connection network to obtain a global sum is explained in detail below, while the broadcast statement on �indvoce "Quadrics"�Quadrics (which controls the hardware feature to read a variable from a node and distribute it simultaneously on all the nodes) solves directly the second problem.
	Let us address the global_sum of �\INCORPORA Equation ��� �indvoce "real"�real local_values showing a simple (and non optimized) code, explained in detail. Note here that we could tranform this code (or an optimized version of it) into a new statement of the language using the evolvence features; we will show it in basic �indvoce "TAO"�TAO form only to make an example of pure connectivity usage. i_machine_lx, i_machine_ly and i_machine_lz are predefined variables initialized by the �indvoce "Quadrics"�Quadrics operating system with the dimension of the configuration on which we are running.

�indvoce "real"�real local_value
�indvoce "real"�real gate[1]
�indvoce "real"�real global_sum
.....
gate[0]=local_value
�indvoce "do"�do i=2, i_machine_lx
 gate[0]=local_value+gate[right]
�indvoce "enddo"�enddo
global_sum=gate[0]
�indvoce "do"�do j=2, i_machine_ly
 gate[0]=global_sum+gate[front]
�indvoce "enddo"�enddo
global_sum=gate[0]
�indvoce "do"�do k=2, i_machine_lz
 gate[0]=global_sum+gate[up]
�indvoce "enddo"�enddo
global_sum=gate[0]

	A �indvoce "Quadrics"�Quadrics machine with �\INCORPORA Equation ��� processor can be schematically viewed as a cubic mesh of processors with side length �\INCORPORA Equation ���(and with a periodic topology).
	Let us define �\INCORPORA Equation ��� as the number of global sums to be performed and �\INCORPORA Equation ��� as the transmission speed (word/sec) between first neighbouring processors. In a time proportional to�\INCORPORA Equation ��� each processor can cooperate with the processors aligned in one of the spatial direction to sum the partial contributes calculated by that processor line.
	By parallel execution of this accumulation procedure, we will obtain �\INCORPORA Equation ��� lines of processors, with each line of processors having a different partial accumulation (already obtained in �\INCORPORA Equation ��� steps). We can now repeat this calculation along a different spatial direction to get �\INCORPORA Equation ��� processor planes, each one containing contribution of �\INCORPORA Equation ��� processors.
	By means of a new iteration on the last spatial direction, we get a cube of �\INCORPORA Equation ��� processors, each containing the total sum. The number of executed synchronous communication steps on the whole machine is �\INCORPORA Equation ���. The time necessary to perform a global sum of �\INCORPORA Equation ��� variables per body in one �\INCORPORA Equation ��� body system will be:
	�\INCORPORA Equation ���
	A first example of application of the "cut along the rows" data distribution strategy allows us to perform a high efficiency conventional matrix �\INCORPORA Equation ��� vector multiplication. In fact, if we have to apply a �\INCORPORA Equation ��� array on a �\INCORPORA Equation ��� element vector_in we can store on each node a copy of vector_in vector and a slice of the array, and then perform simultaneously the calculation of �\INCORPORA Equation ��� different row by column multiplication. A simple and non optimized code would be

real vector_in[N]
real array[N/P,N]
real vector_out[N/P]
.....
do row=0, N/P-1
 vector_out[row]=0.0
 �indvoce "do"�do column= 0, N-1
 vector_out[row]= ...
		vector_out[row] + ...
 array[row,column]*vector_in[column]
 �indvoce "enddo"�enddo
enddo

	There are also many supercomputing applications in which the main data set is represented by a large matrix and alternating phases of computation are required by rows and by columns. Let us mention here only problems in weather forecasting and image processing [21][22]. A common situation requires a Fast Fourier Transform by rows and columns. It is clear that, when we have a matrix distributed by rows among the processing nodes, each processor can adopt conventional algorithms to perform the computation on its own part of the data set, without requiring any additional communication time.
	But if we have data distributed by rows a massive reshuffle among the communication network may be necessary to transpose the matrix and to process it by rows. We will not give more indication here about possible data transposition methods on Quadrics but the interested readers can find a detailed description in [19].
	Let us now treat the situation of complete connected systems, which in our experience originated the slice method. A first example of physical systems characterised by complete connectivity is constituted by the physical systems with long range interactions (for example gravitational and Coulombian systems). In these models, each element of the system exerts an influence on all other elements, depending on the distance between the two. Therefore, if �\INCORPORA Equation ��� are the bodies, O(�\INCORPORA Equation ���) will be the interaction terms
�\INCORPORA Equation ���,�\INCORPORA Equation ��� 	

to be evaluated at each evolution step.

	Completely connected neural networks have an interaction law characterized by the state of the couple �\INCORPORA Equation ��� but also depending on the history of previous events. To be more precise, several neural network models [13][25] characterise the state of a system at time t by means of �\INCORPORA Equation ��� and �\INCORPORA Equation ���: �\INCORPORA Equation ��� specifies the activation state (i.e. instantaneous or time-averaged firing rates) of the �\INCORPORA Equation ��� neurons. �\INCORPORA Equation ��� describes the influence that each neuron of the system can exert on other neurons. From a biological point, this influence is carried via excitatory or inhibitory synapses; when one neuron has no influence on another neuron, the corresponding synaptic matrix component can be set to zero.
	Depending on the model, allowed values for �\INCORPORA Equation ��� can be real numbers or discrete values. We will then have some dynamic prescription to determine �\INCORPORA Equation ��� and �\INCORPORA Equation ���. The dynamic prescription used to determine a new value for the neuron �\INCORPORA Equation ��� usually involves the calculation of the sum of influences of other neurons (carried by the active synapses):

 �\INCORPORA Equation ���			

	Note here a first analogy with the calculation of gravitational forces acting on the �\INCORPORA Equation ��� th body; the main difference being that in the gravitational case O(�\INCORPORA Equation ���) real numbers (body positions) that allow to compute the O(�\INCORPORA Equation ���) force contributions must be known, while in the neural case it is necessary to store an O(�\INCORPORA Equation ���) matrix containing the system memory. Different neural network models will prescribe deterministic or probabilistic rules to obtain a new value for �\INCORPORA Equation ��� from �\INCORPORA Equation ���.
	The models also differ in the chosen updating scheme. In fact some models prescribe to update synchronously all the neurons while other models specify a sequential or random selection of the neuron (or neuronal group) to be updated at any given time. This is a crucial point, because if we adopt a synchronous update rule we can directly apply the matrix multiplication scheme already depicted (cut the matrix along the row).
	On the contrary, if we need to update only a neuron at a time, we have to find a way to make the entire machine work with high efficiency on a single row by column mutliplication. We can perform this operation by using the global sum algorithm already described, if we have subdivided the synaptic matrix giving a set of columns to each processor. Moreover we have to give each processor a portion of the neural state vector. Note in the following code segment that all the processors are working simultaneously, managing different portions of the product in the first row of the matrix with the state vector:

�indvoce "real"�real s[N/P]
!! a cut along the column data distribution
�indvoce "real"�real W[N, N/P]
�indvoce "real"�real local_value
.....
local_value=0.0
�indvoce "do"�do column = 0, N/P-1
 local_value=local_value+ ...
 W[row,column]*s[column]
�indvoce "enddo"�enddo
.....
!! and now you can use the global sum
!! algorithm obtaining a global_sum from the
!! P local_value
.....

	More details about the simulation on �indvoce "Quadrics"�Quadrics of N-Body classical systems and Neural Networks can be found in [20]. Here we would like only to stress that the time spent in useful calculations while performing
�\INCORPORA Equation ���

on the entire system can be evaluated to be
 �\INCORPORA Equation ���.

 	The time used in remote communication to perform the global sums will be
 �\INCORPORA Equation ���.

	A first evaluation of the overall computing inefficiency given by the data distribution strategy could be
�\INCORPORA Equation ��� .

	It is clear that when the number of neurons to simulate is large enough
�\INCORPORA Equation ���	

the inefficiency �\INCORPORA Equation ��� will tend toward zero.
We would like to note that this distribution strategy is absolutely efficient with regard to the memory usage. The synaptic matrix has been divided into slices and space for that slice only has been declared on each processor.

�sommvoce "Category IV. Local connectivity with a Low Number of data per problem site: Frame Method."�Category IV. Local connectivity with a Low Number of data per problem site Frame Method.

	We would like to introduce here a common situation which can be faced adopting two alternative strategies: the Frame Method and the Remote Addressing Method. The main advantage of the Frame Method is the similarity of the codes with those written for conventional machines. The price paid is a waste of memory. The Remote Addressing Method saves memory, but the programmer is required to manage a closer interction with the interprocessor communications.
	The simulation of systems composed of homogeneous parts which interact only with neighbourings part can be coded in a straightforward and natural way [23][24] on �indvoce "Quadrics"�Quadrics. Each processing node has a direct communication path toward the first neighbouring nodes. We simply have to divide the domain into subdomains to assign to each processor the data pertaining to a subdomain and to follow on each processor the evolution of the physical phenomena happening on the subdomain.
	A computational overhead will arise from the exchange of information about parts of system located on the subdomain surfaces, across the subdomain boundaries, i.e. when communication between neighbouring processors is required. This computational overhead will surely tend toward zero when the memory per node is sufficiently large to store a great number of physical sites in each processor. In this case, infact, the ratio between the surface and the volume of the subdomains will tend toward zero.
	Let us make a numerical example keeping in mind that on today’s �indvoce "Quadrics"�Quadrics machine we have a memory of 1 MWord per node, and that on typical problems we need as a minimum some tenth of data per physical site.
	Suppose we assign to each processor a region with �\INCORPORA Equation ��� physical sites. Each boundary �\INCORPORA Equation ��� physical sites, for a total physical sites on the surface of �\INCORPORA Equation ���.
	Suppose now we are integrating a fluidodynamic system in an explicit way.
	This means we are going to evaluate the next time value at the physical sites, summing up the present time value with a term proportional to the time derivative on that site. Suppose we can express this time derivative as an expression of the local partial spatial derivative.
	We can evaluate these spatial derivates by the differences of the value at the cells neighbouring the cell we are working on. It is clear that, when working on a cell inside our domain, we can calculate spatial derivatives without any need for remote communication, while when near the subdomain boundary wemay need to perform a near neighbour node communication.
	We do not need to perform access to nodes further afield. Even if we need a physical value two, three or four position away to calculate higher order derivatives, we can find them in the neighbour processing node (which contains a region with side �\INCORPORA Equation ���). Let us now introduce the Frame Method. We can arrange the frame data distribution strategy to clearly separate the portion of code in which we are performing remote communications from those in which we are working on local processor data. Using this method our code can have a structure identical to that used on a conventional (non parallel) machine. The only difference will be, prior to any integration step, a call to a routine to initialize the "frames".
	Let us explain how to manage this method. It is customary, also with codes running on conventional computers, to declare, in finite difference algorithms, a data matrix slightly larger than the physical one (typically with a frame of thickness �\INCORPORA Equation ���). The use of this non physical frame is to impose boundary conditions on the system we want to simulate.
	At each integration cycle we must perform physical integration only on the physical portion of the data matrix, while before each integration step we have to initialize the frame cells to values appropriate to the boundary condition to be imposed. In this way, the calculation of the spatial derivatives can proceed in a homogenous way on all the cells inside the physical data region.
	On a conventional computer this would be done by code:

�indvoce "constant"�constant size=42
!! you have to add 4 because you want a frame
!! of thickness 2
!! on both the right and left side of the
!! physical size
�indvoce "real"�real density[2+size+2, size+4, size+4]
do iteration = 1, max_iteration

 !! FRAME INITIALISATION PHASE 1
 !! Here you need
 !! a segment of code to initialize the
 !! frames of thickness 2 to impose the
 !! boundary conditions on each side

 !! ACTUAL EVOLUTION CALCULATION
 !! Now we can evaluate spatial derivatives
 !! through finite differences
 �indvoce "do"�do i=2,size-3
 �indvoce "do"�do j=2,size-3
 �indvoce "do"�do k=2,size-3
 !! now i,j,k will remain inside
 !! the physical region
 !! and you can calculate the
 !! spatial derivatives by means
 !! of finite differences

 �indvoce "enddo"�enddo
 �indvoce "enddo"�enddo
 �indvoce "enddo"�enddo
enddo

	To obtain a suitable code on a machine like �indvoce "Quadrics"�Quadrics we could consider the physical values on the boundary of the neighbouring processors as physical boundary conditions for the calculation inside the physical domain assigned to each processing node. Therefore we only have to modify the code initializing the frames this way:

!! FRAME INITIALISATION PHASE 0
!! a segment of code to copy from the six
!! neighbouring nodes physical value
!! to initialize the frames
!! Pay Attention!! Now the system looks
!! like one with periodic boundary conditions
!! but....
.....
.....
!! FRAME INITIALISATION PHASE 1
!! This PHASE 1 does exactly the same work of
!! the frame initialisation on
!! conventional machines.
!! If we need non periodic conditions
!! we have to use a typical PHASE 1
!! code to initialize the
!! frames.
!! The only difference with regard to
!! PHASE 1 non parallel codes
!! will be the need to execute them only
!! on the nodes on the
!! machine boundaries.
!! This can be done using appropriate
!! where statements on the node_abs_x,
!! node_abs_y and node_abs_z system
!! variables
!! For example a
!!
!! where(node_abs_x==0.0)
!!
!! left side conditioning code
!!
!! endwhere
!!
!! code segment could impose
!! boundary conditions on the plane
!! of processing nodes at the extreme left
.....

	We would like to end this section noting how the possibility of introducing new statements (dedicated loops and node exploration statements) can help provide an elegant solution to the parallelisation of these kind of algorithms.
	We would like now to cite another problem that, in our experience, is faced using the frame method. Suppose we want to simulate a crystal composed of atoms placed on a face centered cubic crystal (i.e. a crystal with the atoms placed on the vertices of a cube and on the center of the cube faces).
	Suppose the temperature is so low that we can perform a great majority of simulations assuming that the atoms will not leave their site. We can simply divide the crystal in portions and give a portion to each processing node. In a crystal, a homogeinic characteristic is surely present.
	The interaction between the atoms could have a Lennard-Jones formulation (i.e. something that depends on powers of the distance between atoms). We will then need about �\INCORPORA Equation ��� per atomic couple, per evolution step. If we consider only the interaction with the first neighbouring atoms, which in face centered cubic crystal are �\INCORPORA Equation ���, we will need �\INCORPORA Equation ��� to calculate one evolution step of one crystal site. If we assign �\INCORPORA Equation ��� crystal sites per processor we will need�\INCORPORA Equation ��� to make an evolution step of that physical domain. Each �indvoce "Quadrics"�Quadrics processing node has a peak processing power of �\INCORPORA Equation ���. Therefore, assuming a computational efficiency of �\INCORPORA Equation ���%, �\INCORPORA Equation ���seconds are necessary. Note that in this time the little �\INCORPORA Equation ���machine (�\INCORPORA Equation ���) will be able to simulate one evolution step of �\INCORPORA Equation ��� atoms.

�sommvoce "Category V. Local connectivity with a High Number of data per Problem Site: Remote Addressing Method."�Category V. Local connectivity with a High Number of data per Problem Site Remote Addressing Method.

	When the number of data on each physical site grows, the frame method cannot be applied. In this case, the wasted memory would increase to unacceptable values.
	If we choose to declare on each processor only the space for storing the physical portion of the domain assigned to it, without any supplementary space to contain the frames, we must arrange programs which explicitly address the neighbouring nodes when exploring the boundary of the domain assigned to each processor.
 	This is the case of the lattice simulations of subnuclear physics (Quantum Chromo Dynamics) which originated the �indvoce "APE"�APE parallel computing project of the �indvoce "I.N.F.N."�I.N.F.N.. Let us note that these simulations require the definition of a space-temporal lattice. This means that the data structure are matrices with at least four indices. The machine has a 3-D geometry, and therefore we must assign one of the dimensions entirely to each processor. This is the first cause of memory shortage in these applications. The second one is the large amoubt of data required to represent each physical site. The core of the used algorithms in this category of applications is the repeated multiplication of tensors associated with each link between lattice sites and to each lattice site.
	These characteristics forced the creation of programs that explicitly manage machine topology. The complexity of fundamental operations in these algorithms (managing a tensorial algebra over objects with many indexes) forced the software group of the APE project to introduce the �indvoce "TAO"�TAO advanced features, and in particular the ability to introduce new data type and operators in a syntactical way.
	In a following chapter we will describe, as a �indvoce "TAO"�TAO library example, the new data type and operators made available by the $TAOLIB/qcd.hzt library.

��sommvoce "III. The elementary TAO syntax."�III. The elementary TAO syntax.
	
	In this chapter we collect all the information we need to start programming the �indvoce "Quadrics"�Quadrics computer by means of the basic .iTAO; language. We will see the basic types of declarations and the elementary statements needed to control program flow.

�sommvoce "Notation."�Notation.

	There is a lexical analyser (the �indvoce "ZZ"�ZZ lexical analyser) that reads the text to be compiled and converts everything to tokens. The double exclamation mark

 !!

is interpreted by this lexical analiser like an end of line (�indvoce "EOL"�EOL). All the characters to the true end of line are ignored.
	Three contiguous dots

...

are interpreted as a "line continues" marker, which means that the line has to be completed with the following line. All the characters to the �indvoce "EOL"�EOL are ignored. The lexical analyser ignores all redundant spacing. Space and (or) tabs are significant only to separate identifiers and numbers. It should be noted that special characters are always to be considered different tokens. An example will make this point clear:

	input stream		Lexical analyser output
					(| here separates tokens)

	"+hiA"A++		| "+hiA" | A| +|+|

	"+h i A" A+	| "+h i A" | A | +|

	+hi B	3		| + | hi| B | 3 |

	+hiB3			| + | hiB3 |

�sommvoce "The TAO Language Predefined Libraries."�The TAO Language Predefined Libraries.

	A �indvoce "TAO"�TAO programming language environment is composed of a number of predefined language definitions contained in the so-called language extension libraries. The programmer may use his own language extension libraries by means of statement like:

�indvoce "/include"�/include library_name

assuming that the extension is .hzt. We can also write

�indvoce "/include"�/include library_name.hzt
�indvoce "/include"�/include "library_name.hzt"
�indvoce "/include"�/include "/path/library_name.hzt"

which are equivalent to and do not assume anything about the extension. The statement

�indvoce "/include"�/include <library_name>

refers to a file contained in the directory $TAOLIB, defined in UNIX environment. The $TAOLIB/std.hzt library is automatically included when the �indvoce "compiler"�compiler is invoked by writing the command

tao file_name.

	This library defines an elementary, self-consistent programming language defining the basic numeric data types, operators, control structures and input/ouput statements. The data types, operators and language constructs are designed to fully exploit the Quadrix architecture features. Then, using the language subset defined by this library, the programmer is allowed to control fully the machine.
	If you need the TAO predefined mathematical library (which includes among the other �indvoce "log()"�log(), �indvoce "exp()"�exp(), �indvoce "sqrt()"�sqrt(), �indvoce "sin()"�sin(), �indvoce "cos()"�cos(), ...) you have to insert a

/include �indvoce "<math>"�<math>

statement. You will find detailed informations about the <math> functions in the TAO Reference Manual. To obtain the basic random number generator use

/include �indvoce "<random>"�<random>

If you need to use or experiment with the extension language dedicated to Quantum Chromo Dynamics, you should use it by inserting an

/include �indvoce "<qcd>"�<qcd>

statement among the first lines of your program. This statement will include the language definitions of $TAOLIB/qcd.hzt.

�sommvoce "To compile a TAO program"�To compile a TAO program

	If you have a TAO compiler installed on your UNIX machine, the UNIX command

tao file_name

starts the compilation of a source file_name.zzt (zzt is the default extension for a �indvoce "TAO"�TAO source file).

�sommvoce ""�To execute a TAO program.

	If we are logged on a UNIX workstation which is the host of a Quadrics machine, and if our Quadrics operating system is installed and active, we can execute a program using the UNIX command

runq file_name

	The options of the UNIX command runq are explained in detail by the operating system documentation.

�sommvoce "The program structure."�The program structure.

	Everywhere in a TAO source we can /include files. Usually at the beginning of a TAO source file we will specify a number of /include <library>. The declaration of the global variables follows as well as the flow of statements of the main section of the program. If our program makes use of subroutines, we have to declare them after the main section of the program. Immediately after the declaration of each subroutine we can insert the definitions of local variable for each subroutine. When we run a TAO program, execution starts at the first executable instruction written in our source program.

�sommvoce "An overview of elementary data types."�An overview of elementary data types.

	The Quadrics hardware directly supports only two data types: elementary integers and single precision floating points. However �indvoce "TAO"�TAO libraries give us control over more complex data types, and give us the instruments to declare our own new data types and operators.
	The �\INCORPORA Equation ��� bit integer data type should be used when we declare the addressing loop indexing and array indexing variables stored on the flow control and addressing unit (�indvoce "CPU"�CPU controller). The range of validity for an element of an integer data structure is �\INCORPORA Equation ���.
	The integer numbers are global variables, which are allocated and processed in the CPU. They are used to control the global flow and to address the vectors.
	The $TAOLIB/std.hzt library (standard library) allows the user to declare data variables, arrays and matrices of �indvoce "integer"�integer, �indvoce "real"�real and �indvoce "complex"�complex type. To obtain a fast addressing to arrays with a high number of indexes, the std.hzt library predefines a �indvoce "multindex"�multindex data type. The �indvoce "record"�record data type declaration statement is useful for introducing structured data types composed by defined data types. When the structured data type to be defined is composed of homogeneous fields, the programmer may use the �indvoce "matrix"�matrix data type declaration statement to introduce an indexed �indvoce "record"�record.
	It is possible to declare a conventional vector or matrix by using a statement like

�indvoce "real"�real rufus[100,200,10]

To access the elements of these matrixes or vectors we need to indicate explicitly the elements, as in the �indvoce "FORTRAN"�FORTRAN language.
	A �indvoce "matrix"�matrix declaration, on the contrary, gives you the possibility of managing a set of data directly and in its entirety.
	The storage modifiers �indvoce "static"�static (default), �indvoce "register"�register, �indvoce "stack"�stack, and �indvoce "temporary"�temporary, allow us to explicitly specify allocation means for the memory required to store declared variables, and �indvoce "extract"�extract and �indvoce "replace"�replace statements allow us to obtain high efficiency on memory-register transfer between non-homogeneous data structures .
	The �indvoce "complex"�complex data structures will be considered in this context as elementary both for historical reasons (the older version of �indvoce "Quadrics"�Quadrics machines implemented them directly in their hardware) and for their everyday use in physical applications. The user can therefore consider the �indvoce "complex"�complex data type as an elementary data type on �indvoce "Quadrics"�Quadrics machines. If a is a �indvoce "complex"�complex variable, a.re and a.im will be its real and its imaginary parts.
	When a data structure is declared, the default option �indvoce "static"�static is assumed, and the �indvoce "compiler"�compiler makes room for it in the memories. The �indvoce "static"�static data structures always mantain their memory space during the program execution.
	When a data structure is declared with the �indvoce "stack"�stack option, the space for it is found in the stack space on the memories. This is useful, for example, for declarations local to a �indvoce "subroutine"�subroutine.
	For the �indvoce "register"�register declared data structures, the appropriate amount of space will be reserved in the pool of registers of the �indvoce "MAD "�MAD processor.
	We now offer some information on usage rules for multidimensional arrays composed of predefined data types. The indexing operators are [and] which delimit the indexing expressions; the comma symbol “,” separates the different indexes. When declaring an array of �\INCORPORA Equation ��� elements the programmer has to specify the value of �\INCORPORA Equation ���.
	If we write

�indvoce "complex"�complex a[10,10]

we are declaring a bidimensional matrix of �\INCORPORA Equation ��� complex numbers on each node in the mesh. The zero value of the index identifies the first element of an array and the �\INCORPORA Equation ��� value the last one. The lines

a[0,0]=(17.234,12.)

and

a[99,99]=(24.18,11.)

make the �indvoce "compiler"�compiler load the first row, first column elements and the last row last column elements of the a matrix on each processing node memory, whereas the statement

a[3+u,i+2-k*j].re=4.68

loads the real part of the array element at the address

[3+u,i+2-k*j]

on each processing node and

a[3+u,i+2-k*j].im=12.9

loads the imaginary part of the array element.

��sommvoce "Standard predefined language constructs."�Standard predefined language constructs.

	The next sections describe the language key words and other constructs defined by the basic TAO language. The user should take into account that the �indvoce "TAO"�TAO language is built as a specific extension of the evolving �indvoce "ZZ"�ZZ language, therefore all the �indvoce "ZZ"�ZZ statements are also available within �indvoce "TAO"�TAO (these are described by the �indvoce "ZZ"�ZZ documentation).
	This book deals mainly with specific �indvoce "TAO"�TAO statements and does not describe all �indvoce "ZZ"�ZZ features and statements, giving only information needed for basic �indvoce "TAO"�TAO programming. Additional informations may be found in the TAO Reference manual as well in the ZZ Language documentation.

�sommvoce "Reserved key words and identifiers."�Reserved key words and identifiers.

	Below is a partial list of �indvoce "TAO"�TAO key words. The list does not include key words reserved for �indvoce "ZZ"�ZZ (e.g. /for or �indvoce "/include"�/include).

�indvoce "constant"�constant,
�indvoce "integer"�integer,
�indvoce "real"�real,
�indvoce "complex"�complex,
�indvoce "record"�record,
�indvoce "endrecord"�endrecord,
�indvoce "register"�register,
�indvoce "stack"�stack,
�indvoce "temporary"�temporary,
�indvoce "where"�where,
�indvoce "elsewhere"�elsewhere,
�indvoce "endwhere"�endwhere,
�indvoce "if"�if,
�indvoce "else"�else,
�indvoce "endif"�endif,
�indvoce "all"�all,
�indvoce "any"�any,
�indvoce "while"�while,
�indvoce "endwhile"�endwhile,
�indvoce "repeat"�repeat,
�indvoce "as long as"�as long as,
�indvoce "do"�do,
�indvoce "enddo"�enddo,
�indvoce "subroutine"�subroutine,
�indvoce "end"�end,
�indvoce "call"�call,
�indvoce "return"�return,
�indvoce "matrix"�matrix,
�indvoce "multindex"�multindex,
�indvoce "extract"�extract,
�indvoce "replace"�replace,
�indvoce "read"�read,
�indvoce "write"�write,
�indvoce "broadcast"�broadcast,
�indvoce "close"�close,
�indvoce "open for reading"�open for reading,
�indvoce "open for writing"�open for writing,
�indvoce "as"�as,
�indvoce "multidata"�multidata,
�indvoce "binary"�binary,
�indvoce "left"�left,
�indvoce "right"�right,
�indvoce "back"�back,
�indvoce "front"�front,
�indvoce "up"�up,
�indvoce "down"�down,
�indvoce "node_abs_x"�node_abs_x,
�indvoce "node_abs_y"�node_abs_y,
�indvoce "node_abs_z"�node_abs_z,
�indvoce "node_abs_id"�node_abs_id,
�indvoce "machine_lx"�machine_lx,
�indvoce "machine_ly"�machine_ly,
�indvoce "machine_lz"�machine_lz,
�indvoce "i_machine_lx"�machine_lx,
�indvoce "i_machine_ly"�machine_ly,
�indvoce "i_machine_lz"�machine_lz,
�indvoce "i_def_abs_x"�def_abs_x,
�indvoce "i_def_abs_y"�def_abs_y,
�indvoce "i_def_abs_z"�def_abs_z,

�sommvoce "Identifiers."�Identifiers.

	Valid variable identifiers begin with an alphabet letter, followed by up to �\INCORPORA Equation ��� alphanumerical or underscore ("_") characters. The $ character would be allowed, in principle, but the TAO compiler uses $ characters in its own internal predefined identifiers. Therefore, if we use identifiers including a $, we could have unpredictable TAO compiler behaviours.
	To prevent potential syntactic ambiguities, it is preferable to avoid using reserved key words and predefined identifiers reserved for the TAO language.
	The language ignores lower/uppercase .
	The following example shows allowed identifiers.

i, Neper, PSI_7_c, Delta_plus

�sommvoce "Numerical constants."�Numerical constants.

	Valid integer numerical constants will be in the �\INCORPORA Equation ��� range. Valid real constants are recognized by the presence of a floating point and it will range approximately at �\INCORPORA Equation ���; the smallest absolute value which can be represented is �\INCORPORA Equation ���, while the �\INCORPORA Equation ��� value is represented explicitly (note that �indvoce "Quadrics"�Quadrics machines adopt a subset of the IEEE-754 single precision floating point standard). This implies that a binary file written by a TAO program running on a Quadrics machine may be easily read by programs running on the UNIX workstation, and viceversa. Below is a list of valid TAO numerical constants:

 24
-3723
3.
-12.e-5
(0.,3.141592)

Note the complex constant in the previous example we can : a couple of real constants enclosed by “(“ and “)”and separated by ",".

�sommvoce "The symbolic declaration of constant values."�The symbolic declaration of constant values.

	The constant statement is useful for associating a symbol to constant values and expressions defined at compilation time. To do this we must use the syntax

�indvoce "constant"�constant name = value[..., name = value...]

as in the following example

�indvoce "constant"�constant size_x = 10,size_y=20,pi = 3.141592
�indvoce "constant"�constant total_size=size_x*size_y

	There are some restrictions to the use of this statement. The value of the constant may be an integer number, a floating point number, or an expression of previously defined integer constants. The integer expressions in �indvoce "constant"�constant declarations are evaluated at compilation time, and the integer constants do not allocate memory space. The floating point constant reserves memory space on each processing node.
	Sometimes we need to declare an integer constant and a floating point constant referring to the same number. To do so we can follow the example

�indvoce "constant"�constant grid_size=100
�indvoce "constant"� constant real_grid_size=�indvoce "cast_to_real"�cast_to_real(grid_size)

	If we write the �indvoce "TAO"�TAO command

�indvoce "cast_to_real"�cast_to_real(integer_constant)

we create a floating point constant (to be stored on each node) corresponding to a previously defined integer constant. �indvoce "cast_to_real"�cast_to_real.create. This may be useful if we need to create floating point programs which parametrically depend on some integer constant (for example a mesh floating point spacing, depending on the declared mesh size).
	The std.hzt library predefines some frequently used complex constants:

�indvoce "complex"�complex_i				=(0., 1.)
�indvoce "complex"�complex_1				=(1., 0.)
�indvoce "complex"�complex_0				=(0., 0.)
�indvoce "complex"�complex_minus_i		=(0., -1.)
�indvoce "complex"�complex_minus_1		=(-1., 0.)

�sommvoce "Declaration of static variables, "�Declaration of static variables, arrays and matrices of predefined data types.

	Use the following statement to declare objects whose values will be permanently stored in memory locations. The syntax to declare integer, real or complex numbers is

�indvoce "integer"�integer obj�_to_decl [...,obj_to_decl ...]
�indvoce "real"�real obj_to_decl [...,obj_to_decl ...]
�indvoce "complex"�complex obj_to_decl [...,obj_to_decl ...]

Example

�indvoce "constant"�constant size_x=10, size_y = 20
�indvoce "constant"�constant total_size=size_x*size_y

�indvoce "integer"�integer count,vet[10],mat[size_x, size_y]
�indvoce "real"�real energy,pos[total_size],vel_x[200,200]
�indvoce "complex"�complex wave,psi[50]

	Only one integer variable storage space is allocated on the CPU data memory, while space for a copy of the declared �indvoce "real"�real and �indvoce "complex"�complex variables is allocated on the data memory of each processing node.
	We can use arrays and matrices in arithmetic, but array references will cause a loading or downloading to or from the processor registers for each array element. We will decribe later the �indvoce "register"�register storage modifiers and the �indvoce "matrix"�matrix, �indvoce "extract"�extract and �indvoce "replace"�replace statements which can be useful to improve memory access performance managing segments of arrays and matrices.

�sommvoce "Declaration of variables stored on registers, whose content will be lost on optimization block boundaries."�Declaration of variables stored on registers, whose content will be lost on optimization block boundaries.

	The code optimizer of the Quadrics computer optimises independently sequential groups of instructions named optimization blocks. An expert Quadrics programmer should be able to identify the code segments which will be treated as optimization blocks. These blocks are delimited by high level instructions producing entry points at the assembler level. The entry points are points toward which the instruction flow can be directed. They correspond, at assembler level, to jump destination addresses. Quadrics is a number crunching engine, and we surely want maximum performance from our Quadrics machine. To optimise global execution time, the optimiser does not save automatically the values of variables declared as register and stored explicitely in the �indvoce "MAD "�MAD registers instead that on in the memory. We can write a program without using register declared variables, but if we decide to use a register variable, the optimizer leaves us with the task to initialise and save it (if needed). Obviously if the programmer does not need to optimise the code at this microscopic level, he can avoid tackling the management of register variables, leaving the task to the optimizer choices.

	To declare the �indvoce "register"�register variables we can follow the example

�indvoce "register"�register	�indvoce "real"�real
�indvoce "register"�register �indvoce "complex"�complex

	We cannot declare register variables on the �indvoce "CPU"�CPU. This means that the register specifier does not apply to integer or multindex variables.
	The main characteristic of a floating point �indvoce "register"�register variable is that it will never cause unnecessary memory access. Due to the characteristic of the microcode optimizer, the �indvoce "register"�register variables lose their value at the boundary of the optimization block.
	Every source operation that causes the placing of an assembler branch or an entry point will cause the loss of register variable values. Be careful to load properly the register variable, with a value before using it a first time or re-using it in a different optimization block. Please note that usually a computational kernel is nested inside a do ... enddo loop and that at the end of each iteration the register variable values are lost. A Quadrics unexperienced programmer often forgets to save some register values at the end of the loop, while usually reminds to initialize it at the beginning of the loop. This implies a reinitialization of the register variable with the same value at each do ... enddo cycle.
	The user will take more advantages when specifying as �indvoce "register"�register the more space and time consuming types predefined, for example, by the <qcd> package.
The �indvoce "register"�register syntax is the following

�indvoce "register"�register �indvoce "real"�real obj_to_decl [...,obj_to_decl ...]
�indvoce "register"�register �indvoce "real"�real obj_to_decl [...,obj_to_decl ...]

Example

�indvoce "register"�register �indvoce "real"�real energy, vel
�indvoce "register"�register �indvoce "complex"�complex wave, psi

	There are some restrictions to the use of these statements. We cannot use the �indvoce "register"�register specifiers on arrays. Do not assign the same name to �indvoce "register"�register and �indvoce "static"�static variables of the same data type, as this may cause ambiguities at compilation time.

�sommvoce "Real and imaginary part extraction postfix operators."�Real and imaginary part extraction postfix operators.

	The .re and .im postfix operators allow us to obtain or assign separately the real and imaginary parts of a �indvoce "complex"�complex variable or �indvoce "complex"�complex array element. The syntax is the following

complex_obj.re
complex_obj.im

Example

int i
�indvoce "complex"�complex c,c_vet[10,10]
�indvoce "real"�real r
r=c_vet[i+2,3].im +c.re
c.re=r*2.0

�sommvoce "Complex conjugation postfix operator."�Complex conjugation postfix operator.

	The ~ postfix operators allows us to produce the complex conjugation of a complex variable or complex matrix element. The syntax is

complex_obj~

Example

int i
�indvoce "complex"�complex c,c_vet[10,10]
c =c_vet[i+2, 3]~+c

�sommvoce "Arithmetic operators."�Arithmetic operators.

	The hardware architecture of �indvoce "Quadrics"�Quadrics does not allow the use of expressions mixing integer data with floating point variables (i.e. real and complex) or data type built using floating point variables. The

*, +, -, /, (,)

operators are allowed in any algebraically correct combination, except for previous limitations. Real to complex conversion is applied where needed. The two binary bitwise operators

and(integer_obj)
or(integer_obj)

are allowed in any algebraically correct combination only on integer objects.

��sommvoce "The do loops: an elementary issue of the global flow control."�The do loops, an elementary issue of the global flow control.

	The �indvoce "do"�do statement is the elementary tool for generating iterations in your code. The syntax has one of two possible forms

�indvoce "do"�do index_var = start_val, stop_val
 block
�indvoce "enddo"�enddo

or

�indvoce "do"�do index_var = start_val, stop_val, step_val
 block
�indvoce "enddo"�enddo

where index_var is an integer variable, start_val, stop_val, and step_val are general expressions that generate integer numbers.
	As an example, we can show the code	

�indvoce "integer"�integer ris�indvoce "�
�indvoce "do"�do i = 1 , 10
 �indvoce "call"�call fact(i,ris)
 �indvoce "write"�write "factorial of ",i," = ",ris
�indvoce "enddo"�enddo

In a �indvoce "do"�do loop we are not forced to declare the integer variable i.
It is possible to refer to the i variable within the loop either in expression or in assignements, but if it has not been declared it becomes undefined after the enddo statement.

��sommvoce "Relational operators and elementary logical conditions."�Relational operators and elementary logical conditions.

	The conditions of program flow control in �indvoce "Quadrics"�Quadrics are always based on relational expressions between numerical expressions. The user can form elementary relational conditions using the following relational operators:

==		equal to
!=		not equal to
<		lesser to
>		greater to
<= 		lesser or equal to
>=		greater or equal to

	By means of these operators the programmer can produce local conditions or global conditions:

arith_expr relat_operator arith_expr

	One restriction to the use of this statement is that the elementary relational conditions cannot mix integer and floating point expressions.
	The relational conditions established between integer expressions will be used in conventional �indvoce "if"�if, �indvoce "while"�while or �indvoce "repeat"�repeat statements to control the global flow of the whole �indvoce "SIMD "�;SIMD machine. Relational conditions between the data hosted on each processing node (floating point data) can also be used in the statements

�indvoce "where"�where(local_cond)
�indvoce "any"�any(local_cond)
�indvoce "all"�all(local_cond)

 	Inside the

�indvoce "where"�where

statement the local_condition controls the execution of a block of statements locally in each node, by allowing execution only in those nodes where the local_condition is satisfied.
	The

�indvoce "any"�any

or

�indvoce "all"�all

operators tranform the set of the local_condition s on the entire set of processing nodes into global_condition used in expressions changing the global SIMD program flow. We are speaking of the

 �indvoce "if"�if,
�indvoce "while"�while

or

�indvoce "repeat"�repeat.

statements.
	 This allows global use of the logical || (OR) or && (AND) of all local conditions to control the program flow.
	We can mix integer and floating point conditions by means of the �indvoce "any"�any(local_cond) and the �indvoce "all"�all(local_cond).

�sommvoce "Boolean operators producing composed logical conditions."�Boolean operators producing composed logical conditions.

	If we want to produce a non-elementary logical condition we can use boolean operators. We can alter operator precedences by using the parenthesis. Unary prefix ! (logical NOT operator), binary infixes && (logical AND) and || (logical OR) operators are also available.
The syntax, in order of precedence, is:

! logical_cond
logical_cond && logical_cond
logical_cond || logical_cond

	Example:

�indvoce "integer"�integer i, j, k
�indvoce "real"�real a,b ,c
...
�indvoce "if"�if (!i<=3 && !(j==k||j!=9))
�indvoce "where"�where(!a<=3. && !(b==c||b!=9.)

�sommvoce "Conversion of local to global conditions."�Conversion of local to global conditions.

	We said that the unary prefix �indvoce "all"�all (unanimity of global condition), �indvoce "any"�any (truth of local condition on at least one node) and �indvoce "none"�none operators transform local conditions into global conditions. The syntax of these statements is

�indvoce "all"�all (local_logical_cond)
�indvoce "any"�any (local_logical_cond)
�indvoce "none"�none (local_logical_cond)

Example

�indvoce "integer"�integer i,j,k
�indvoce "real"�real a,b,c
.....
�indvoce "if"�if(!i<3 || �indvoce "any"�(any(!a<=3.) &&!(b==c)) || �indvoce "any"�any(b!=9.))

�sommvoce "Global flow control."�Global flow control.

	There are two types of elementary conditions that can modify the program execution: conditions defined on global integer objects and conditions defined by the analysis of conditions of the simultaneous status of all local floating point conditions, simultaneously considered by the flow controller with unanimity or with at least one true criteria.
	The global flow control statements, listed below, cause an effective branch in the program flow. These statements in the �indvoce "TAO"�TAO language are the following:

�indvoce "if"�if (global_condition)
 block
�indvoce "endif"�endif

where block is a sequence of instructions. This statement performs the instructions contained in block if the global condition is true. The statement

�indvoce "if"�if (global_condition)
 block1
�indvoce "else"�else
 block2
�indvoce "endif"�endif

performs the instructions contained in block1 if the global condition is true, and otherwise performs the instructions contained in block2.
	The control structure

�indvoce "repeat"�repeat
 block
�indvoce "as long as"�as long as (global_condition)

executes the instructions of block as long as the global_condition is true.
	The conventional

�indvoce "while"�while(global_condition)
 block
�indvoce "endwhile"�endwhile

control structure evaluates first the global_condition and continues to execute block while the condition is true.

�sommvoce "Local flow control statement."�Local flow control statement.

	The �indvoce "where"�where statement allows local conditioning by disabling the recording of floating point operation results on those nodes where local conditions defined on floating point data are false. The following statement

�indvoce "where"�where (local_condition)
 block
�indvoce "endwhere"�endwhere

executes the instructions contained in block on those nodes where the local_condition is true, while the control structure

�indvoce "where"�where (local_condition)
 block1
�indvoce "elsewhere"�elsewhere
 block2
�indvoce "endwhere"�endwhere

will produce, on nodes where the condition is true, the numerical results specified by the instruction contained in block1, and elsewhere those indicated by block2
	Let us suppose, for example, that we want to compute the values of the function

�\INCORPORA Equation ���

on every processing node. The code will be either the code

/include <math>
�indvoce "real"�real f, x
.....
�indvoce "where"�where(x!=0.0)
 f=sin(x)/x
�indvoce "elsewhere"�elsewhere
 f=1.0
�indvoce "endwhere"�endwhere

or the equivalent code

/include <math>
�indvoce "real"�real f, x
.....
f=1.0
�indvoce "where"�where(x!=0.0)
 f=sin(x)/x
�indvoce "endwhere"�endwhere

	The �indvoce "where"�where statement is very different from the �indvoce "if"�if statement. Execution time is the same for both previous where codes, since where acts by disactivating the recording of results on nodes in which the condition is not true. The �indvoce "where"�where statement is a local conditioning of the program which does not change the global program flow, whereas the �indvoce "if"�if statement globally changes the program flow. The last fundamental point to be made is that �indvoce "where"�where does not break an optimisation block, while an if control structure does.

�sommvoce "The Subroutines."�The Subroutines.

	We do not need to declare the subroutines to be used in the program: they are explicitely declared when they are called up. Subroutine parameters can be floating points or integer numbers and arrays. The syntax to call up subroutines is the following

�indvoce "call"�call name(var_list)

where name is the name of the subroutine and var_list is a list of variables, separated by commas.
	The variables are usually transferred to the subroutine by an address. This means that the subroutine, if it changes one of the parameters, also modifies the corresponding variable.
	If we pass to a subroutine an array with and index different from zero we are actually giving to the subroutine the address of a memory region starting from that array element.
 It is also possible to give values to the subroutine, instead of addresses. In the latter case, the object we want to pass should be preceded by the # character.
	The �indvoce "call"�call statement tells the �indvoce "compiler"�compiler to analyze a list of variables. If parameters are given as values, the result is computed and put on the global or local stack. The global stack contains integer data used by the CPU (among them, all the addresses), while each of the processing nodes has a local stack (where only floating point values can be stored).
	The address of every parameter is then put on the stack. For numerical values, the address is the address of the stack in which they are. The stack index is in at the position of the first argument. The return address is then put on the stack and the call to the subroutine is generated.
	The definition of the body of subroutines must always follow the main program. The syntax to define a subroutine is

�indvoce "subroutine"�subroutine name(decl_list)
 block
�indvoce "end"�end

where name is the subroutine name and decl_list is a list of parameter declarations, which have to be separated by commas.

return

statements may be used to exit the subroutine.
	The following example shows the use of a subroutine and how to declare variables on the stack. It computes recursively the value of the integer defined function

�\INCORPORA Equation ���

where the symbol �\INCORPORA Equation ��� denote the set of the integer numbers.

!!Compute the Factorial!!
�indvoce "integer"�integer ris
.....
.....
�indvoce "do"�do i = 1 , 10
 �indvoce "call"�call fact(i,ris)
 �indvoce "write"�write "factorial of ",i," = ",ris
�indvoce "enddo"�enddo
.....
.....
!!
!! ris = n!
!!
�indvoce "subroutine"�subroutine fact(�indvoce "integer"�integer n,�indvoce "integer"�integer ris)
 �indvoce "stack"�stack �indvoce "integer"�integer n1,tmp
 �indvoce "if"�if(n==0)
 ris = 1
 �indvoce "else"�else
 n1=n-1
 �indvoce "call"�call fact(n1,tmp)
 ris = tmp*n
 �indvoce "endif"�endif
end
�	The local variables have their values allocated in the static memory.
TAO implements a �indvoce "scope"�scope mechanism by which we can use the same name for local and global variables, as shown in the following example:

�indvoce "integer"�integer i,j,k
.....
call rufus(i,#12+k)
.....
�indvoce "subroutine"�subroutine rufus(�indvoce "integer"�integer l,�indvoce "integer"�integer m)
�indvoce "integer"�integer i,j,k		!!i,j,k local
.....
�indvoce "end"�end

In this case the local variables hyde the global ones having the same name when the subroutine is executed. It is not possible to use the same name for a local and a global variable of a different type (i.e. a real and a complex variable) and for variables of the same type which are stored in a different way (i.e. a static and a register variable).

The static local variables are not reentrant. In other words, if the subroutine calls itself, the value of the variable cannot be preserved. If we put the �indvoce "stack"�stack prefix before the variable definition the variable is allocated on the �indvoce "stack"�stack. In this way, we can have �indvoce "reentering variables"�reentering variables: for any subroutine call, the stack pointer is moved and the variable is allocated to a new memory position. In this way data cannot be lost.
	The declaration of subroutines in the �indvoce "TAO"�TAO language supports the �indvoce "overloading"�overloading mechanism that we introduced in the first example of this book. Using the overloading tool, we can declare subroutines using the same name but different argument types. The �indvoce "compiler"�compiler will recognise the different subroutines from the argument types. For example:

��indvoce "integer"�integer i
�indvoce "real"�real a

�indvoce "call"�call rufus(i)	!!rufus with �indvoce "integer"�integer argument
�indvoce "call"�call rufus(a) !!rufus with �indvoce "real"�real argument

�indvoce "subroutine"�subroutine rufus(�indvoce "integer"�integer i)
.....
�indvoce "end"�end

�indvoce "subroutine"�subroutine rufus(�indvoce "real"�real a)
.....
�indvoce "end"�end

This mechanism is useful for building a set of subroutines to perform a conceptually analogous computation of data.

�sommvoce "The record statement."�The record statement.

	The �indvoce "record"�record statement is used to create an aggregate type starting from simpler types, which themselves can be aggregate types. We can associate one or more �indvoce "field"�fields to form a record type. For example

�indvoce "record"�record point
 �indvoce "real"�real x,y,z
�indvoce "endrecord"�endrecord

defines the point type composed of three fields. To define a point variable we just write

point a

	Keep in mind that the �indvoce "record"�record types in the �indvoce "TAO"�TAO language are composed only of floating point variables, meaning that a record type can be constituted only by �indvoce "real"�real, �indvoce "complex"�complex, or other �indvoce "record"�record types. An example of �indvoce "record"�record made by records is the following:

�indvoce "record"�record line
 point p1,p2
�indvoce "endrecord"�endrecord

	In �indvoce "TAO"�TAO, the concept of pointer does not exists. Moreover it is not possible to use an undefined type. In the previous example, we could not define line before point.
	When we define a �indvoce "record"�record type, the �indvoce "TAO"�TAO language introduces default assignments, sums and differences between omologue records. However the meaning of the operators + and - may be overloaded if needed. For example after the record point declaration, you can write:

point a,b,c
a=b+c
	
	To address single fields we must use the dot “.“ notation:

point a
line l
a.x=12.3
l.p1.y=3.4
l.p2=a

	When a �indvoce "record"�record type has been defined, it is possible:
to define the variables of this new type; to define register and temporary variables of the new type; to define multidimensional arrays of the new type; to use the new type to build new complex types; to give a variable of the new type as an argument of a subroutine.
	It is not possible to pass to the subroutines �indvoce "record"�record variables as values (i.e. putting the prefix #).
	It is possible to do

�indvoce "constant"�constant pippo=�indvoce "sizeof"�sizeof(point)

in this example the pippo variable has the value 3. We wish to stress that one should avoid declaring a �indvoce "record"�record type larger than �\INCORPORA Equation ��� (this is a rule of the thumb, due to the fact that the number of �indvoce "MAD "�MAD registers is �\INCORPORA Equation ���). The following is an example of explicit reference to record subelements :

!! a new data type composed by six reals
�indvoce "record"�record local_fluid
 �indvoce "real"�real density
 �indvoce "real"�real v_x,v_y,v_z
 �indvoce "real"�real energy
 �indvoce "real"�real pressure
�indvoce "endrecord"�endrecord

!! the size of each side of a bidim. mesh
�indvoce "constant"�constant size=10

!! a bidimensional grid of local_fluid objects
!! for the eulerian representation of the
!! fluidodynamics
local_fluid euler[size,size]

!! a transit variable of the same type
local_fluid locus

!! a new data type composed of 24 reals
�indvoce "record"�record neighbour_fluid
 local_fluid at_left,at_right
 local_fluid at_up,at_down
�indvoce "endrecord"�endrecord

!! a variable named four_points of the new type
neighbour_fluid four_loci

!! the 6 real numbers in point assume a value
locus=euler[3,3]

!! the 24 real numbers are initialized
four_loci.at_left =euler[2,3]
four_loci.at_right =euler[4,3]
four_loci.at_up =euler[3,2]
four_loci.at_down =euler[3,4]

!! now we can calculate spatial derivatives
�indvoce "real"�real density_second_derivative
density_second_derivative=...
 four_loci.at_left.density-...
 2*locus.density+...
 four_loci.at_right.density
��sommvoce "The matrix statement."�The matrix statement.

	You should not confuse a matrix declaration with the declaration of a conventional array. The �indvoce "matrix"�matrix statement is very similar to the �indvoce "record"�record statement.
	The difference with a record type is that the field name for a unidimensional matrix is

[number]

whereas for the two dimensional matrixes it is

[number,number]

	Remember that only these two kinds of matrixes are allowed. The �indvoce "matrix"�matrix declaration it is not a declaration of an array, but of a new type. For example the line

�indvoce "matrix"�matrix �indvoce "real"�real slice.[10]

declares the slice type, composed of �\INCORPORA Equation ��� real numbers. To declare a variable of the slice type we should write

slice x

and to access to the element number 4 of x, we just write

x.[3]

where the dot recalls the �indvoce "record"�record nature of x.
	All the considerations made above about the �indvoce "record"�record statement also apply to the �indvoce "matrix"�matrix statement. Only in the case of static �indvoce "matrix"�matrix variables (i.e. variables which are not �indvoce "register"�register or �indvoce "temporary"�temporary) can we make use of an �indvoce "integer"�integer expression (or variable) as an index. For example:

i=3
x.[i]=.....

�sommvoce "The type M is made of T statement."�The type M is made of T statement.

	Let us consider the following code:

matrix type_1 T_matrix.[T_dim]
matrix type_1 M_matrix.[M_dim,T_dim]
type M_matrix is made of T_matrix

	The type M is made of T statement instructs the TAO compiler to allow the user to reference M_matrix subsets using a single index form obtaining objects which can be used as T_matrix objects. For example:

matrix real point.[3]
matrix real plane.[3,3]
type plane is made of point
point a,b,c
plane X
...
X.[0]=a
...
��sommvoce "The extract and replace statements."�The extract and replace statements.

	We can manipulate the �indvoce "matrix"�matrix types by means of the �indvoce "extract"�extract and �indvoce "replace"�replace statements. If we have a type T and we have declared an M type as a �indvoce "matrix"�matrix composed by T, the �indvoce "extract"�extract and �indvoce "replace"�replace statements act on the �indvoce "register"�register variables of the M type and on type T arrays, copying �indvoce "sizeof"�sizeof(M) real numbers from the array to the �indvoce "register"�register variable (or viceversa). For example

�indvoce "matrix"�matrix �indvoce "real"�real slice.[10]

�indvoce "real"�real x[1000]
�indvoce "register"�register slice tmp
�indvoce "extract"�extract tmp from x[500]

puts the values contained in

x[500..509]

in tmp, while the line

�indvoce "replace"�replace tmp into x[500]

writes tmp in x[500..509]. Of course if we have a static array of type M, the �indvoce "extract"�extract statement is not necessary:

slice y[100]
tmp=y[50]

has the same effect and the same efficiency. The �indvoce "extract"�extract and �indvoce "replace"�replace statements have been introduced because it is faster to load groups of contiguous data in �indvoce "MAD"�MAD memory registers then to load them in this way:

tmp.[0]=x[500]
tmp.[1]=x[501]
.....
.....
tmp.[9]=x[509]

Moreover, in some algorithms, it is better to manage both M and T objects. 	

For example

!! To use the �indvoce "extract"�extract/�indvoce "replace"�replace
!! statement to make faster
!! the copy of a vector.

�indvoce "constant"�constant chunk_size=5

!! The copy is made by groups of “chunk_size”
!! registers.

�indvoce "matrix"�matrix �indvoce "real"�real chunk.[chunk_size]

!! The type chunk contains real chunk_size
!! Declares the input output array.
!! Initialize the input array

�indvoce "constant"�constant size=103
�indvoce "real"�real in[size],out[size],count
count=0.0
�indvoce "do"�do i=0, size-1
 in[i]=count
 count=count+1.0
�indvoce "enddo"�enddo

!! Copy

�indvoce "integer"�integer i
�indvoce "register"�register chunk tmp

i=0
!! Copies by blocks
�indvoce "while"�while(i+chunk_size<=size)
 �indvoce "extract"�extract tmp from in[i]
 �indvoce "replace"�replace tmp into out[i]
 i=i+chunk_size
�indvoce "endwhile"�endwhile
!! Copy the remaining
�indvoce "while"�while(i<size)
 out[i]=in[i]
 inc i
�indvoce "endwhile"�endwhile

!! Check of the result

�indvoce "do"�do i=0,size-1
 �indvoce "if"�if (�indvoce "any"�any(in[i]!=out[i]))
 �indvoce "write"�write “Mismatch (i=“,i,”)”
 stop
 �indvoce "endif"�endif
�indvoce "enddo"�enddo
�indvoce "write"�write “Ok”

	We now make an example of TAO evolution by introducing a new statement which the transfers of all the in data structure to out. We suggest comparing the previous code with the following one, stressing that the computational heart is the line

out=in

	The code is

�indvoce "constant"�constant chunk_size=5
!! the copy is made by groups of
!! chunk_size registers
�indvoce "matrix"�matrix �indvoce "real"�real chunk.[chunk_size]
!! The chunk type comprehend �indvoce "real"�real chunk_size
�indvoce "integer"�integer ci
!! Define the “=“ operator to copy �indvoce "real"�real array
�indvoce "/stat"�/stat -> array_1_real^dst “=“ array_1_real^src{
 �indvoce "temporary"�temporary chunk tmp
 ci=0
 /size=n_of(dst)
 �indvoce "while"�while(ci+chunk_size<size)
 �indvoce "extract"�extract tmp from src[ci]
 �indvoce "replace"�replace tmp into dst[ci]
 ci=ci+chunk_size
�indvoce "endwhile"�endwhile
��indvoce "while"�while(ci<size-1)
 dst[ci]=src[ci]
 inc ci
�indvoce "endwhile"�endwhile
}

!! Declare the input output array.
!! Initialize the input array
�indvoce "constant"�constant size=10
�indvoce "real"�real in[size],out[size],count
count=0.0
�indvoce "do"�do i=0,size-1
 in[i]=count
 count=count+1.0
�indvoce "enddo"�enddo

!! Copy

out=in

!! Check the result
�indvoce "do"�do i=0,size-1
 �indvoce "if"�if(�indvoce "any"�any(in[i]!=out[i]))
 �indvoce "write"�write “Mismatch (i=“,i,”)”
 stop
 �indvoce "endif"�endif
�indvoce "enddo"�enddo
�indvoce "write"�write “Ok”

�sommvoce "The multindex statement."�The multindex statement.

	A multindex variable is useful for addressing inside a multidimensional array quickly and elegantly within the conventional schemes of array addressing.
	A multindex declaration statement could be used in the following way: if we want to declare a bidimensional multindex

multindex in [sizex,sizey] name, [...name,]

o, if we want a multindex to address inside a tridimensional array

multindex in [sizex,sizey,sizey] name, [..name,]

and so on, as we declare a larger multindex. If we have two multindex with the same dimensional structure, we can sum them to obtain a new multindex which can be used to point in arrays with the same dimensional structure. Supposing we have declared

real a
real Ising[20,30,10]

We could now access to the [4,7,9] element of Ising either by a conventional

a=Ising[4,7,9]

or we could write

multindex in [20,30,10] p
p=[4,7,9]
a=Ising[p]

	Supposing now that we want to move in the neighbourhood of [4,7,9] in particular increasing the first coordinate. The best way to do this is to define a

multindex in [20,30,10] dx
dx=[1,0,0]

and now we can write

p=p+dx
a=Ising[p]

�sommvoce "Topology System Variables."�Topology System Variables.

	The Quadrics operating system initializes a number of accessible variables as conventional and predefined TAO integer or real variables, which give information about the topology of the machine we are using. We can use the values of these variables for many different and important uses. For example we can condition the execution of a code by means of where statements, but only in the machine region where the topology variables assumed the desired values. Or we could execute parametric loops whose length depends on the topology we are using.
	We can find the list the topology predefined variables in the $TAOLIB/sys.hzt file.
	Here we will give only a description of the most important topology variables:

real �indvoce "machine_lX"�machine_lX, machine_lY, machine_lZ

	These real variables are initialized to the same value on all processing nodes and specify the dimension of the configuration we using.

real �indvoce "node_abs_X"�node_abs_X, node_abs_Y, node_abs_Z

	These real variables are initialized to a different value on each processing node. They specify the coordinate of that node in the machine.

real �indvoce "node_abs_id"�node_abs_id

	This variable is initialized on each node by the operating system to a different local value:

node_abs_id = node_abs_Z+ ...
 node_abs_Y*machine_lZ + ...
 node_abs_X*machine_lY*machine_lZ

integer �indvoce "i_machine_lX"�i_machine_lX, i_machine_lY, i_machine_lZ

	These are integer variables which again specify the machine dimension.

integer �indvoce "i_def_abs_X"�i_def_abs_X, i_def_abs_Y, i_def_abs_Z

	These integer values specify from which node the input/output should be performed if the read or write statement does not specify a machine region (see the �indvoce "<stdio> "�<stdio> section of this manual to have more information about explicit triple specifications, such as [i,j,k] or [i,j,k], and [l,m,n]).

�sommvoce "The broadcast statement."�The broadcast statement.

The broadcast statement allows to distribute in a single shot to all the nodes data fetched from a single node or a slice of nodes. If the node specification is omitted, the def node is assumed. The destination of the broadcast is a vector. The number of elements written is the product of source nodes multiplied by the number of items fetched from each node in the selected slice. The syntax is the following:

broadcast ...
 dest_vector=source_obj [slice_spec]:num_words

Here follows a broadcasting example:

real A[8]
real B,C,D,E,F
broadcast A[0] = B [0,0,0][1,1,1]
broadcast C = D
broadcast E = F [1,0,0]

�sommvoce "The timer function."�The timer function.

This system service provides a timer function. It returns the time spent since the last call. The result is returned in the integer variable provided by the user and is expressed in �\INCORPORA Equation ���. The first time we call up this function it returns 0.

The syntax is

integer target
get �indvoce "time "�time in target

for example

�indvoce "integer"�integer delta
get time in delta
.....
.....
get time in delta
�indvoce "write"�write “ The time spent is:”, delta

�sommvoce "The pseudo random number generator."�The pseudo random number generator.

	To use these statements you must

/include �indvoce "<random>"�<random>

	Several applications need to have a random number generator. On conventional computers, we can produce integer or floating point random numbers. On the �indvoce "Quadrics"�Quadrics computer, we must also choose how to distribute these numbers on different nodes. For example, we may need the same number on all the nodes or to have different random numbers on different nodes. The TAO language, to produce random numbers, generates a system service which calls up a pseudo-random number generator, providing it with an integer seed and a number of random items (maximum �\INCORPORA Equation ��� items) to be produced, as well as the starting address inside an integer or floating point array in which to load them. The initialization of the random generator follows the syntax

random seed is initial

	If we need to generate integer random numbers, the syntax is

random target : nitems

	A set of nitems integer pseudo-random numbers with a flat distribution in the range �\INCORPORA Equation ��� is generated and loaded starting from the target array element. If we need to have floating point random numbers, we must use the syntax

random [qualifier] target : nitems

	In this case pseudo-random numbers with a flat distribution between 0.0 and 1.0 are generated.
	The qualifier allows us to specify whether we want the same random number on all the nodes or different numbers on each node, and so on.
	If no qualifier is specified, a different set of nitems floating point numbers is generated for each node in the machine. If we specify the broadcast qualifier we get the same number on all the nodes, while if we specify board we get different number on each processing node within a board (i.e. to groups of �\INCORPORA Equation ��� nodes), but the same set goes to all the processing boards in the machine. The following example shows the different possibilities offered by <random>.

integer my_seed
integer v[32]
real r[15]
complex c[32]
read my_seed
random seed is my_seed
random v[0]:32 !! different on each node
random broadcast r[0]:15 !! everywhere equal
random board c[0]:32 !! different on groups

	The random statement is slow since it is executed by the main controlling unit, and not in parallel. Intensive users of random numbers (e.g. Montecarlo algorithms) should use generators that work on each node in parallel and, perhaps, use random to initialize the seeds of their own random number generators. An example of this is provided by the rand16.hzt library (See TAO REFERENCE MANUAL).

��sommvoce "IV.The input/output syntax."�IV.The input/output syntax.
	
�sommvoce "The <stdio> library."�The <stdio> library.

	Every programming language must provide tools for communication between the program and the external world.
	In the TAO language, communication with the external world is managed by the standard $TAOLIB/stdio.hzt �indvoce "input/output"�input/output, a library which defines a set of �indvoce "input/output"�input/output instructions toward the user session and files on the UNIX host computer. To use this library we do not need to include �indvoce "<stdio>"�<stdio> since this /include is performed by default when we call up the compiler.
	The default choice for the �indvoce "input/output"�input/output channel is the terminal attached to the user session on the host computer. When files need to be read or written, they should first be opened to assign a channel number. Moreover, the open statement should specify the nature (reading or writing) of the desired operation.
	The �indvoce "read"�read and �indvoce "write"�write statements allow to input or output data from or to the terminal or files. A single item like an integer, real, or complex variables or a string can be accessed in a �indvoce "read"�read or �indvoce "write"�write statement. Moreover, a list of variables can be read or written in a single statement. Let us define here a null terminated string as an ASCII string terminated by a binary zero value. The default input output formats are the following

integer variables			->	ASCII decimal
real and complex variables	->	ASCII floating point
strings					->	ASCII null terminated string

	If we want to perform an unformatted input/output (i.e. write or read data in the machine binary format) we do it by placing the binary qualifier in front of the item list to be read or written. In the case of unformatted I/O, an item list is made of every type of single variable and array (�indvoce "integer"�integer, �indvoce "real"�real, and �indvoce "complex"�complex). By default, when a �indvoce "read"�read statement on a floating point variable is issued, the same read value is written (broadcast mode) on each node in the machine. By default when a �indvoce "write"�write statement on a floating point variable is issued, the source value is read from one node, the so-called default node in the default processing board (see the section dedicated to topology variables). If we want to direct the I/O operations toward a specific node or slice of nodes, we can use the [i,j,k] notation to specify a single node and the [i,j,k][l,m,n] to access a slice of processors (see Chapter II).

�sommvoce "Opening and closing files."�Opening and closing files.

	To open or close a file on the UNIX host machine of Quadrics one should use the following syntax

�indvoce "open for reading"�open for reading filename �indvoce "as"�as fileunit
�indvoce "open for writing"�open for writing filename �indvoce "as"�as fileunit
�indvoce "close"�close fileunit

	The filename can be the name of a host file or a logical name, written between the quotes. The filename must begin with a letter. The file unit should be an integer constant in the range �\INCORPORA Equation ���. The channels �\INCORPORA Equation ��� and �\INCORPORA Equation ��� are reserved because they are managed by the operating system to serve the user terminal.
	An example of file opening and closure:

�indvoce "constant"�constant file_in=7, file_out=8
�indvoce "open for reading"�open for reading “/usr/bill/init.dat” �indvoce "as"�as 6
�indvoce "open for reading"�open for reading “init_conf.dat” �indvoce "as"�as file_in
�indvoce "open for writing"�open for writing “out.dat” �indvoce "as"�as file_out
...
�indvoce "close"�close file_in
�indvoce "close"�close file_out
�indvoce "close"�close 6

�sommvoce "Interactive and file directed input/output. "�Interactive and file directed input/output.

	All input/output operations can be directed on the terminal (the default choice) or toward an already opened file with the following syntax

�indvoce "write"�write			!! to terminal
�indvoce "write"�write on fileunit
�indvoce "read"�read				!! from terminal
�indvoce "read"�read from fileunit

�sommvoce "Reading or writing a single item."�Reading or writing a single item.

	The syntax is

�indvoce "write"�write [qualifier] object_to_write
�indvoce "read"�read [qualifier] object_to_read

	The single object to read or write can be a �indvoce "quoted string"�quoted string (i.e. a sequence of alphanumeric characters enclosed by a couple of ")" or an �indvoce "integer"�integer, �indvoce "real"�real or �indvoce "complex"�complex variable. A complex variable is displayed (or written on file) between brackets, with the real and the imaginary part separated by a comma. Unformatted input or output can be obtained by adding the binary qualifier in front of the object to be read or written. The following example describes these points.

�indvoce "integer"�integer i
�indvoce "complex"�complex c
�indvoce "real"�real r, result
�indvoce "complex"�complex temp
�indvoce "constant"�constant file_bin = 7
�indvoce "open for reading"�open for reading “data.in” �indvoce "as"�as 6
�indvoce "open for writing"�open for writing “data.bin” �indvoce "as"�as file_bin
.....
�indvoce "write"�write “Number of iterations?:”
�indvoce "read"�read i
�indvoce "write"�write “Now read r and c from file data.in:”
�indvoce "read"�read from 6 r
�indvoce "read"�read from 6 c
.....
�indvoce "write"�write “iteraction:”
�indvoce "write"�write i
�indvoce "write"�write result
�indvoce "write"�write temp.re
�indvoce "write"�write temp.im
�indvoce "write"�write on file_bin �indvoce "binary"�binary result
.....
�indvoce "close"�close file_bin
�indvoce "close"�close 6
��sommvoce "To read or write a list of items."�To read or write a list of items.

	In this case the syntax is

�indvoce "write"�write[qualifier]obj_to_write[,obj_to_write....]
�indvoce "read"�read[qualifier]obj_to_write[,obj_to_write....]

	The lists of objects can be made of integer variables, real variables and real or imaginary parts of complex variables. Complex variables and quoted strings are allowed too. The binary qualifier can be used. For example:

�indvoce "integer"�integer i,counter,num_it
�indvoce "real"�real r,alpha,beta,gamma
�indvoce "complex"�complex c,n1,n2,n3,e1,e2,e3,f1,f2,f3
�indvoce "constant"�constant file_out=7
�indvoce "constant"�constant file_bin=8
.....
�indvoce "open for reading"�open for reading “init.dat” �indvoce "as"�as 6
�indvoce "open for reading"�open for reading “init_bin.dat” �indvoce "as"�as 15
�indvoce "open for writing"�open for writing “data.out” �indvoce "as"�as file_out
�indvoce "open for writing"�open for writing “data.bin” �indvoce "as"�as file_bin
.....
�indvoce "write"�write “Number of iterations? :”
�indvoce "read"�read num_it
�indvoce "read"�read from 6 counter, alpha, beta, gamma
�indvoce "read"�read from 6 i,alpha,beta,n1.re,n1.im,e1,e2,e3
.....
!! Write a list of �indvoce "integer"�integer, �indvoce "real"�real and complex
!! variables

�indvoce "write"�write i,r
�indvoce "write"�write c
�indvoce "write"�write on file_out counter,alpha,beta,gamma,n1

!! Unformatted reading and writing of a list o !! variables

�indvoce "read"�read from 15 �indvoce "binary"�binary alpha,beta,n1,n2,n3,counter, e1,re
�indvoce "write"�write on file_bin �indvoce "binary"�binary f1, f2, f3, counter, alpha, e1.re
.....7
�indvoce "close"�close file_bin
�indvoce "close"�close 15

�sommvoce "Reading and writing a block of array elements."�Reading and writing a block of array elements.

	It is possible to read or write a block of �\INCORPORA Equation ��� array elements, starting from the vector element specified by the user. The syntax is

�indvoce "write"�write [qualifier] array_item : nwords
�indvoce "read"�read [qualifier] array_item : nwords

	Note that the number of floating point words of a complex array are twice those of a �indvoce "real"�real or �indvoce "integer"�integer array. Unfortunately the present <stdio> library leaves to the programmer the burden of calculating the number of floating point words to manage. In fact, one must consider the number of real parts plus the number of imaginary parts contained in the array. Unformatted input or output can be obtained by adding the binary qualifier in front of the object to be read or written. As for single items, it is possible to specify a list of blocks of array items rather than a single block. Furthermore, if the binary qualifier is specified, it is possible to read or write a list containing single items and blocks of array items together. The syntax is

�indvoce "write"�write [qualifier] array_item : nwords
 [, array_item : nwords]
�indvoce "read"�read [qualifier] array_item : nwords
 [, array_item : nwords]

	An example of this is the following

�indvoce "integer"�integer i, v[100]
�indvoce "complex"�complex c_var, field1[10], field2[20], field3[30]
�indvoce "real"�real a, b, c, r_v[50], r_field[10]
.....
�indvoce "open for reading"�open for reading “init.dat” �indvoce "as"�as 6
�indvoce "open for reading"�open for reading “data.bin” �indvoce "as"�as file_bin
�indvoce "open for writing"�open for writing “data.out” �indvoce "as"�as file_out
�indvoce "open for writing"�open for writing “data2.bin” �indvoce "as"�as file_dmp
.....
��indvoce "read"�read from 6 v[0]:5		!! First five �indvoce "integers "�integers
�indvoce "read"�read from 6 r_field[0]:10	!! Whole r_field
�indvoce "read"�read from 6 field1[0]:20	!! Whole field1
�indvoce "read"�read from 6 field2[6]:4	 !! Two complex
�indvoce "read"�read from 6 v[0]:5, r_field[0]:10, field1[0]:20,field2[6]:4 !!Together
�indvoce "write"�write on file_out v[80]:20
�indvoce "write"�write on file_out field1[0]:10, field2[0]:20

!! Write a list of arrays and single items on
!! an unformatted file

!! Line contin.
�indvoce "write"�write on file_dmp �indvoce "binary"�binary...
 v[0]:100, r_v[0]:10, i, a,...
 c_var, field1[0]:20

!! Read a list of arrays and single items on
!! an unformatted file

�indvoce "read"�read from file_bin �indvoce "binary"�binary ...
 r_v[0]:50, i,...
 a,c_var, ...
 field1[0]:20, field2[0]:20,...
 field3[0]:20

!! Write the fifth item of the integer array v

i=5
�indvoce "write"�write “element n.”, i, “=“, v[i]

!! Write the first 10 item (five complex
!! numbers)
!! of the complex array field2

�indvoce "write"�write on file_out field2[0]:10

!! Write the second 10 items of the complex
!! array
!! field2

�indvoce "write"�write on file_out field2[5]:10
�indvoce "write"�write “configuration n.:”, v[6]
�indvoce "write"�write on file_out a, b, c, field1[0].re, field1[0].im

�indvoce "close"�close 6
�indvoce "close"�close file_bin
�indvoce "close"�close file_out
�indvoce "close"�close file_dmp

To read or write data from a single node

	In this section we describe the syntax to specify a single node of the machine from (or to) which to read (or to write) data. The node specification is given by means of the �\INCORPORA Equation ��� spatial coordinates of the node, that is, �\INCORPORA Equation ��� integer constants or variables containing their values. The �\INCORPORA Equation ��� coordinates (for instance �\INCORPORA Equation ���) must be specified between square brackets : [i,j,k]. The syntax rules to specify the list of objects to read or write, as well as binary input/output, are the same described in the previous sections.

	The syntax is

�indvoce "write"�write node_spec [qualifier] obj_to_write[, obj_to_write ...]
�indvoce "read"�read node_spec [qualifier] obj_to_read
[, obj_to_read ...]

 	 An example

�indvoce "integer"�integer n,i,j,k,v[100]
�indvoce "real"�real alpha,beta,gamma,r[100]
�indvoce "complex"�complex c[30]
�indvoce "open for reading"�open for reading “data.in’ �indvoce "as"�as file_in
�indvoce "open for writing"�open for writing “data.out” �indvoce "as"�as file_out
.....
�indvoce "read"�read [1,1,1] alpha,beta,gamma
for n=0 to 31
{
 �indvoce "read"�read from file_in [n,0,0] alpha,beta,gamma
}
.....
�indvoce "write"�write on file_out[i,j,k] �indvoce "binary"�binary r[20]:40,c[0]:30

�sommvoce "To read or write data to or from a slice of nodes."�To read or write data to or from a slice of nodes.

	A �indvoce "slice"�slice of nodes in the machine can be specified by means of a pair of nodes. The 6 coordinates (for instance i1, j1, k1 and i2, j2, k2) of a pair of nodes must be specified between square brackets:

[i1,j1,k1] [i2,j2,k2]

	For instance, the pair of nodes with spatial coordinates �\INCORPORA Equation ��� and �\INCORPORA Equation ��� specifies the slice of 8 nodes on the processing board �\INCORPORA Equation ���. If the machine is a single crate machine, configured as an �\INCORPORA Equation ��� mesh, the pair of nodes with spatial coordinates �\INCORPORA Equation ��� and �\INCORPORA Equation ��� specifies all the nodes in the crate.
	The two nodes which specify the slice must be respectively the node with the lower value of the �\INCORPORA Equation ��� spatial coordinates in the slice and the node with the higher value of the �\INCORPORA Equation ��� spatial coordinates in the slice. In the case of the �indvoce "read"�read statement, the data pattern loaded in the slice of nodes is the same for all the nodes in the slice (default).
	It is necessary to load a different data pattern in each node of the slice in order to add the multidata qualifier as described below. In the case of a write statement it is not necessary to add the multidata qualifier, as the data pattern stored in each node of the slice is always sent out separately.
	The syntax rules to specify the list of objects to read or write are the same described in the previous sections. The binary and multidata qualifiers can be added in any order, in front of the object or list of objects to input or output (i. e. both syntaxes binary multidata and multidata binary are permitted. The syntax is

write [on file_spec] node1_spec node_2_spec [qual_list] obj_to_write[,obj_to_write]

�indvoce "read"�read [from file_spec] node1_spec node_2_spec
	[qual_list] obj_to_read [,obj_to_read]

	For example, we have the following

integer; i_m, j_m, k_m, i_M, j_M, k_M
�indvoce "real"�real alpha, beta, gamma, r[100]
�indvoce "complex"�complex c[30]
�indvoce "constant"�constant file_in=5, file_in1=6, file_out=7
�indvoce "open for reading"�open for reading “data.in” �indvoce "as"�as file_in
open for raeding “data.bin” �indvoce "as"�as file_in
�indvoce "open for writing"�open for writing “data.out” �indvoce "as"�as file_out
.....
!! Loading the same values of alpha, beta and
!! gamma on all the nodes of a board
�indvoce "read"�read from file_in [0,0,0][1,1,1]...
 alpha, beta, gamma
.....
!! Loading different values of the c vector on
!! all the nodes in the Tube
�indvoce "read"�read from file_in [0,0,0][31,1,1] �indvoce "multidata"�multidata c[0]:60
!! ... as well as ifferent values
!! for the r vector
�indvoce "read"�read from file_in_1[0,0,0][31,1,1] �indvoce "multidata"�multidata �indvoce "binary"�binary r[0]:100

!! ... a specific slice of nodes
�indvoce "write"�write on file_out [1,0,0][2,0,1] �indvoce "binary"�binary alpha
.....
!! Here the slice is specified by means of
!! integer variables.
�indvoce "write"�write on file_out [i_m,j_m,k_m][i_M,j_M,k_M]...
�indvoce "binary"�binary �indvoce "multidata"�multidata r[0]:100, c[0]:60

�sommvoce "Remote addressing inside input/output statements."�Remote addressing inside input/output statements.

The usage of remote addressing keywords right, left, up, down, front, back are not allowed inside read and write statements. The way to select specific input/output regions is through the node ([i,j,k]) or slice ([i,j,k][l,m,n]) specification mechanism.

�sommvoce "The & sign."�The & sign.

	By default a new line (i.e. an instruction which commands writing on a new line) is inserted at the end of the item list in each write statement. The �indvoce "&"�& sign at the end of a write statement avoids the line feed at the end of the item list, allowing to continue writing on the same line with the next write statement. For instance it is possible to write

.....
�indvoce "write"�write “Ut queant laxis” &
.....
�indvoce "write"�write “ resonare fibris”

and the result would be:

Ut queant laxis resonare fibris

	On the other hand, the result of the same operation without the & would have been

Ut queant laxis
resonare fibris

	For example

�indvoce "integer"�integer a,b,bc
�indvoce "real"�real v[100]
.....
�indvoce "write"�write a,”+”,b,”=“ &
c=a+b
�indvoce "write"�write c
.....
�indvoce "write"�write “Result in default node:”,v[10],”--”&
�indvoce "write"�write [5,0,1] ...
 “result in node [5,0,1]:”, v[10]

	The last example allows to write data relating to different nodes on the same line; it is not possible to specify two different nodes within the same write statement.

�sommvoce "Slice data storage format."�Slice data storage format.

	The data from a slice of nodes are sent out to a host file according to the following rules: each item in the list is treated independently. All the data relating to the same item are written sequentially on a file. If the item is a block of an array, the whole block is written sequentially. For each item, the first node to be considered is the lowest-coordinate, the last the highest-coordinate of the slice. The most internal loop for the nodes is along the �\INCORPORA Equation ��� axis, the intermediate one is along the �\INCORPORA Equation ��� axix and the external one is along the �\INCORPORA Equation ��� axis.
��sommvoce "V. A language extension library: <qcd>."�V. A language extension library <qcd>.

	We would like to introduce here a first rudimental example of a language extension library. If we need to use or experiment with this library we insert a �indvoce "/include"�/include �indvoce "<qcd>"�<qcd> statement in the source program.. $TAOLIB/qcd.hzt only contains new data types and operators, while it does not define new statements. It is the oldest �indvoce "TAO"�TAO language extension library and illustrates some of the original reason for the development of the �indvoce "ZZ"�ZZ evolvence mechanism in the framework of �indvoce "I.N.F.N."�I.N.F.N. �indvoce "APE100"�APE100 research. The main simulation task of the group, which originally designed the �indvoce "APE100"�APE100/�indvoce "Quadrics"�Quadrics parallel architecture, is connected to the Quantum Chromo Dynamic formulation of subnuclear physics. Hence the library name �indvoce "<qcd>"�<qcd>. The simulations in QCD are executed on a four-dimensional mesh associated to a spatio-temporal discretisation. To translate the mathematical formulation of QCD into programs it would be useful to define a number of data types. First, we need Dirac spinors (vectors composed of four complex components). Other fundamental objects in this theory are the �\INCORPORA Equation ��� matrices. An �\INCORPORA Equation ��� matrix is a �\INCORPORA Equation ��� unitary matrix (�\INCORPORA Equation ���, �\INCORPORA Equation ���). These matrixes are placed on the links connecting couples of neighbouring points on the spatio-temporal mesh. They represent rotations of the local frame of coordinates in the tri-dimensional colour space. Moreover, we need a tensor with two indexes associated to the four components of a Dirac spinor and to the three components of colour. Another fundamental ingredient in the QCD formula is the family of �\INCORPORA Equation ��� matrices. They can be represented by �\INCORPORA Equation ��� complex matrices which rotate the Dirac components. To facilitate the program writer, �indvoce "<qcd>"�<qcd> defines three new data types, named �indvoce "su3"�su3, �indvoce "spinor"�spinor, �indvoce "spin_color"�,�indvoce spin_color"spinspin"�spinspin as well as a number of arithmetic operators on these data types. A �indvoce "su3"�su3 variable is a �\INCORPORA Equation ��� complex matrix. A �indvoce "spinor"�spinor is a four complex component vector. A spin_color is a �\INCORPORA Equation ��� complex matrix. A spinspin is a �\INCORPORA Equation ��� complex matrix. There will be arithmetic operators among homogenous data as well as some multiplication operators mixing heterogeneous data types. Moreover �indvoce "<qcd>"�<qcd> defines a family of gamma operators as well as operators like the trace (�indvoce "tr"�tr), the �indvoce "dag"�dag operator, and many others. The representation choosen for the �\INCORPORA Equation ��� matrices is the following:

�\INCORPORA Equation ��� �\INCORPORA Equation ���

 �\INCORPORA Equation ��� �\INCORPORA Equation ���

	 The storage modifiers (�indvoce "static"�static is the default choice) and �indvoce "register"�register act on �indvoce "su3"�su3, �indvoce "spinor"�spinor �indvoce "spin_color"�spin_color and spinspin the same way they act on the elementary �indvoce "real"�real and �indvoce "complex"�complex data types. The indexing operators are again [and] which delimit the indexing expressions, while the comma separates the different indexes. When declaring an array of �\INCORPORA Equation ��� elements, the programmer must specify the value of �\INCORPORA Equation ���. The statement su3 a[10,10] declares a bidimensional matrix of �\INCORPORA Equation ��� �\INCORPORA Equation ��� matrices on each processing node. The zero value of the index identifies the first element of an array and the �\INCORPORA Equation ��� value the last one. The �indvoce "<qcd>"�<qcd> library also makes a set of substructure extraction operators available. The elements of these complex data types can be subindexed as shown in the following examples:

a[0,0].[0,0]=(3.141592, 12.)

loads the first row (whose number is zero in our convention), first column component of the �\INCORPORA Equation ��� matrix placed at the first row, first column of the global matrix.

a[i+2,k-(3*j)].[m+1,n-1].re=3.141592

loads the real part of the row number �\INCORPORA Equation ��� column number �\INCORPORA Equation ��� of the �\INCORPORA Equation ��� matrix placed at the row number �\INCORPORA Equation ���, column number �\INCORPORA Equation ��� of the global matrix.
	In the previous example the four indexes are calculated at running time by the �indvoce "CPU"�CPU. Note that running time calculated subindexes are allowed only with �indvoce "static"�static (default choice) data types. When the �indvoce "register"�register storage modifiers are used, the subindexes can only be integer constants. There is a hardware reason behind this limitation. On Quadrics, there is not the hardware capacity to run time calculate fpu register addresses. An �indvoce "su3"�su3 �indvoce "register"�register is a bundle of �\INCORPORA Equation ��� floating point register allocated on each processor. On Quadrics register from this bundle can only be chosen at compilation time.
	Another limitation: we cannot declare an array when using the register storage modifier. The �indvoce "su3"�su3 data type needs a �\INCORPORA Equation ��� register bundle, the �indvoce "spin_color"�spin_color a �\INCORPORA Equation ��� register bundle, the spinspin data type a �\INCORPORA Equation ��� register bundle. Therefore a small �indvoce "register"�register �indvoce "su3"�su3 array would be too large to be stored on the �\INCORPORA Equation ��� floating point register of the processor. Let us remark here that this limitation also applies to arrays of real or complex data types.

�sommvoce "Arithmetic operators."�Arithmetic operators.

	The *, +, -, (,) operators are allowed in any algebraically legal combination, and the following data type mixing rule table applies.

�indvoce "spinor"�spinor + spinor					--> spinor
spinor * �indvoce "complex"�complex					--> spinor
�indvoce "complex"�complex * spinor					--> spinor
�indvoce "color_spin"�color_spin * �indvoce "complex"�complex				--> color_spin
�indvoce "complex"�complex * color_spin				--> color_spin
color_spin + color_spin			--> color_spin
su3* color_spin					--> color_spin
�indvoce "su3"�su3 * su3							--> su3
su3 + su3							--> su3
spinspin * complex				--> spinspin
complex * spin 					--> spinspin
spinspin + spinspin				--> spinspin
spinspin * spinspin				--> spinspin

Let us note that , with the exception of the spinspin * spinspin operator, the * operator follows the usual rules of row by column matrix multiplication
	
	�\INCORPORA Equation ���.

In the case of the spinspin * spinspin operations it was useful to introduce the specific rule

	�\INCORPORA Equation ���.
	

�sommvoce "<qcd> reserved keywords and identifiers."�<qcd> reserved keywords and identifiers.

�indvoce "su3"�su3, 			
�indvoce "spinor"�spinor, 		
�indvoce "color_spin"�color_spin,
�indvoce "spinspin"�spinspin,	
�indvoce "clear"�clear,
�indvoce "tr"�tr,			
�indvoce "diag"�diag, 		
�indvoce "color_spin_saturate"�color_spin_saturate,
�indvoce "dag"�dag,
�indvoce "gamma"�gamma0,		
gamma1, 		
gamma2,		
gamma3
gamma5,
�indvoce "gamma"�gamma05,
gamma15,
gamma25,
gamma35,
gamma23,
�indvoce "gamma"�gamma31,
gamma12,
gamma01,
gamma02,
gamma03,
gamma;i.

��sommvoce "Declaration of static variables, arrays and matrixes."�Declaration of static variables, arrays and matrixes.

	W can use the following statements to declare objects whose values will be permanently stored in memory locations. We can use them in arithmetic operations, but they will always cause loading/downloading to/from �indvoce "MAD "�MAD processor registers. We can use the �indvoce "register"�register storage modifier to control particular performance optimization problems. The next two sections describe the �indvoce "register"�register storage modifier. The syntax to declare variable or arrays composed by these data types is:

�indvoce "su3"�su3 obj_to_dec [,obj_to_dec, ...]
�indvoce "spinor"�spinor obj_to_dec [,obj_to_dec ...]
�indvoce "color_spin"�color_spin obj_to_dec [,obj_to_dec...]

	For example:

�indvoce "constant"�constant size_x = 10, size_y = 20
�indvoce "constant"�constant total_size = size_x * size_y
�indvoce "su3 v"�su3 v, u[10], u_mat[size_x,size_y]
�indvoce "spinor psi"�spinor psi, p_s[total_size]
�indvoce "color_spin"�color_spin cs1[50,11]

�sommvoce "Declaration of variables stored on registers, whose content will be lost on optimization block boundaries."�Declaration of variables stored on registers, whose content will be lost on optimization block boundaries.

	The main charateristic of a register variable is that it will never cause unnecessary memory accesses. In the same way, the register storage modifier acts on the elementary real and complex data types. Due to the Quadrics optimizer charateristics, the <qcd>�indvoce "register"�register variables will lose their values at the boundary of each optimization block. Therefore, the register variables must be loaded prperly with a value before they are used or re-used in a different optimization block. The syntax is

su3 �indvoce "register"�register obj_to_dec[..., obj_to_dec ...]
spinor �indvoce "register"�register obj_to_dec[..., obj_to_dec ...]
color_spin �indvoce "register"�register obj_to_dec[..., obj_to_dec ...]

	For example

�indvoce "su3"�su3 �indvoce "register"�register v
�indvoce "spinor"�spinor �indvoce "register"�register psi
�indvoce "color_spin"�color_spin �indvoce "register"�register cs1

	As we said about elementary real and complex data types, we cannot use the register storage specifier on arrays composed of <qcd> data type elements.

��sommvoce "The trace operator."�The trace operator.

	The �indvoce "tr"�tr operator may act on each expression which evaluates to an �indvoce "su3"�su3 or �indvoce "spinspin "�spinspin and produces a complex result. The syntax is:
	
�indvoce "tr"�tr expression_producing_an_su3	
�indvoce "tr"�tr expression_producing_a_spinspin		
	
	For example
		
�indvoce "complex"�complex a
su3 c,d
spinspin e
 ...
a = tr c*d + tr c + tr e

�sommvoce "The diag operator."�The diag operator.

	The �indvoce "diag"�diag operator may act on every expression that produces a complex result and produces an �indvoce "su3"�su3 result. It can be used, for example, to load any �indvoce "su3"�su3 target. The syntax is:
	
su3_expression --> �indvoce "diag"�diag complex_expression	 			
	For example
		
�indvoce "complex"�complex a
�indvoce "su3"�su3 c
..... !! the diagonal matrix with
c = diag a*a !! diagonal elements = a*a

�sommvoce "The clear operator."�The clear operator.

	The �indvoce "clear"�clear operator may act on every declared �indvoce "static"�static (default choice) �indvoce "su3"�su3, �indvoce "spinor"�spinor or �indvoce "color_spin"�color_spin variable or matrix element and set all elements to zero. The syntax is:
	
clear su3_static_variable_or_matrix_element
clear spinor_static_variable_or_matrix_element
clear color_spin_static_var_or_matrix_element
clear spinspin_static_var_or_matrix_element	 		
	examples:
		
�indvoce "su3"�su3 u
�indvoce "spinor"�spinor s
�indvoce "color_spin"�color_spin cs
 i.spinspin; ss
...
�indvoce "clear"�clear u, s, cs, ss

�sommvoce "The color_spin_saturate operator."�The color_spin_saturate operator.

	The �indvoce "color_spin_saturate"�color_spin_saturate operator produces a complex result acting on a couple of �indvoce "color_spin "�color_spin expressions. A statement �indvoce "color_spin_saturate"�color_spin_saturate (a,b) will use the following formula to produce its complex result:

complex_res =	a.[0,0] * b.[0,0]~ + a.[1,0] * b.[1,0]~ + a.[2,0] * b.[2,0]~ + a.[3,0] * b.[3,0]~ + a.[0,1] * b.[0,1]~ + a.[1,1] * b.[1,1]~ + a.[2,1] * b.[2,1]~ + a.[3,1] * b.[3,1]~ + a.[0,2] * b.[0,2]~ + a.[1,2] * b.[1,2]~ + a.[2,2] * b.[2,2]~ + a.[3,2] * b.[3,2]~ + a.[0,3] * b.[0,3]~ + a.[1,3] * b.[1,3]~ + a.[2,3] * b.[2,3]~ + a.[3,3] * b.[3,3]~)

	The syntax is
	
complex -->�indvoce "color_spin_saturate"�color_spin_saturate (color_spin_expr, color_spin_expr)

	For example

�indvoce "complex"�complex a,b,c
�indvoce "color_spin"�color_spin cs_a, cs_b
		 ..
a = b + �indvoce "color_spin_saturate"�color_spin_saturate(cs_a*b, cs_a+cs_b)
		

�sommvoce "The gamma family of operators."�The gamma family of operators.

	<qcd> predefines a family of optimized �indvoce "gamma"�gamma operators that act on �indvoce "spinor"�spinor expressions producing a �indvoce "spinor"�spinor, act on �indvoce "color_spin"�color_spin expressions producing a �indvoce "color_spin"�color_spin and act on spinspin expressions producing a spinspin.
	The fundamental gamma operators are gamma0, gamma1, gamma2 and gamma3 which correspond to the four �indvoce "gamma"�gamma matrices:

�\INCORPORA Equation ��� �\INCORPORA Equation ���

 �\INCORPORA Equation ��� �\INCORPORA Equation ���

	The gamma5 operator is defined as the product �\INCORPORA Equation ���.
	<qcd> defines gamma15, which corresponds to the product �\INCORPORA Equation ��� as well as the similarly defined family composed of gamma25, �indvoce "gamma"�gamma35,gamma23, gamma31, gamma12, gamma01, gamma02, gamma03 and gamma05. Moreover we have gammai which acts as the complex unit diagonal matrix. The syntactic rules valid for these operators are shown in the case of �indvoce "gamma"�gamma0:

spinor 		--> �indvoce "gamma"�gamma0*spinor_expression	
color_spin 	--> �indvoce "gamma"�gamma0*color_spin_expr
spinspin 		--> �indvoce "gamma"�gamma0*color_spin_expr

	For example

�indvoce "spinor"�spinor a,c,d
�indvoce "color_spin"�color_spin cs_a, cs_c, cs_d
�indvoce "spinspin"�spinspin ss_a, ss_c, ss_d
c = gamma0 *d + gamma1 * (a+c)
cs_a = gamma0 *cs_d + gamma1 * (cs_a+cs_c)
ss_a = gamma0 *ss_d + gamma1 * (ss_a+ss_c)

��sommvoce "Subelements postfix extraction operator for su3, spinor, color_spin and spinspin variables and matrix elements."�Subelements postfix extraction operator for su3, spinor, color_spin and spinspin variables and matrix elements.

	�indvoce "<qcd>"�<qcd> allows the extraction of subelements from su3, spinor, color_spin and spinspin variables and matrix elements. su3, �indvoce "color_spin"�color_spin and spinspin have a bidimensional internal structure. Therefore we must use a .[row_specificator, col_specifier] postfix operator if we want to produce a �indvoce "complex"�complex subelement. We can also use a .[row_specifier] on color_spin and spinspin to produce a spinor subelement.
	spinors are four-element arrays and therefore a .[row_specifier] must be use to obtain a complex subelement.
	When the �indvoce "su3"�su3, �indvoce "spinor"�spinor, �indvoce "color_spin"�color_spin or spinspin variable or matrix is a �indvoce "static"�static one (default choice) we are allowed to specify the run time calculated integer expression to identify the subelement required. When the �indvoce "su3"�su3, �indvoce "spinor"�spinor, �indvoce "color_spin"�color_spin or spinspin variable is a �indvoce "register"�register variable we are allowed to specify only integer constants to identify the subelement required. The syntax is
	
�indvoce "complex"�complex-->spinor_obj.[row_spec]
�indvoce "complex"�complex-->su3_obj.[row_spec, column_spec]
�indvoce "complex"�complex-->color_spin_obj.[color_spec, spin_spec]
�indvoce "complex"�complex-->spinspin_obj.[row_spec, col_spec]
spinor -->color_spin_obj.[color_spec]
spinor -->spinspin_obj.[row_spec]
	
	For example

�indvoce "integer"�integer i,k
�indvoce "complex"�complex c
�indvoce "spinor"�spinor s
�indvoce "su3"�su3 u
�indvoce "spinor"�spinor �indvoce "register"�register rs
�indvoce "su3"�su3 �indvoce "register"�register ru
�indvoce "color_spin"�color_spin �indvoce "register"�register rcs
 ...
c = s.[i] + u.[i,k] - cs.[i,k+1] + s.[2] + u.[1,2] - cs.[0,1]
s = cs.[i]

�sommvoce "The dag operator."�The dag operator.

	The $TAOLIB/qcd.hzt predifines a dag postfix operator acting on spinspin objects.
	The syntax is

	spinspin --> spinspin_obj dag

	For example

spinspin ss_a, ss_b
...
ss_a = ss_b dag

	The result of a dag operation is given by

	�\INCORPORA Equation ���
where the * is the complex conjugation operator. The interested reader could examine in the source $TAOLIB/qcd.hzt the definition of dag.

�sommvoce "Real and imaginary part extraction postfix operators."�Real and imaginary part extraction postfix operators.

	The .re and .im postfix operators allows us to obtain or assign the real and imaginary part of an �indvoce "su3"�su3, �indvoce "spinor"�spinor , �indvoce "color_spin"�color_spin or spinspin matrix element.The syntax is:
	
su3_object.re 	
su3_object.im 	
spinor_object.re 	
spinor_object.im 	
color_spin_object.re 	
color_spin_object.im
spinspin_object.re 	
spinspin_object.im	
	
	For example

int i
�indvoce "complex"�complex c
�indvoce "su3"�su3 u
�indvoce "spinor"�spinor s_vet[10,10]
�indvoce "color_spin"�color_spin cs1
�indvoce "real"�real r
 ...
r = s_vet[i+2,3].[i].im+cs1.[i,2].re* u.[1,2].im
c.re = r * 2.0

�sommvoce "Hermitian conjugation postfix operator."�Hermitian conjugation postfix operator.

	The ~ postfix operators allows us to produce the hermitian conjugate of an �indvoce "su3"�su3 or spinspin variable. The syntax is
	
		su3_object~
		spinspin_object~	
	
	For example

int i
�indvoce "su3"�su3 c, c_vet[10,10]
spinspin ss_a,ss_b
c = c * c_vet[i+2,3]~
ss_a = ss_b~

��sommvoce "References"�References

[1]	A. Bartoloni et. al. “The Ape100 computer: the architecture.” 	International Journal of High Speed computing in press.
[2]	A. Bartoloni et. al. “A hardware implementation of the
	Ape100 architecture.” International Journal of Modern
	Physics C, 4 (1993) 969-976.
[3]	A. Bartoloni et. al. “The software of the
	Ape100 processor.” International Journal of Modern
	Physics C, 4 (1993) 955-967.
[4]	Cabasino S., Paolucci P. S., Todesco G. M. “Dynamic 	Parser and Evolving Grammars”, ACM Sigplan, 27 11 	Nov. 1992.
[5]	Cabasino S., Paolucci P. S., Todesco G. M.
	“ZZ; language”
	documentation �indvoce "Ape100"�Ape100. A100/�indvoce "ZZ"�ZZ/S-04 (1991).
[6]	R. Gupta “Hadron spectrum from the lattice”
	R. Nucl. Phy. B (Proc. Suppl. 17) (1990) 70.
[7]	P. Bacilieri et al. “The Hadronic Mass spectrum in
	quenched lattice qcd: Results at b=5.7 and b=6.0 ”
	Phys. Lett. B 214 (1988) 115.
[8]	S. Antonelli et al. “Full qcd on Ape100 machines”
	submitted to Comp. Phys. Com.
[9]	S. Cabasino et al. “b=6.0 Quenched Wilson Fermions ”
	Phys. Lett. B 258 (1991) 195.
[10]	E. Marinari, G. Iori and G. Parisi “Random
	Self-Interacting Chains: a Mechanism for Protein
	Folding”. J. Phys. A: Math Gen 24 (1991) 5349.
[11]	E. Marinari, G. Parisi“Simulated Tempering: a New
	Monte Carlo Scheme”. Europhys. Lett. 19 (1992) 451.
[12]	E. Marinari, G. Parisi“Heteropolymer Folding on a 	Ape100 Supercomputer”. Int. J. Mod. Phys. C in press.
[13]	Amit, D., Modeling brain function. The world of attractor
	neural networks, (Cambridge Univ. Press, 1990).
[14]	Hopfield, J. J., Proc. of Nat. Acad. Sci. USA 81 (1984) 3088.
[15] K. Hwang, F. A. Briggs "Computer Architecture and
	Parallel Processing" (McGraw-Hill, 1984)
[16] H. S. Stone "High-Performance Computer Architecture"
	(Addison-Wesley, 1990)
[17] M. Mezard, G. Parisi, M. A. Virasoro "Spin Glass Theory
	and Beyond", World Scientific, Singapore, 1986.
[18]	A. Bartoloni et al., "LBE Simulations of Rayleigh-Benard
	Convection on the APE100 parallel processor"
	(APE100 Collaboration, 1992), Int. Jour. Mod. Phys. C,
	in press.
[19] N. Cabibbo, P.S. Paolucci “ SIMD Algorithm for Matrix
	Transposition" Preprint n. 963, I.N.F.N Roma - Interna	Note N.1018 Dip. di Fisica, Universita' di Roma
	"La Sapienza" (Roma, 1993).
[20] P.S. Paolucci "N-Body Classical System and Neural
	Networks on APE100 Massive Parallel Computer"
	Preprint n. 947, I.N.F.N Roma, - Internal Note N.1017
	Dip. di Fisica, Universita' di Roma "La Sapienza"
	(Roma, 1993).
[21] U. Gärtel, W. Joppic, A. Schüller "Parallelization of
	the IFS: Status Report and First Result", Proceeding of the
	Fifth Workshop on Use of Parallel Processor in
	Meteorology, ECMWF, Reading, GB,
	November 23-27 (1992).
[22] J. C. Curlander, R. N. McDonough "Synthetic Aperture
	Radar, Systems and Signal Processing", Wiley (1991)
[23]	R. Benzi, S. Succi, M. Vergassola,
	Physics Reports 222 (1992) 145-197
[24]	F. Mandolini, P.S. Paolucci, C. Bruno, "Simulazione di
	flussi 3-D su super-computer paralleli APE100 con
	solutore IKARUS-like: analisi di fattibilita" (APE100
	documentation, private communication, in Italian, 1992)
 [25] R. D'Autilia, F. Guerra, in Representations of Musical
	Signals, 	eds. G. De Poli, A. Piccialli, C. Roads,
	(MIT Press, Cambridge, Massachussets, USA, 1991)

�Index

�INDICE�&, 119
/include, 63; 69; 122
/stat, 99
<math>, 64
<qcd>, 64; 122; 123; 124; 132
<random>, 64; 105
<stdio>, 103; 108
_expr, 16
_fact, 16
_fun, 16
_term, 16
0-operators, 15
all, 31; 70; 80; 81; 82
any, 31; 70; 80; 81; 82; 83; 98; 100
APE, 60
APE100, 122
Ape100, 137
as, 38; 41; 70; 109; 110; 111; 112; 114; 116; 117; 118
as long as, 70; 84
back, 34; 70
binary, 70; 111; 113; 115; 117; 119
broadcast, 70
C, 10
call, 70; 79; 86; 87; 88; 90
cast_to_real, 73
clear, 126; 129; 130
close, 70; 109; 110; 111; 113; 116
color_spin, 125; 126; 127; 128; 129; 130; 131; 132; 133; 134; 135
color_spin_saturate, 126; 130; 131
compiler, 11; 12; 13; 14; 64; 67; 68; 87; 89
complex, 66; 67; 68; 69; 74; 76; 77; 78; 91; 109; 110; 111; 112; 114; 116; 118; 123; 125; 128; 129; 131; 132; 133; 135
connection, 28
connection topology, 29
constant, 36; 38; 42; 47; 56; 69; 72; 73; 74; 92; 97; 99; 100; 109; 111; 112; 118; 127
cos(), 64
CPU, 25; 26; 66; 76; 124
dag, 123; 126
diag, 126; 129
do, 40; 48; 49; 50; 53; 57; 70; 79; 88; 98; 100
down, 34; 71
else, 70; 84; 88
elsewhere, 69; 85; 86
end, 70; 87; 89; 90
enddo, 40; 48; 49; 50; 53; 57; 70; 79; 88; 98; 100
endif, 70; 83; 84; 88; 98; 100
endrecord, 69; 90; 91; 92; 93
endwhere, 69; 85; 86
endwhile, 70; 84; 98; 99
EOL, 62
exp(), 64
extract, 67; 70; 75; 96; 97; 98; 99
field, 90
FORTRAN, 10; 12; 19; 20; 36; 40; 67
Frame Method, 43
front, 34; 70
gamma, 126; 131; 132
I.N.F.N., 10; 60; 122
i_def_abs_X, 103
i_def_abs_x, 71
i_def_abs_y, 71
i_def_abs_z, 71
i_machine_lX, 103
i_machine_lx, 71
i_machine_ly, 71
i_machine_lz, 71
if, 69; 80; 81; 82; 83; 84; 86; 88; 98; 100
input/output, 37; 108
integer, 66; 69; 74; 79; 82; 83; 88; 89; 90; 95; 98; 99; 104; 109; 110; 111; 112; 113; 114; 116; 120; 133
integers, 114
left, 34; 70
local accesses, 28
log(), 64
machine_lX, 102
machine_lx, 71
machine_ly, 71
machine_lz, 71
MAD, 25; 67; 75; 92; 97; 127
matrix, 47; 66; 67; 70; 75; 94; 96; 97; 99
MIMD, 30; 31
multidata, 38; 41; 70; 119
multindex, 66; 70
n-circumfixes, 15
n-infixes, 15
node_abs_id, 71; 103
node_abs_X, 102
node_abs_x, 71
node_abs_y, 71
node_abs_z, 71
Non terminals, 16
none, 82; 83
open for reading, 38; 41; 70; 109; 110; 111; 112; 114; 116; 118
open for writing, 70; 109; 110; 111; 112; 114; 117; 118
overloading, 14; 89
postfixes, 15
precedence scheme, 16
prefixes, 15
Quadrics, 11; 20; 24; 25; 26; 27; 31; 33; 34; 35; 36; 37; 39; 40; 41; 42; 43; 44; 45; 47; 48; 49; 53; 54; 55; 57; 59; 62; 67; 72; 78; 80; 105; 122
quoted string, 110
read, 38; 41; 70; 108; 109; 110; 111; 112; 113; 114; 115; 116; 117; 118; 119
real, 12; 13; 14; 19; 36; 38; 39; 40; 41; 42; 47; 48; 53; 56; 66; 69; 74; 76; 77; 82; 83; 85; 86; 90; 91; 92; 93; 94; 96; 97; 99; 100; 109; 110; 111; 112; 113; 114; 116; 118; 120; 123; 135
real_expr, 16
real_fact, 16
real_fun, 16
real_term, 16
record, 13; 66; 69; 90; 91; 92; 93; 94
reentering variables, 89
register, 67; 69; 75; 76; 77; 95; 96; 98; 123; 124; 127; 128; 133
remote access, 28
Remote Addressing Method, 43
repeat, 70; 80; 81; 84
replace, 67; 70; 75; 96; 97; 98; 99
Replica Method, 43
return, 70
right, 34; 70
scope, 89
SIMD, 30; 31; 32; 35; 80
sin(), 64
SISD, 30
sizeof, 92; 96
slice, 117
Slice Method, 43
spin_color, 123; 124
spinor, 123; 125; 126; 127; 128; 129; 130; 131; 132; 133; 134; 135
spinor psi, 127
spinspin, 126; 128; 132
sqrt(), 64
stack, 67; 69; 88; 89
static, 67; 77; 123; 124; 129; 133
su3, 123; 124; 125; 126; 127; 128; 129; 130; 133; 134; 135; 136
su3 v, 127
subroutine, 67; 70; 87; 88; 89; 90
TAO, 10; 11; 12; 13; 14; 19; 20; 25; 27; 37; 40; 48; 60; 61; 63; 65; 66; 69; 73; 83; 89; 91; 122
temporary, 67; 69; 95; 99
time, 104
tr, 123; 126; 128
triplet, 35
up, 34; 70
where, 31; 34; 69; 80; 81; 82; 84; 85; 86
while, 70; 80; 81; 84; 98; 99
write, 38; 42; 70; 79; 88; 98; 100; 105; 108; 109; 110; 111; 112; 113; 114; 115; 116; 117; 119; 120
ZZ, 11; 12; 62; 69; 122; 137
�
		
		

											

		�\PAGINA * arabico�2�	

											�\PAGINA * arabico�5�

		
		Contents

											Contents

		�\PAGINA * arabico�8�	

											�\PAGINA * arabico�9�

		
		Introduction

											Introduction

		�\PAGINA * arabico�14�	

											�\PAGINA * arabico�15�

		
		Data Distribution Strategy

								Data Distribution Strategy

		�\PAGINA * arabico�62�	

												�\PAGINA * arabico�61�

		
		The elementary TAO syntax

								The elementary TAO syntax

		�\PAGINA * arabico�68�	

											�\PAGINA * arabico�67�

		
		The Input/Output syntax

									The Input/Output syntax

		�\PAGINA * arabico�120�	

											�\PAGINA * arabico�121�

		
		A language extension library: <qcd>

						A language extension library: <qcd>

		�\PAGINA * arabico�136�	

											�\PAGINA * arabico�135�

		
		Index

											Index

		�\PAGINA * arabico�138�	

											�\PAGINA * arabico�139�

		
		Index

											Index

		�\PAGINA * arabico�142�	

											�\PAGINA * arabico�143�

