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In memory of N.N.Bogolubov

A scientific approach of the great Russian physicist-theorist Academician N.N.Bogolubov to
solution of theoretical problems is given in the form of an imaginary dialogue.

B ¢dopme BoOGpax)aeMoro Auaiora npesncraBaeH TBOPUECKMIT MORXOA BEJMKOIO pycckoro
¢uamka-reopernka akagemmuxa H.H.Boromo6osa k PELWEHUIO TEOPETUUECKMX NPolsiem.

I met N.N.Bogolubov for the first time in 1955 at the first great conference
where after the Stalin era Soviet physicists could invite people from the West.
It was a remarkable experience for me to see the two great masters of Russian
theoretical physics, N.N.Bogolubov and L.D.Landau, in action. Their ways of
thinking complemented each other, one having all the mathematical tools at
his finger tips, the other having the physical situation before his mind. I shall
try to illustrate how the two approaches can fertilize each other by an
imaginary dialogue. (B. and L. should only be taken as representatives of the
two schools of thought).

L. One of the great ideas in physics was Einsteins’s recognition that
gravity determines the geometry of space-time. In his popular writings [1 | he
motivates that by his famous argument of the rotating disk. There radial
measuring rods move perpendicular to their direction and show no Lorentz
contraction but the ones in azimuthal direction do. Thus when one measures
the ratio circumference/radius, one finds a number > 27 and concludes that
the geometry is non-Euclidean. The equivalence principle then tells us that
also gravity must change the geometry. On second thought the argument
becomes less clear because of the following reason already recognized by
Einstein [2]. Einstein has tought us that to measure the length of a moving
object simultaneity has first to be defined. But how does one define
simultaneity on the rotating disk, where the velocity depends on the radius
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and thus also the rate of clocks. As geometry is something intrinsic, the
rotating observer will not accept any outside suggestion as to what is
simultaneous.

B. Like all problems in relativity one should be able to settle it by rational
means. But since the analysis promises to become delicate, I propose that we
first get the uniform motion in one space dimension straight. The general
linear transformation of (x, #) involves 4 parameters but in physics one
usually considers only the one parameter group of Lorentz transformations.
What happened to the other three parameters?

L. This one understands very well. Two parameters fix the length scale of
the new coordinates (x, #) and they have to be set equal to one if one wants
that x and 7 correspond to distances and time intervals as measured by real
measuring rods and clocks. Formally it means that when the metric

g= dx?— dt?is expressed by (x, D the coefficients of d X 2 and d1? must be
(1, =1). The two other parameters determine the angles between the &, n-
axis and the (x, N-axis. The t-axis (x = 0) gives the velocity of the motion;
and the x-axis (t = 0), the definition of simultaneity in the new system. The
Lorentz transformations are the ones where the two angles equal, which
implies that in g the mixed term dJXxdr vanishes. Physically it means
synchronization of clocks by the Einstein convention that light emitted by the
two events arrives at the same time in the middle. In this case dx + df are
light-like directions and g = dx*— dr?

B. We better accept this convention of simultaneity otherwise the length of
a moving object and thus geometry is not defined. When turning to non-
uniform motion and thus to nonlinear coordinate transformation, I propose to
proceed slowly and first to consider uniform acceleration in one dimension.

L. I agree since this can physically be realized by a constant electric field
which is a beautiful example in relativistic dynamics [3 ]. Thus let us imagine
our measuring rods and our clocks to be electrically charged and by a constant
electric field E we set the system into motion. Then the dynamics tells exactly
how our equipment will behave. For x I take the initial position and for ¢ the
proper time which gives me the time reading on the clocks. The well-known
solution [4] tells me

x=X+v(cosht/v—1), t=v sinh t/v, v = eE/m.
B. I am sorry, but you did not respect the rules of our game. I calculate
dx— dt? = dx* + 2 sin t/vdxdt — di .

Thus the basis (d¥x, d?) is not orthogonal and I cannot accept the events with
¢ = constant as simultaneous.
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L. Well, they are simultaneous in the old (x, ?) frame since the clocks with
world-lines x = constant all experience the same acceleration. So after a time
t the same proper-time 7 has elapsed for all of them. But you are right that they
are no longer Einstein-synchronized and we have to look for other variables.
Do you have a t-variable which is Lorentz-orthogonal to hyperbolas
X = constant?

B. Well we could take

then
dxt= dt?= dx*— ¥4r 2,

L. I do not like your lapse-function x* which tells you that  does not give
directly the time elapsed on the hyperbola x = constant and although you
have an orthogonal basis (4, xdf) the clocks at f = 0 are not really Einstein-
synchronized since light cones cmerging from X = 1/2 and ¥ = 3/2 do not
intersect at the hyperbola going through X = 1.

B. In differential geometry we always have to distinguish three levels
where a property can hold. The infinitesimal level (on the langent space), the
local level (in a suitable neighbourhood) and the global level (on all of space-
time). The Einstein synchronization belongs to the infinitesimal level and

that is the best we can hope for. As to the lapse function %% I cannot get rid of

it altogether. You know very well that dx?— df 2= dx*— df 2 implies that
(x, » are related to (x, 1) by a Lorentz transformation which is lincar. So by

going to accelerated frames we can never have dx2— df 2= dx2— di?,
L. This I knew but I just wanted the time coordinate clean. Can’t you get

dx~ dtt= 2%, 1) dx2- di B2

B. This is also impossible by the following general theorem [3,4 ]: «If one
member of an orthogonal basis is exact then the associated vector field is
geodesic». An exact covector field is of the form dt, where ¢ is some locally
defined function. Thus the theorem applies to your case and therefore the
integral curves of df which are the curves x = const. have to be geodesic and
cannot correspond to an accelerated observer. In our previous metric dx is
exact and orthogonal to the rest and thus its integral curves 1 = const. must be
geodesic. Indeed they are the straight lines 7/ x = tanh 7.

L. So what we can do is to turn things around and consider in the region
Ixl < tthe coordinates



1322 THIRRING W.

x = tsinh X - -

- 2 g 2_T2r2 072
{=Tcoshx = dx —dif=ttdxi—dt”
Now X = const. are the straight lines x = ¢ tanh x. This means thatin the new
coordinate systems the observers emerge from the origin with different
velocities tanh x. The curves of equal time are the hyperbolas 12— 2 =712
One easily sees that there points even a finite distance x apart are Einstein-
synchronized. Though the velocities of the new system do not change with ¢,
they change with X, this situation promises to illustrate the point Einstein
wanted to make.

B. That is true except that we will have to add another space dimension.

So far the pure space part 12— x2=1?is a one-dimensional submanifold and
in one dimension there is never an intrinsic curvature

x=1cosysinhXx, y =1 sin g sinh X, { = {cosh X,

dx® + dy? — dt? = dx%1? + dp1 ¥ sinh ¥ — di 2.
Now x2 + y2 ~t2 = —7?and thus ¢ = const. is a hyperboloid and one knows

that the Minkowski metric when reduced to this submanifold makes it a space
of constant curvature {3,4 ].

L. Since in this case the Einstein synchronization works even locally we
have exemplified Einstein’s claim that for moving coordinates the geometry of
space will be non-Euclidean. But let us now turn to the rotating disk and see
what happens in reality when the disk is set in rotation. We can model this by
a betatron mechanism where an increasing magnetic field genecrates an
azimuthal electric field. If our equipment is again charged it will be set into
circular motion and the equations of motion will tell us how it behaves. If in
cylindrical coordinates (o, ¢, z, #) I have a vector potential

A= <O,p \/;jz(p - a)2 + v212, 0, 0> witha, u,v € RY,
it generatesa B, and E‘p such that the equations of motion are solved by [4]

m Vs m . vs
©,p, 2, 1) = (a, Pt p cosh g 0, " sinh m)’

where s is the proper time along the orbit. If  use the new time coordinate and
the initial angle ¢ as other coordinate, I find for fixedp = aandz = 0
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ds = pldp® - di? = d’dp® + 2asinh 2x dpdi ~ dP.

Thus in the same way as for the linear acceleration the Einstein
sychronization gets lost in the acceleration process.

B. Because of that you also lost the Lorentz contraction of the measuring
rods in g-direction: For the circumference of the disk I calculate for
1 = const. f_ ds = 2m contrary to Einstein’s argument.

p=a, 0<p<2n
L. Let us forget of the acceleration process and let B, become constant

after an angular velocity w = v/m has been reached. Then we synchronize
the clocks (forp = a, z = 0) with Einstein’s prescription which must mean we
make a Lorentz transformation

Go_fowl g t-wdp
V1-wi? V1 - wld?
and azafgp2 -dtt= azd—ﬁz— dr 2.

_ B. Now you got Lorentz contraction in the p-direction but at the expense
of 7 not being globally defined. If 1 change ¢ by 27, [ do not come back to the
same value of 1. Since Einstein’s argument presupposes that you can go
smoothly around the disk I have to insist on a global definition for .

L. So the situation is worse than I thought originally. I anticipated trouble
in synchronizing clocks with different p and thus different velocities. Now |
find that if | Einstein-synchronize clocks withp = aand I go around the disk
] do not come back to the same 1.

B. Though ¢ is not smoothly defined all over the disk dy is. Therefore |
suggest that we do not worry about-coordinate systems but only about basis in

cotangent space. Since they define directions they also contain the
information about how the system is moving. If we use

_dt - wp2d¢

/l_wzpz’

dy — pwdt
e, = dp, 82=P_V’_P__

/1 — wlp?

y €3 = dz, €

then
dp2+p2d¢>2+dzz-—dt2=ef+e§+e§—-e(2).

Thus we bypassed the difficulty of global synchronization but kept the
Lorentz contraction in ¢ direction.
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L. But can’t we now look for hypersurfaces Z, for which ¢, vanishes,

e0| == 0. They would represent pure space for the rotating observer and
t

generalize our surfaces 1 = 0.

B. Unfortunately, this does not work. Mr.Frobenius has told us that
surfaces 27 with eolz_ = 0 exist if and only if e, A dey =0 (d = exterior
I3

derivative, A = exterior product). Here we have

2
eOAdeo=d<pAdp/\dti—-—a—)p—-—¢0.

dp 1 _ 2 52
L. I can see the only if part because a surface Z; must be defined by some
functionf = Oand a €o with e, | 5 = 0 must be of the form fd?, fsome function.
t

Thus e; A dey = fd_t_ Adf A dt = 0.1 take your word for the if part since we

don’t use it. In any case I have to admit defeat and don’t see how to define the
spacelike hypersurface Zt on which supposedly the Minkowski metric induces

a non-Euclidean gecometry.

B. Perhaps we should not despair but just retreat from the local to the
infinitesimal level. After all curvature is defined by a limiting procedure and
belongs to this level. So we have to see whether we can project out the purely
spatial part of the curvature even if ¢, is not surface forming.

L. It certainly cannot be simple projection. After all we are working in
Minkowski space where the curvature is altogether zero and no matter how
you project zero it remains zero.

B. This is certainly correct and so we have to go through the procedure
how curvature is defined. For simplicity, let us set z = 0 so that space is
spanned by e, e,. Generally for an orthogonal basis e, the connection

1-forms are given

. . 1 P n . . . :
Wy = zkdej - z!dek + 5 (de” A e,), i, = inner product with e,

and the curvature 2-forms are

- m
Rkj = dwkj + w A w

mj

Since our space is 2-dimensional only w,, = —w,, =i de, — iyde, and
Ry, =
should be deleted if we consider pure space. However, it turns out that this
case does not arise as we have

—R, = dw,, remain. Now in this calculation all terms involving €
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de, =0, i de, = (dp — wdt) —d%—l\/:p-“prz = ez—(;l; In T/—p—“wﬁ
and
R\, = d(i,de,) = dp,(dp — wdi) -412—_”___— = e, R,
dp \/l - w2p2
where the curvature scalar is
2
* e

L. This result seems reasonable. In particular, one anticipates from
Einstein’s argument that things become singular for wp = 1, where the disk
reaches velocity of light. But note that if one simply says that Einstein’s

argument suggests that the metric on the disk is dp2 + p2d¢2/(l - wzpz),
one gets exactly this curvature and for the circle p =a a ratio

circumference/radius = 2x/V 1 — w?a?. Thus, naive as the argument may
be it was good enough to show Einstein the right way to general relativity.
This proves once again that for a great discovery in physics a good intuition is
more important than all the mathematical sophistication.

B. Though I agree with that I think that our discussion has shown that
what you call mathematical sophistication brings to the fore the subtle
features of the underlying physics.
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