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The many models adopted to study the properties of the low-lying magnetic dipole
excitations known as scissors mode observed in most deformed nuclei are reviewed. Atten-
tion is focused first on the geometrical two-rotor model (TRM) whose predictions gave the
motivation for searching for such a mode. The consistency of these predictions with the
most meaningful collective properties of the mode is emphasized. More sophisticated des-
criptions carried out within different Boson models are then reviewed. Their strict con-
nection with the TRM is proved. An even closer link is shown to exist between the TRM
and schematic random-phase approximation (RPA). From the phenomenological and
schematic models, confined to the description of the collective features of the M1 tran-
sitions, the analysis moves to the fully microscopic approaches, the only ones capable of
accounting for the global propertics of the mode as well as for the tragmentation of its M1
strength. shell-model approaches, widely adopted for light and medium-light nuclei, are
discussed. A more detailed analysis is devoted to the RPA, the most widely adopted micro-
scopic scheme, especially in heavy nuclei. The path leading from the carly incomplete and
too approximate approaches yielding contradictory results to the most recent and refined
studies converging to similar conclusions is sketched. The quasiparticle-phonon model
(QPNM) as a way of improving the RPA description of the M1 spectrum by including the
coupling with two-phonon RPA states, is finally illustrated and the related results are
discussed. The study of the M1 spectra observed recently in deformed odd-mass nuclei
carried out in a QPNM context completes the review.

PaccMOTpeHBI ¢BOHCTBA HU3KOIEXKALIMX MarHUTHBIX IMIIO/ILHBIX BO30YAKIOCHME, 0OHApY-
KCHHBIX HEIAaBHO BO MHOIMX HeOPMHPOBAHHLIX SApax 3KCMEPUMEHTAILHO M HA3BaHHBIX
«HOXHH4HOW» mopoi. [lpencrtasicH o630p psna mogencH, NpUMEHseMbIX UIS H3ydyeHus
YKa3aHHbIX cocTosnmid. [Ipexne Bcero nano onucaHue aAByxpotophoit Mogenu (APM), npen-
CKa3aHHa KOTOPOM 1IOCIYXHIM OCHOBAHHUEM 118 [OMCKA 3TOH HOBOH KOJIIEKTHBHOM saep-
Ho# Moubl. [lpoananuinposans! apyrue peHOMEHOIONHYECKHE M MUK POCKOIIHUCCKHE Saep-
Hble MOJENH, W roka3aHa ux cea3s ¢ [JPM. JletaiisHo paceMoTpeHo npubnuxeHde clydai-
ueix a3 (NCD), nanbonce paspaboTaHHOE HATIPAB/ICHHE B TEOPHH, OCODEHHO [T TKENbIX
agep. I[lpogeMoHcTpupoBanbl nyTH yiaydieHds [1ICM, BRIMONHEHHBIE B KBa3UYacTHUHO-
tononnoi moneny aapa (KPMST) nocpencTBoM yuera cBsi3u ¢ ABYXPOHOHHBIMU KOHGHUIY-
paumamu. [IposeneHo cpasienue M 1-CrieKTpPOB, H3MEPEHHBIX HEJABHO B 1e(hOPMHUPOBAHHBIX
A-HEUETHBIX S1pax, ¢ paccuuTaHHeiMU B KOMS.
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1. INTRODUCTION

The field of magnetic dipole response has expanded considerably its scope
since the discovery of low-lying M1 excitations, known as scissors mode, made

by Richter and coworkers in 15664 through a high-resolution inelastic electron
scattering experiment [1]. The search for such a mode was stimulated by the
prediction, made within the TRM [2], of a collective M1 mode promoted by a
rotational oscillation of proton versus neutron deformed fluids. The name
«scissors mode» was indeed suggested by such a geometrical picture. A mag-
netic excitation of similar nature was predicted as mixed-symmetry state in the
proton-neutron interacting boson model (IBM2) [3,4] and as giant angle reso-
nance in a schematic model [5].

The discovery has led to a renaissance of low-energy nuclear spectroscopy.
Not only electron scattering but also nuclear resonance fluorescence (NRF) and
proton scattering have been adopted for a systematic search of this new mode.
As summarized in several review articles [6—10], the mode has been detected
in most of the deformed nuclei ranging from the fp-shell to rare-earth and
actinide regions. The search has also stimulated important advances in the expe-
rimental techniques which have enabled a quite complete characterization of the
mode. It is well established by now that this is fragmented into several closely
packed M1 transitions. These are mainly promoted by the convection current,
and their summed M1 strength grows quadratically with the nuclear deformation
parameter. This latter property was found recently in the rare-earth region [11—
15] and represents the most spectacular signature of the mode.

With the use of Compton polarimeters in NRF which has enabled parity
assignment [16], unexpectedly strong E1 transitions in the same energy range
of the scissors mode, or immediately below, have been detected [17—20].

Another byproduct of the systematic study of the mode has been the dis-

covery of spin excitations. Inelastic proton scattering experiments on 15%Sm and
other deformed nuclei [21], have found a sizeable, strongly fragmented, M1
spin strength distributed over an energy range of 4 to 12 MeV so as to give rise
to a double-hump [22].

The experimental discovery has stimulated a proliferation of theoretical
investigations. The gross features of the mode were analysed in several pheno-
menological models. We recall, among them the IBM2 [23—29], the extended
Bohr—Mottelson model [30], the closely related neutron-proton deformation
model (NPD) [31], and the generalized coherent state model (CGSM) [32,33].
Studies carried out in a sum rule approach [34], in schematic random-phase
approximation [35—37] and in a mean field context [38] have given illumi-
nating insights on the shell structure of the mode.
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Phenomenological and schematic models ignore many degrees of freedom,
such as spin. For this reason they are inadequate for describing the detailed
structure of the mode. An exhaustive analysis covering also the energy strength
distribution can be carried out only in fully microscopic approaches.

Microscopic calculations were performed in the context of standard shell-
model for medium-light nuclei {39—42]. These can be viewed as the micro-
scopic counterpart of an extended version of the interacting boson model, the
IBM3, also used to study the M1 mode in the same nuclei [43,44]. An
alternative and valid approach for this nuclear region has consisted in adopting
an SU(3) shell model basis {45—47]. The same SU(3) scheme was modified so
as to enable the description of the mode also in heavy nuclei [48,49]. In heavy
deformed nuclei, however, apart from few exéeptions [50,51], most of the
microscopic studies were carried out in RPA {52—77] or in Tamm-Dancoff
approximation (TDA) [78,79].

A new boost to theoretical studies has been stimulated by the discovery of
the quadratic deformation law. This property has been studied in practically all
models adopted previously either in the microscopic {42,69,74,77,79—83] or
phenomenological domain [79,84—92]. All these analyses give a conclusive
support to the scissors nature of the magnetic transitions found experimentally.
Nonetheless, a complete detailed understanding of the related phenomenology is
still lacking. The present situation is in fact more complex than that of the E1l
resonance. Unlike in the case of the El mode, the M1 transitions lead to bound
states, so that the theoretical models have to reproduce the pattern of frag-
mentation instead of a broad peak. Another feature of the M1 mode which
complicates its description is, for example, the interplay between spin and orbital
motion. Because of the many degrees of freedom involved in the transitions,
several components of the nuclear Hamiltonian enter into play in determining
the size and the distribution pattern of the strength. All these aspects are taken
into account in RPA calculations. These, however, being confined within a
space spanned by two quasiparticle states, may miss some configurations which
enter into the M1 channel either directly or through coupling.

An effort for improving and extending the TDA and RPA calculations has
been made recently by studying the mode within the quasiparticle-phonon
nuclear model (QPNM) [93] which accounts for the coupling with two RPA
phonons [94].

Theoretical studies have also posed the question of whether the scissors
mode survives as one moves from even- to odd-mass nuclei [95—98]. After a
first negative attempt carried out in electron scattering [99], NRF experiments
have detected in several odd-mass deformed nuclei of the rare-earth region a
sizeable dipole strength whose distribution pattern follows closely the M1 spect-
rum of the nearby even mass partners [20,100,101]. Schematic and phenome-
nological models are even more inadequate for facing the extreme complexity
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of the M1 spectrum in odd-mass nuclei. Fully microscopic calculations are
badly needed for this purpose. The first and only calculation of this kind has
been carried out recently using the QPNM formalism [102,103].

Section 2 deals with the TRM prediction and the experimental evidence of
the mode. The systematic experimental analyses are briefly reviewed. The con-
sistency of the model with the deformation law is discussed. Its microscopic
formulation is illustrated. In Sec. 3 the description of the mode within different
Boson models is discussed. The analysis covers the extended Bohr—Mottelson,
the NPD, the GCSM and the algebraic IBM2 models. The review then moves
to shell-model studies (Sec. 4). Standard as well as SU(3) shell model calcu-
lations are presented. The microscopic investigations go on with RPA. The
method, the problem, the early calculations have run into, the way of solving
them and, finally, the most meaningful results are discussed in Section 5. We
go then beyond RPA by reviewing briefly the QPNM and by discussing the
results obtained in relation to experiments and RPA (Sec. 6). The review is
completed by the discussion of the M1 spectra observed in deformed odd-mass
nuclei and studied within the QPNM formalism in Sec. 7. Conclusions are
drawn in the final Section 8.

2. SCISSORS MODE:
PREDICTION AND EXPERIMENTAL EVIDENCE

The angular momentum carried out by the nucleus does not produce any
intrinsic excitation. This reflects the spherical symmetry of the nuclear
Hamiltonian just as its translational invariance forbids the occurrence of an
isoscalar collective E1 mode. One may however carry further the analogy with
translations and assume that protons and neutrons form two distinct deformed
fluids free to rotate separately about a common axis (perpendicular to their
symmetry axes). Because of their mutual interaction, they may undergo a rota-
tional oscillation giving rise to an intrinsic M1 excitation. This is the underlying
idea of the TRM [2] which represents the rotational counterpart of the semi-
classical picture of the E1 giant resonance [104,105].

A. TRM Prediction of the Scissors Mode. The Hamiltonian describing two
axially symmetric rotors interacting via a potential V() dependent on the angle
279 between the symmetry axes has the form

H ——J+

=3 23 P+ Vo), . 2.1)

where Sp and Sn are the proton and neutron moments of inertia, Jp and J are

their angular momenta.
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Expressed in terms of the total and relative angular momenta

n

I=1+J,. S=1-] (2.2)

the Hamiltonian decouples into a rotational and an intrinsic part, if a Coriolis-
like term is neglected. For small values of 0, the intrinsic piece assumes the
form of a two-dimensional harmonic oscillator (HO) Hamiltonian

|

H=H =——
int 23%

1
SZ+SH+ 2 C 407 +0), (2.3)

where 9, (k= 1, 2) play the role of x and y variables and

g, d
Sk_‘]k —Jk —ldﬂk (2.4)

are their conjugate momenta. The TRM physical constants are

43 3 acPcl
___p°n _ 2_ 0% 7Y
Ssc R C\‘) - S.\cm - C(ﬂ) + C(n) ’ (2.5)
14 n v V)
U_

where we have put Cé (JL)2SI with T=p for protons and T =n for neutrons.

The energy eigenvalues are
wnkz(o(2n+K+ 1). (2.6)
The scissors mode corresponds to the first excited level. Its quantum numbers
n=0 and K =1 define a positive parity band of intrinsic excitation energy ®. In

order to illustrate the mechanism of excitation we decompose the TRM MI
operator as follow

=\ 3 » (n) -
MM )y =N (g, /7 +8, 1 Iy =
=M, M1, p)+ M (M1, p). (2.7
The first piece is the rotational component
3
ML W =N >, gpuy, (2.8)

where g, = (gp +g,)/2 is the rotational gyromagnetic factor. The second is the

scissors M1 component
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Mo =N 28 gy, (2.9)

where g =g —g . This term is responsible for the excitation of the mode. In
r J4 n

order to compute the transition strength one may exploit the harmonic relations
holding for the TRM Hamiltonian

sc SC u=+1
c=o 3 Kuls o)l (2.10)
p==x1

In view of the structure of the scissors M1 operator (2.9), the above equations
yield for the M1 strength the expression

BT === 3 Kuls, l0)22 =28 o, @1
p==x1
The mode can be further characterized by the M1 form factor. The general

expression of the magnetic orbital operator for electron scattering is

()= - M\?—l; jdrj ) T x V(jiplgn Yy ) =

= W—T:J drp (1) V(1) - (1 X V)(jy(g7) ¥y ) =
1

= mﬁjdm M1 V(@ ¥, ), (2.12)

where m and lp are the proton mass and angular momentum, respectively.

The transition operator can be conveniently rewritten by using the classical
relations

I1=mr(r Q) -
1
Qp=§;lp. (2.13)

After some straightforward algebra we obtain (L =% 1)

r)
fdrp (r) (r*9, —x,;r - V)(r Y Q- (214)

J3(q
T i —
" VAR + 1) “5 Pt

For A =1 the only nonvanishing matrix element is
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(I=K=1,n=0|| T¥g)|| I=K=n=0)=
_\lg \jg J arPon jan), 2.15)
0

where p(r) is a spherical density normalized to the total number of nucleons.

For > 1 the integral in eq. (2.14) vanishes unless the density deformation
is taken into account. To this purpose [106] let us consider a proton (neutron)
density of the form suitable to an axially deformed shape

p(r)=p [r—R(l + a(”YZO(’B) (2.16)

where

o) =B = 16“ .. 2.17)

For A =3 the only nonvanishing matrix element is [106]
(I=3K=1n=0|| T** V)| I=K=n=0)=

4 [2n A .
15 7“ o %qj drrp(r) j(qr). (2.18)

The M3 transition strength can be obtained by going to the photon point and
results to be related to the M1 transition probability by

BM3)T = 1.148%R *B(M1)T. (2.19)

B. Experimental Evidence and Characterization of the Mode. A level

with the properties of the J™=1%, K™=1" state predicted by the TRM was

discovered in a high resolution (e, ¢’) experiment on 156Gq by the group of

Richter [1]. The M1 excitation was detected by performing (e, ¢’) scattering at
backward angles (8 = 165°), where transverse magnetic transitions are dominant.
The experimental form factor of this state is in close agreement with the TRM
up to moderately high values of the momentum transfer ¢. The discrepancy at
high ¢’s is to be attributed to spin contributions, absent in the TRM [107,108].

Soon after, this strongly excited state was confirmed in (y, Y’) experiments

[109]. In these reactions the decay of the J™ =17 state to the J™ = ZT level of
the ground state band was also observed. This allowed one to determine the

K value of the state under investigation using the Alaga rule [110]. In fact in
the rotational limit we have
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L boni, T=2) |(ka-kl20)]2
BM1, 1t 0% [(kr-klooy|?

(2.20)

This ratio is R=0.5 if K=1, R=2 if K=0. Experimentally R is about 0.5
consistently with the K =1 assignment.

Subsequent inelastic electron scattering and NRF experiments have ascer-
tained the existence of the mode in three regions of the nuclear table, i.e., the
deformed rare-earth nuclei [111—119], the fp-shell nuclei {120—122]} and the
actinides [123,124]. However, most of the experimental studies were performed
on rare-earth nuclei.

We have pointed out already that the electron scattering form factors are in
good agreement with the predictions based on the assumption that the exci-
tation mode is of orbital nature. A further support to this property of the mode
has been gained by comparing the (e, ¢’) with the (p, p’) scattering [120,125,
126]. In (p, p’) reactions in fact, the intermediate energy proton scattering at
small angles excites magnetic dipole states only through the spin part of the
nucleon-nucleon interaction. The fact that the M1 states observed in electron
scattering are not appreciably excited in the (p, p’) reaction provides a strong
evidence in favour of the orbital nature of the mode.

A combined analysis of (e, ¢’) and (y, ') experiments {127] has shown that
the mode is fragmented into several peaks closely packed around a prominent

one with a total strength B(M1)T ~ 3uI2V. Attempts to clarify the nature of the

single peaks have been made through (¢, o) reactions [128,129].

Joint (e, ') and (y, Y’) experiments carried out on a chain of even Sm iso-
topes have shown that the integrated M1 strength grows quadratically with the
deformation parameter [11] and is proportional to the strength of the E2 transi-

tion to the lowest 2% state [12]. The same deformation law was confirmed in Nd
isotopes [13] and ascertained by now to hold for all nuclei of the rare-earth
region [14,15]. The experiments on some actinides indicate that there is

evidence for a 8 law also in this region [10,130]. This law is maybe the most
spectacular manifestation of the scissors nature of the M1 transitions.

This systematic study was possible in virtue of the great progress made in
gamma spectroscopy. Indeed, the measurement of the linear polarization of the
scattered photons in nuclear resonance fluorescence (NRF) experiments has en-
abled parity assignment [17] and, thereby, the unambiguous identification of the
M1 transitions [17—20]. The same experiments have ascertained the existence
of E1 transitions intermixed with M1 excitations. '

The experimental set-ups have now increased the detection sensitivity to a
point that very weak transitions can be identified. A first success was the dis-
covery of scissors-like excitations in y-soft nuclei [131,132].
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The present status of the experimental results can be found in several
review articles [6—10]. The salient features of the mode which can be extracted
from them are:

— The M1 strength is fragmented and distributed around an energy cen-
troid, which assumes the value ® ~ 3 MeV in rare-earth nuclei.

— The summed strength in the most deformed rare-earth nuclei is
zBM1)T ~ 307 .

— The transition is mainly promoted by the convection current. The
orbital-to-spin ratio is typically B, (Ml)/BG(Ml) ~ 10.

— The integrated M1 strength depends quadratically on the deformation
parameter and is strictly correlated with the strength of the E2 transition to the

lowest 27 state.

While consistent with the observed properties of the mode on a qualitative
ground, the TRM, in its original formulation [2], was unable to predict either
the exact position of the energy centroid or the size of the total strength. Indeed,
the TRM energy was higher than the observed one by about 1 MeV and the M1
strength was five times larger. The main reason of these strong discrepancies is
to be found in the crude numerical estimates of the model parameters made in
that paper. A rigid body moment of inertia was assumed and the restoring force
constant was computed by paralleling the procedure adopted by Goldhaber and
Teller for the E1 giant resonance. We know now that both prescriptions are
unrealistic. There is however little doubt that the mode predicted by the model
corresponds to the observed M1 excitations. We have already said that the expe-
rimental form factor is reproduced by the model to a large extent. We will see
now that the model is also consistent with the quadratic deformation law.

C. Consistency of the TRM with the Deformation Law. As pointed out
already, the most meaningful signature of the observed M1 transitions is the
quadratic deformation law of the total M1 strength. It is therefore of the utmost
importance to investigate if the TRM can predict such a behaviour. To this
purpose it is useful to express all TRM quantities in terms of the shape variables
%, instead of the angle ¥ and to impose for the proton (neutron) density (2.16)

the normalization condition
A A+3
(NOE J pr) r'Y, (1) dr=oy p RN, .21

where pg’) and pg‘) are normalized to the number of protons and neutrons,
respectively. Under a rotation by 0, (ﬁp =9, ¥, =— 1), around the x axis, the

proton (T =p) and neutron (t = n) densities undergo the following change
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PR ﬂ_jr) = pt[ r—R(1+ 2; laggyz*u(? ) } : (2.22)
p=%

where

(T) D(Z)(t‘} Do) V 3 oy - i 23 B0 (2.23)

20 — 207t

to leading order in O . This key relation enables us to express the TRM Hamil-

tonian (2.3) in terms of shape variables, namely

- 21 2, 1 2
H= 25 243 Lo o= 2B 2 n,Pese 3 o, 12 @29
S¢ p=+1 p=#1

where T, are conjugate to %y, and

48 B, 4c,C,
Be=5+B> “TCa+cC (2.25)
14 n P n

are the new model parameters. Old and new constants are related by
—3R2 (™ _
SI—SBT B, C; 3B C.. (2.26)

It follows from a simple inspection that, while the energy is independent of
deformation, the scissors M1 strength grows quadratically with it. Indeed, upon
insertion of the above expressions into the TRM harmonic relations (2.10), the
scissors strength (2.11) becomes

B, (MI)T— BmB2 202 (2.27)

The &> behaviour of the scissors M1 strength has been studied quantitatively in
Ref.90 by making an empirical estimate of the mass parameter. The following
expression was obtained

B (M1)T ~ 0.00404%/38%% 12, . (2.28)

Numerical calculations carried out by putting g =0 and grzgp=2gR=

=(2Z) /A yield results in good agreement with experiments [11—13]. In parti-
cular theoretical and experimental summed M1 strengths have similar saturation
properties (Fig.1). A systematic analysis carried out recently [14,15] has shown
that the M1 strengths computed by such an empirical formula are in overall
agreement with experiments for all nuclei of the whole rare-earth region.
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Fig.1. Saturation plot of the scissors M1 strength computed using the TRM formula
(2.28). The quantity P is the Casten number defined in the text (eq. 3.32)

The formula has been shown to account also for the deformation dependence of
the M1 strength in actinides isotopes [10,130] and in y-soft nuclei {131,132].
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D. Theoretical Computation of the TRM Constants: A Low and a High
Energy Mode. /. Classical Method. Within the semiclassical domain one may
attach to each of the two rotors the velocity fields

L, == pr , v =-Vy , (2.29)

where

X = 5(x21)(31§21T + xlrx3rQZI), (2.30)

Q; (i,=x_,y,) are the proton and neutron angular velocities. One gets a two
T

rotor Hamiltonian of the form given by eq. (2.1) and therefore an intrinsic one
given by eq. (2.3) with an irrotational moment of inertia

3.=38 =83 . 3 :%mARZ. (2.31)

The restoring torce constant can be deduced from the symmetry energy mass
formula
2 (8p, - 8p,)°
av=1b | @gdrzébyj R (2.32)
' 0 ' 0

where b 50 MeV and p; is the nuclear density normalized to the mass

number. The density variation is computed by making use of egs. (2.22) with
the result

2%
8, =p (0 —p 0=k p” 3 oYy . (2.33)
K p=41
()
2p
given by eq. (2.32). The calculation of the integral in eq. (2.32) yields then

where the constant kT is fixed by the normalization condition (2.21) and o’ is

AV:%Cﬁz, (2.34)
where
C22—58—bSA52. (2.35)

Using the above equations one gets for the energy of the mode and the corres-
ponding strength (eq. (2.11))

o, ~ 139447 Mev, B (M) T~ 0.128%4%/3¢? T (2.36)
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The strength is quadratic in the deformation parameter, but the energy is far
higher than the observed one. We obtain indeed for 154Sm © ~ 26 MeV and
B(MI)T:4.7LL17§,, having put g, =0 and gp=2gR=ZZ/A. Although the MI

strength is reasonably close to the experimental value, the energy lies in the
region of the giant isovector quadrupole resonance. What we have found i1s

actually a new scissors mode. It is indeed the K™ =1 component of the iso-
vector quadrupole resonance mode. In order to obtain a low energy mode one
has to make different assumptions about the nature of the rotors. A natural
prescription for all possible alternatives can be found once the model is formu-
lated in a microscopic context.

2. Microscopic Approach: Equivalence with Schematic RPA. Let us assume
that nucleons move in a deformed mean field described by an anisotropic

HO potential with frequencies ®, and w; such that wf(nzzwa and @, ~

~ 414" '/3 MeV.

Mapping the procedure of Bohr and Mottelson unified theory [133] to the
present case, one can make use of the harmonic relations (2.10) in the specific
form

I I
Sff(Sz):;j” Y X Kkprls hiP=o+o,=20, @37

SC phe 2(1)“ ntl

where |) is the particle-hole (p-h) vacuum. The sum is restricted to the AN = 2p-h
excitations. This condition yields the irrotational mass parameter

3 =3 =83 ., 3. :&% > e, )hl ~ 2 mAR? (238

s¢ irr rig ng —5
0 phe Sw
and the restoring force constant
+) 2
(O S (2(0 bOAS (2.39)

where b, ~ 17.5 MeV. When the p-h interaction is switched on, the restoring

force constant gets the additional contribution
)~ % b AY, (2.40)

where the constant b, follows from its relation to the energy symmetry potential

V,=4b, ~ 130 MeV. The full restoring force constant C, = Cé” + C1(+) results

to be exactly equal to the classical expression (2.35) with the same symmetry
parameter b =b,+b ~50 MeV. It follows that the resulting energy and

strength are given exactly by the semiclassical eqgs. (2.36).
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We use now eq. (2.10) with the following requirement

1 1
S_SC<S2>=3_ Y X Kpnls,DI? =380, (2.41)

SC phe 8000 p=+1

where the sum is restricted to the AN =0 p-h space. This yields a rigid body
moment of inertia Sgc = Srig' The unperturbed restoring force constant is now

) 2q _28 (-),s2
Co = (Bwy)’ 3, =5 by A (2.42)

with bg)_) ~ b, /4. The potential component can be fixed [133] from the ratio

between the nuclear isovector and isoscalar average potential strengths V, and

Vpa_=C/¢f7 =67 /b0) =~ v, /(4V,) ~ 0.6. The final result is

o -1/3
o =N g— =80Vl +a_ ~53847" Mev,
rig
3
B (M1)T ~ eI 0.04584%/3g2 % . (2.43)

The method just developed is nearly equivalent to the entirely classical one
adopted in the TRM in its original formulation [2]. Both rely on the assumption
that protons and neutrons form two rigid rotors. The present method however
improves the computation of the restoring force constant with the result that the
M1 strength is reduced by about a factor of two. Such a reduction however is
not enough. In order to induce a further quenching, one needs to remove the
rigid body assumption.
To this purpose one may impose for the low energy mode the alternative
condition
1
3

SC

where E(ssp)= V(Esp— 7\.)2+A2 is the quasiparticle energy. Here, € is the

single particle (s.p.) energy referred to the chemical potential A and A is the
pairing gap. It is natural to use for A the value A = (8(00)/2. With this choice

(%= E(e,) + E(e,, + 80y), (2.44)

the harmonic condition (2.10) becomes

Si (sH=28=V (Bwy)® + (2A). (2.45)

sC

Using closure we obtain for the mass parameter
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S ~8 ™~ 0E) (u(s ) v(e + 80, —
8w, \3
- (v(ey,) u(ssp+5(1)0))23 [ E j 3 g (2.46)

having made use of the standard expressions of the BCS amplitudes u and v
with A = (8w,) /2. The resulting energy and strength are

=\/S—“:(2E)x/1+a_,
sf
BM1T~i 3 g @9 22 2.47
(M1) ®_ 2E | &My (2.47)

or more explicitly

o~ 1.26Q2A) V1 +x°,

3
B_(MD)T ~ 0.00128)4%/3 X — 2,2
1

T (2.48)
+x2 TN

where x = 5(00/(2A). According to these equations the strength goes like 8 for

small deformations (x << 1) and becomes linear for very large deformations
(x>>1). In the range of observed deformations the strength is approximately
quadratic in 9.

Had we averaged the two quasiparticle energies and the moment of inertia
with respect to A [133] we would have obtained exactly the strength derived by
Hamamoto and Magnusson in schematic RPA {69]. This is not an accident. The
approach presented here amounts exactly to a schematic RPA treatment. To
show this equivalence we observe that, when expressed in terms of shape
variables, the intrinsic TRM Hamiltonian (2.24) coincides with the harmonic
Hamiltonian adopted within the unified theory [133]. Let us indeed switch from
the normalization (2.21) to the new one

Q)= [ oy xYMl(r) dr=a, . (2.49)

This induces in turn a renormalization of the mass and restoring force para-
meters which assume the new form

3 2
_ SC _‘It m
SSC:Ba— 23 223 ap?’
—— AR
9 4%
_ c _ 0, (D)
Cy=C,= =c]'+C

2
342 [f—nAR 2 j (2.50)
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where

2

co 8™ Ly 1™

(x‘3AR2‘ a‘3AR4'

The above quantities are just the mass parameters and coupling strengths deri-
ved within the unified theory approach [133].

(2.51)

The link with schematic RPA is now obtained simply through the standard
mapping condition [133]

oy, =3 3 1,015 g,m=00-01. @52
H

2p
p ph

Useless to say, an explicit RPA calculation yields exactly the results obtained
here [34—36]. Although the deformation dependence is roughly reproduced, the
magnitude of the strength produced by these calculations is about a factor of
two larger than the experimental summed strength. A quenching mechanism is
needed. This is hopefully found if the model can be framed in a fully micro-
scopic context, which accounts also for spin degrees of freedom.

3. Scissors Modes in Superdeformed Nuclei. We have seen that, in its refor-
mulated version, the TRM predicts a low and a high energy mode. In the first
mode protons and neutrons behave approximately as superfluid systems, in the
second as irrotational fluids. Being switched by deformation, the two modes
should exist also in superdeformed nuclei. Their existence was indeed predicted
in RPA [72] and within the classical TRM [134]. This latter model can be easily
adapted to these nuclei. Let us indeed assume that X is a good quantum number
so that the transition goes from K to K+ 1. The M1 operator couples the state

|IMK) to the states |I’M’K+1) with I’=1—1, I, I+ 1. Using the standard
expression for the transition matrix elements [133] with the TRM intrinsic wave
function [2] and assuming [ >> K we obtain for the summed strength

1
K+1

, 3
;B(MI,IK—H K+l)=7 -3 o

gouy . (2.53)

According to this expression the strength decreases with increasing K. If we
assume that the superdeformed state has K=0, we gain the standard scissors
expression (eq. 2.11). We may use eqs. (2.36) obtaining for the high energy

mode of the superdeformed 152Dy (6 ~0.62)

2
®, ~26MeV, B, (MDT~26.1p7, : (2.54).

where we have put g, =0 and 8,= 2g,=2Z/A.
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For the low energy mode we may assume rigid rotors and use eqs. (2.48)
with g =0 and 8,= 1, obtaining for the same superdeformed nucleus

®_~6.1MeV, B_(M)T~226p7. (2.55)

The above numbers are in agreement with the RPA results of Ref. 72. They
have been obtained under the assumption that, in going from deformed to super-
deformed nuclei, protons and neutrons in their relative motion remain irrota-
tional at high energy but undergo a transition from a superfluid to a rigid-body
phase at low energy. Such an assumption is fully consistent with the conclu-
sions drawn in Ref. 72.

We like to stress that, according to our equations based on the use of the
TRM scissors wave function, these strong transitions occur only if the intrinsic
superdeformed state has K= 0. If such a state has a nonvanishing but small K
or contains K admixture, the corresponding strength should be still sizeable.

4. M1 Mode in Triaxial Nuclei. The model can be easily extended to triaxial
nuclei [135,136]. To this purpose one can easily deduce the quadrupole fields
entering into the M1 channel from the density variation induced by the rotation
of protons against neutrons around each of the three principal axes. They are

L2
Q=-5Griy+hh_ N1,

O=-5H 0y =Y 5.
Q3=;\/2—lr2(Y22—Y2_2) 1. (2.56)

The corresponding excitation energies are

E(li): lwzi(ﬂ}l :mo’e—acos(*{-fln/})ie—acosy*’

(*

—ocos (Y=27/3) 4 -0 cos
82): |w1im3|:wole acos(y=2n/3) 4 o~ woosy

’

&= o to,| =0 e @02/ peawsty=4n/I] (557

The lowest eigenvalues for each mode are

i
mizwcosy[l—(?/—;) tgyj, i=1,2
0] —i(osin (2.58)
353 08 Y. .

We have neglected pairing for simplicity.
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The E2 and M1 strengths are

B(E2)=1/2 cosy[l—(:/%) tgyJB(EZ), i=1,2
2
BA(E2) = 77 sin Y B(E2), (2.59)

B(M1)=1/2cosy| 1 - (jgl)l tg y]B(Ml)
2 .
By(M1)=7=sin Y BM1). (2.60)

For both kinds of transitions the ratio BZ/BI is

1
B, l-Jztey
P2 BT 2.61)
B, 1+Lt Y

V3 &

A third mode, absent in axial nuclei, emerges. Its frequency and strengths con-
tain v as leading term consistently with the fact that such a mode disappears in
the axial limit. For very small values of v the frequency is very low and the
strength is negligible.

According to the model predictions, a splitting of the M1 strength should
signal a triaxial shape. Unfortunately such a splitting is likely to be hidden by
the fragmentation induced by the nuclear shell structure. Such a test may there-
fore work only in some medium-light nuclei where the fragmentation induced
by the shell structure can be modest.

E. Microscopic Formulation of the TRM. It is not obvious that the
scissors picture should be preserved within a microscopic context. The spin
degree of freedom can in fact interfere so as to destroy such a picture. This is
to be expected to some extent since the spin orbit coupling induces a large
fragmentation in the s.p. spectrum. In order to check if the scissors picture still
holds, it is useful to analyse the excitation mechanism. The full shell model M1
operator is

A
MM W =V3/Gr X, (g () 1,(0)+8,6) 5,0 by - (2.62)
i=1
The scissors picture remains valid only if the spin contribution is negligible or

can be absorbed into the generator S so that the M1 operator can be written in
the TRM form
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3 1/2
Mot =1 =7 7S, (&, 8, by (2.63)

In such a case general definitions of the TRM constants valid in any micro-
scopic context can be given easily. To this purpose it is useful to write the
defining TRM eq. (2.10) in the form [34]

+ 1
2 (ols = Eosu|0>,
p==%1
% S (ol[sT [H, S, 11 nlo). (2.64)
n=t1

Using closure one obtains the quite general expressions

1 2
3.= 2 o Kmls 10y
nu "

c=3 mn|(nu|Su|O)|2. (2.65)

It is now immediate to derive the scissors energy weighted M1 sum rule

Zco BT =25 o [(nuls,10)]2 2 =
n,T
== 3 colis) sl @28 2. 266
321:-+1 o N7 16m Tse T St PNT ’
p=+

This sum rule holds in the macroscopic as well as in the microscopic domain.
Under the experimentally supported assumption of small fragmentation of the
mode, we obtain for the summed strength the expression defining the TRM M1
strength (eq. 2.9). It follows that the TRM formula, with SSC and C given by

€q.(2.65), represents a general definition of the scissors M1 summed strength.
Microscopic studies of these formulas have been carried out in Ref. 137.

3. BOSON MODEL DESCRIPTIONS

The TRM was formulated specifically for identifying a collective mode of
scissors nature and predicting its signature. Hence the simplifying assumption
that neutrons and protons form two fluids of ellipsoidal shape. On the other
hand, the mode can be fully understood only if studied in more realistic
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approaches which include additional degrees of freedom. An obvious extension
consists in allowing for surface vibrations of proton and neutron deformed
fluids. This is accomplished within a semiclassical context by describing these
vibrations in terms of the shape variables o, and o . These are indeed the

classical variables adopted in the phenomenological models described in this
section.

A. Extended Bohr—Mottelson Models. The TRM Hamiltonian, when writ-
ten in terms of the Bohr—Mottelson collective variables (2.24), assumes the
form adopted by Faessler and coworkers [30] to study the mode. In their ap-
proach the TRM Hamiltonian was derived from the proton-neutron Hamiltonian
introduced within the extended Bohr—Mottelson model developed by Faessler
himself to describe the E2 giant resonances [138]. The novelty of this model
consisted in the introduction of collective variables for protons ((xp) and neu-

trons (o). Nuclear and relative motions could then be decoupled by defining

the new variables
£ =a’-o". (3.1)

The o, coordinates are quadrupole shape variables describing the motion of the
nucleus as a whole, while ép account for the relative motion between the proton

and neutron fluids.

In their study of the scissors mode [30], the authors started from an Hamil-
tonian of the form (2.24) and by using a relation similar to the one given by
€q.(2.23) gain a TRM Hamiltonian of the form (2 3). They improved the rigid
TRM results [2] by assuming that the motion is determined by a fraction of
nucleons only. Because of this ansatz, moment of inertia and restoring force
constant are reduced by about a factor of three. Their M1 strength resulted to
be only twice the observed one.

The same formalism was adopted by Rohozinski and Greiner [31] in a more
extended frame. They in fact formulated the problem in the laboratory frame
using a highly anharmonic Hamiltonian in the variables o, and éu. For small

amplitude oscillations the Hamiltonian can be decomposed into
H=H_  (0)+ Hrel(é) +H,_ (c, &), (3.2)

where Hco11 describes the mass collective motion, Hrcl is an harmonic Hamil-
tonian in the relative coordinates ép and H,  is an interaction term which coup-

les the two motions.
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A similar decomposition holds for the total angular momentum

11 1
Llll = L’l’u(an) + L’l’u(ap) = L?‘; (o) + Lfl‘L(g). (3.3)
Transforming to the intrinsic frame defined by the principal axes of the system,
the variables o, are turned into the Euler angles (o, B, y) and the intrinsic shape

variables a,, and a,,, while the transformed relative coordinates &p remain still

five in number. In the strong coupling limit one can put in the interaction term
the equilibrium values appropriate for an axially symmetric shape, namely
s =P and a5, = 0. In this limit the transformed Hamiltonian becomes
H=H +H
ot

Y+H 3.4)

+H . +H .
centr conolis sC

B

H_, and Hﬁy’ describing respectively the nuclear rotation and the B and vy

vibrations around an equilibrium spheroidal shape of deformation B, form

essentially the Bohr Hamiltonian {133], while HCc . and HC()riolis are the centri-

nt
fugal and Coriolis terms. The last piece is the scissors Hamiltonian. This, in the
strong coupling limit, can be written
5
Hsc = Hrcl(é) + Hinl(é’ B) = Z HK ? 3.5)
K=0
where H, are HO Hamiltonians in the relative coordinates and carry intrinsic

angular momenta K =0, 1, 2. The coupling between the relative motion and the
mass deformation mode induces a dependence of the restoring force constant
C and the mass parameter B, on K and B.

The NPD model predicts therefore two other isovector modes in addition to
the scissors excitation. The magnetic orbital dipole form-factor operator is
obtained from the general expression (2.14) assuming an irrotational velocity
tield and a proton mass density of the form (2.16). The resulting expression is

(m) _ { i 14
T =am ¥ an FO L, (3.6)
with o
P dr [j]mr) + 2 (gn ]f’(r Ry
Fig) =" . 3.7)

P drf'(r— R))
0
The M1 strength is obtained by going to the photon point and results to be of
the same TRM form (2.11) with an irrotational moment of inertia. The NPD
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model describes therefore the mode as a rotational oscillation between two ir-
rotational fluids.

The advantage of this model consists in that it describes on equal footing
the scissors as well as the B and y vibrations and accounts for the coupling
between them. The model, however, does not give clear and simple prescrip-
tions for computing the parameters. These are in practice determined by a fit to
the energy and the B(M1) values. Another drawback is the lack of agreement
between model and experimental form factors.

The model was extended so as to enable the study of the effect of triaxial
deformation on the M1 strength [139]. It was found that, contrary to the TRM,

a small triaxiality does not lead to the appearance of 1*doublets.

B. Generalized Coherent State Model Description. The anharmonic terms
of the NPD Hamiltonian are not ease to handle. An efficient approach for
dealing with is provided by the so-called coherent state model (CSM) [140].

The idea of the CSM is to describe the low-lying collective states of sphe-
rical as well as deformed nuclei by wave functions obtained through angular
momentum projection from intrinsic coherent states, which represent a quad-
rupole boson condensate. The second step consists in constructing an effective
interacting boson Hamiltonian which is diagonal in the above states to a large
extent. As in the NPD model the CSM Hamiltonian is anharmonic and does not
preserve the number of bosons. Because of the use of coherent states, however,
such a Hamiltonian is of the simplest form. This model has been used success-
fully to describe the collective properties of nuclei from the spherical to the
transitional and deformed regions.

The M1 mode can be studied in its generalized version (GCSM) [32,33],
where distinction is made between neutron and proton bosons. The structure of
the generic GCSM state is

: J
Yoomk =N Prk ok >

(3.8)
where N, is a normalization constant, PA{,K is a projection operator of standard

form which projects the good angular momentum out of the intrinsic states
@,k - These are obtained by acting with boson operators, at most quadratic in

the quadrupole creation operators b;l, on a HO coherent state in the defor-

mation parameters dp and d,

Qo =exp[d (b ~b ) —d (b~ b1 ]). (3.9)
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States describing one B band, two y bands and two K™ =17 bands have been
constructed. The one describing the scissors mode band is

_adpd + +
¥ —NlPMl(bp®bn)11|0). (3.10)

The Hamiltonian is constructed so as to be diagonal to a good approximation in
the bands of the six boson states. Its expression is

H= Al("p + nn) + Az(npn + nnp) +

+A

A

+\5 2PF+PT+APTP +PTR —2PT P y+AJY (311
n np 3V pin n-p np " np 4

where n, and n_are the proton and neutron number operators and together with

Mo and n,, can be written in the compact form

Z bku e k=pom K=pon, (3.12)

P;, P: and P"p are proton, neutron and proton-neutron pairing-like boson
operators

Pl =bibly —d” /NS (3.13)
and the quantities A, , i =1, 4 are free adjustable parameters.

Eq.(3.11) defines an interacting boson Hamiltonian which does not com-
mute with the boson number operators n, and n . Its excitation energies are

obtained as
o=, 0¥ Y-(v H|Y) (3.14)

The parameters A, are determined from fitting some levels of the ground, B and

Y bands while the deformation parameter, assumed equal for protons and neu-
trons, is fixed by an overall fit of the  band. The only free parameter is the
scaling parameter entering into the canonical transformation

o -+
Tu \/_ (b +b) (3.15)
In the harmonic limit, this parameter assumes the standard form kT = VBTCT.

The M1 operator has been derived from the general expression (2.14) using
an irrotational velocity field (eq. 2.29) and a charge density of the form (2.16)
as in the NPD model. The resulting expression to lowest order is
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T(M1, W) =~ ie],(@Ro)(E, I, + 8, 7 ,,) (3.16)
where J, w= VlO(b:bk)lu. By going to the photon point, it is possible to obtain
for the M1 strength a rotational and a vibrational limit [89]

9 2,22 2
B (MDT =~k Bgr

rot

18 24022 2
B M)T= < Ber My - (3.17)

This value is linear in B2 in both cases but with two different slopes. The full
GCSM expression was used to compute the M1 strength for different chains of

isotopes. The experimental 8% behaviour was nicely reproduced. If we put
kf): Bw, valid in the harmonic approximation, we obtain for the strength in the

rotational limit the TRM expression (2.27). The close link between the two
approaches was discussed in Ref. 89.

The M1 form factor was computed in plane wave approximation [143].
Although a detailed comparison with experiments cannot be carried out, it looks
promisingly close to the observed one. The octupole operator has exactly the

3 _
p/n
= 12/7gp/”. Once the magnetic dipole gyromagne‘tic ratios are determined, the

same expression of the M1 operator with a gyromagnetic ratio g

octupole ones are automatically fixed. The model predicts a scissors, an iso-

scalar and an isovector M3 transitions [141]. The isoscalar M3 strength is

remarkably close to the one measured. in 164

isoscalar [142].

The GCSM has also been extended to triaxal nuclei [143]. The results ob-
tained are consistent with the TRM findings.

Dy and consistently interpreted as

C. Algebraic Description of the Mode: The Interacting Boson Model.
1. The model. The basic assumption of the interacting boson model [144,145] is
that the low-lying collective states of nuclei away from major closed shells are
described in terms of a monopole boson with angular momentum and parity

JT=0% called s boson, and a quadrupole boson with J™=2" called d boson.

These s and d bosons are interpreted as strongly correlated pairs of valence

nucleons coupled respectively to J™=0" and J " =2".

In the first formulation of the model (IBM1) no distinction is made between
protons and neutrons. The Hamiltonian has the form
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_ + 1 + g+
Hy=Ey+ 3, €0 B by+> D, uynsby bybsh,, (3.18)
of afyd

o C ot
where EO 1$ a ¢ number, S‘!B and uaﬁ“{5 are the free parameters, ba and ba are

respectively the creation and destruction (s or d) boson operators. The distingui-
shing property of this boson Hamiltonian is that it contains in addition to the
harmonic term a two-body part and commutes with the total number of bosons.
Moreover it has a definite group structure since the bilinear products are the 36
generators of the group U(6). This allows one to find the proper basis states for
its diagonalization. In fact, one can generate from U(6) three subgroup chains
containing the rotation group as a subgroup. These are

L, U5)20(5)2003)202) 1
U6) > 5 SU3) 2 0(3) 5 0(2) 11 (3.19)
0(6) o 0(3) > 0(2) 11

Each group chain provides the quantum number for labeling a set of basis”
states.

The boson Hamiltonian, in its general form, can be diagonalized in one of
these bases only numerically. For an appropriate choice of the parameters, how-
ever, It can be written as a sum of linear and quadratic Casimir invariants of one
of the three chains. In these limiting cases the eigenvalue problem can be solved
algebraically.

The states obtained in these three limits can be interpreted geometrically by
making uSe of the concept of coherent states. It can be shown that in the chain [
the states describe the vibrational motions of spherical nuclei, chain II corres-
ponds to an axially symmetric rotor and chain III to y-unstable rotor.

In the second version of the interacting boson model (IBM2) one makes
distinction between neutrons and protons and assumes that the low-lying levels
of nuclei can be explained in terms of pairs of protons and pairs of neutrons
with JT=0" and J " =2%, treated as s, d_ and s; d,, bosons.

In order to take into account the p-h conjugation in particle space, the
number of protons, Nn , and the number of neutrons, NV, is counted from the

nearest closed shell.
The Hamiltonian for the coupled system of proton and neutron bosons can
be written as
H=H +H +V_, (3.20)
where Hn(Hv) are the proton (neutron) boson Hamiltonian of the form (3.18)
and V_ is the proton-neutron boson interaction. Also the IBM2 has a group

structure, that of the group product U,(6) ® U (6). One can generate from this
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group several group chains containing the rotation group as a subgroup, each
one leading to a definite classical limit.
The chain leading to the scissors mode is the following

U 6)® U,(6)> Uy, ,(6) > SU,, (3)20(3) 2 0(2). (3.21)

T+ V)

Since the proton and neutron bosons are nonidentical, from the tensor product
of the two U(6) symmetric representations one generates symmetric as well as
mixed symmetry representations. In order to label the states of different

U, ,,(6) symmetry it has become customary to introduce a new quantum

number, called the F spin, formally equivalent to isospin for particles. A proton
boson has F=1/2 and third component Fy=+1/2, a neutron boson has

F=1/2 and Fy=-1/2. For a system of N = N+ N, bosons, the totally sym-
metric states have maximum F spin, F=me—-(Nn+Nv)/2, the states with
mixed symmetry have F = F =1 etc

The most general IBM2 Hamiltonian has too many parameters to be of any
practical use. A schematic Hamiltonian frequently used is of the form

H= Eny +n,)+2K O - Q + K, O, O, +K O - Qn +AM, (3.22)

where n . and n  are the proton and neutron J™=2" number operators, Q, and
Q, are the proton and neutron quadrupole operators and M is the so-called
Majorana operator related to the Casimir invariant of the group U,,,©) and is
responsible for the splitting between totally symmetric and mixed symmetry

representations.
In the special case £ =0, and Krszm=KW = K, the Hamiltonian (3.22)

can be expressed as the sum of the Casimir invariants of the group chain (3.21)
and is therefore diagonal in this scheme. The energy spectrum can be calculated
algebraically. One obtains symmetric as well as mixed-symmetry bands, where

J™ =17 levels appear.

The first excited J™= 17 state describes the scissors mode [4]. Due to the
lack of experimental information on other mixed symmetry levels, the Majorana

parameter is fixed by fitting the observed energy of this J™= 17 state. The IBM
cannot therefore predict the energy of the scissors mode.
The M1 operator has the form

NE
MM =N = (g, L +8, L) My =M + M, (3.23)

where the F spin scalar and vector components are
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A/ 3 A/ 3
MM, W =N - ge Ly uy =N gplly | +L, )Ry, (3.24)
N
\[ _n
M (M1, 1) = -8, L Y LV,u Hy (3.25)
and the gyromagnetic factor is obtained from the F spin scalar term
W gL )+elL,) g, N +g N,

The g and g, factors can be computed microscopically by following a boson-
fermion mapping procedure [146]. Since the underlying idea in IBM is that the

s and d bosons represent strongly correlated J ™ = 0" and J™ = 2" nucleon pairs,
one can turn the boson state ¥, into a fermion state ¥, by substituting the

boson operators s* and d* with correlated fermion pair operators

=3 O@atyy, bt z ? (@fal)). 3.27)
i

The boson operator O is then defined by equating the matrix elements
C¥ploglypy=Cylo vy, (3.28)

where O is the shell-model operator.

The microscopic estimates based on the above procedure give [147,148]
g, =1and g =0. Alternatively they can be estimated empirically from the com-

parison with the experimental g factor of the 27 states [29,149,150]. The values
so determined can deviate from 8,=0 and 8, = 0 by 25—30%.

The F spin vector term couples the ground state to the J™ = 1" mixed sym-
metry state of the scissors mode with a strength given by [4,29,148]

3 SNRNV
BN = = (g —g )P hd (3.29)

[t is to be noticed that only valence nucleons contribute to the strength. Using
the values 8= 1 and 8y =0 for 156Gd, Nn=7 and NV =5, one obtains

B(M1)=28 pjzv, a value remarkably close to experiments.
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The IBM form factor is computed by using the microscopic expression of
the s and d bosons. It contains therefore some spin contribution. Its agreement
with experiments is satisfactory even at high momentum transfers, where the
spin term is dominant and where the TRM appears clearly to be inadequate
[107,108]. These results have been confirmed in subsequent calculations
[151,152]

The IBM description of the mode is on the other hand closely related to the
TRM. As we will see, in the classical limit the IBM Hamiltonian assumes
indeed the TRM form.

The M3 operator has a similar structure
IRVIERIRCO S 34+
M(M3) = - (g,(d d )y, +8,°(d d), ), (3.30)

where, for the lack of experimental data, the gyromagnetic ratios are to be
determined microscopically by a boson-fermion mapping procedure similar to
the one sketched for the M1 case. The model predicts [24] three M3 transitions,
one F spin symmetric and two of mixed symmetry including the scissor mode.
Numerically [24,29] the mixed symmetry transition strengths resulted quite

strong (B(M3)T ~0.35+0.6 “/2\/ bz), while the symmetric strength comes out to
be too weak (B(M3)T ~ (.09 “12\/ bz), with respect to the experimental value
(142] (BM3)T = 0.3 13, b,

2. Connection with the TRM and Deformation Law. The M1 strength given
by eq. (3.29) is valid in the SU(3) limit. The most general IBM2 summed M|
strength consistent with the conservation of F spin symmetry is [84]

3
BMDT=—=(05210)(g, —g,)" ny ~
161 n
9 <Nd> 2 2
_4nPN_l (gTE—gV) qu (331)

where N and N denote the number of valence proton and neutron pairs respec-
tively, N=N_+N,, (Nd> is the average number of quadrupole bosons in the
ground state; and P, the fractional number introduced by Casten [153]

NTI NV

P=2T. : (3.32)

The IBM2 M1 strength in the SU(3) limit is obtained as a special case by
putting n,;=(N,)/N=2/3.
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One can derive a semiclassical expression of the IBM2 strength by the
following procedure [92]. Let us write

Nd:Nd(”) N(") d d+d d, (3.33)

having denoted by d: and d_ the quadrupole boson creation and annihilation
operators, respectively. Being a scalar, Nd can be referred to the intrinsic frame.

In the classical limit, the harmonic approximation holds. We can then transform
to shape variables by means of the canonical transformation

@) _ (Dt m_\ 1 33
am o, (dr,u+dr,u)‘ o ZBI(D' (3.34)

The (L =1 components are the shape scissors variables. We can therefore assume
o to be the energy of the scissors mode.

In dealing with an axially symmetric system it is appropriate to take as
intrinsic ground state a HO wave function which is coherent only in the proton

and neutron g =0 components of (1 . We have

dt, 0 W(' = d; W('
d. v, =0 (0, (3.35)

where d_ are pure ¢ numbers. It follows that
B, =(al)) =20"d! . (3.36)

In the strong coupling limit we then obtain

B B,
Ny }I o ~ -
% Oy
%w(B B +B B)Nf(nBBZ. (3.37)

The above equation shows that the number of quadrupole bosons in the [BM2
ground state is strictly correlated with the Bohr-Mottelson deformation para-
meter . The link between the M1 strength and deformation is equally close.
Indeed upon insertion in eq. (3.31) we get

BYOmNnT ~ = —P— (nBB (8, —8,)° M2 (3.38)
In virtue of this relation, the IBM2 strength appears to be quadratic in the
deformation parameter consistently with experiments. Such a property is hidden
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Fig.2. Ratio between the IBM M1 strength computed in the semiclassical limit
(eq. 3.38) and the experimental value in the rare-earth region

when the same strength is expressed in the IBM2 formalism. Figure 2 shows
that in the classical limit of IBM2 the experimental trend of the M1 strength is
closely reproduced. Another method for deriving the classical limit of the same
IBM M1 strength (3.31) has been developed in Ref. 91. The results obtained are
of the same quality.

3. The TRM as Geometric Limit of the IBM2: Explicit Derivation. The close
link of the IBM2 approach with the TRM was explicitly proved [154—157].
Using coherent states of the form
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I\ya>=exp[ Y (o, s+, -d,j))i()) (3.39)

k=m, Vv

the IBM Hamiltonian is turned into a classical one

H(o, o, o0, o) =(¥ [H[¥ ), k=pn (3.40)

k >

Because of the conservation of the total number of bosons N, o, can be
expressed in terms of N and o . The resulting Hamiltonian depends on ten
coordinates , and o, five for protons and five for neutrons, and their complex

conjugates, as in the two-boson models illustratgd previously.

The link of the IBM as well as of the other boson model with the TRM can
be established by the following procedure.

One can transform these shape coordinates @ into the intrinsic coordinates

Bk and v, and the Euler angles (ofy) by the canonical transformation

2
ku—ZakVD()(Q (3.41)

and similarly for the conjugate momenta T, . In the above equation a; " have
the expressions

0~ Bk cos Y, ’
1 .
2= 75 Besin Yy
a =0. (3.42)

In IBM the deformation parameter 7y is equal to the Bohr and Mottelson corres-
ponding quantity, while the parameter [ is a function of the parameter B of Bohr
and Mottelson.

In order to derive the Hamiltonian describing the scissors mode one must
freeze the shape variables by putting their equilibrium values. For an axially
symmetric system one has y =Y, =0, while the values of [ are obtained by

minimizing the energy. Of the two sets of Euler angles (Q = afy), the angles ¥'s
are redundant if we impose L;t:L%V:O consistently with the assumption of

axial symmetry. The remaining angles can be transformed to an angle 6 between
the symmetry axes and to a set of Euler angles describing the orientation of the
full system, exactly as in the TRM. This program was carried explicitly for
instance in Ref. 154, Their starting point was an IBM2 Hamiltonian of the form

Hy=E,+€,(n, +n,)+KQ -Q +AM. (3.43)
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After having followed the above prescriptions, by making an expansion in 8 and
keeping the quadratic terms in the angular momenta L, u they obtained, to

lowest order in the 1 /N expansion, apart from a constant

1 2 2 1 1 g2

H= ) g Pl tPR) tg PP+, CHY (3.44)
k=mv "k v

where Prp = (1/N) Lku‘ The inertial parameters Sk and STW and the restoring

force constant are complicated functions of N, Bk and of the other parameters

entering into the starting Hamiltonian.
The classical Hamiltonian (3.44) is formally identical to the TRM Hamil-
tonian (2.3). The only difference is the presence of the coupling term L-L,

which in the TRM appears only for N# Z.

One can therefore requantize the Hamiltonian by following the TRM pro-
cedure and obtains as in the TRM a two-dimensional HO Hamiltonian in 8. The
excitation energy o of the mode is now given by

1/2
m:;{C[;‘%—%H . (3.45)

k v

The moment of inertia and the restoring force constant are estimated using
standard IBM parameters. Taking the average value 1/3=1/3_+1/3 , one

gets for 156Gd w=2.96 MeV which is a good approximation to the observed
value w =3.1 MeV.

We have pointed out already that the IBM and TRM form factors prac-
tically coincide up to moderate values of the momentum transfer. The IBM is
more successful at higher momenta. The success of the IBM over the semi-
classical description is generally attributed to the fact that in IBM the neutron-
proton rotational oscillation is performed by valence nucleons only. In order to
check this point it was assumed in the TRM that only the part of proton and
neutron fluids external to an inert core takes part to the motion [158]. Such a
change, however, spoils the agreement of the TRM with the experimental form
factor. The success of the IBM description is rather to be ascribed to dynamical
correlations which, among other things, allow, though effectively, for spin con-
tributions. In particular the rather satisfactory agreement of the M1 IBM form
factor with experiments at high ¢’s is due to the spin degrees of freedom which
are effective only at high momentum transfer.

Though accounting well for the collective properties of the M1 mode, the
IBM2, as all other phenomenological approaches, cannot account for the M1
strength distribution. The attempts to explain the fragmentation of. the strength
by including additional bosons [25,28] or by changing the parameters of the
Majorana force [159] resulted clearly inadequate.
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4. MICROSCOPIC DESCRIPTIONS:
SHELL-MODEL CALCULATIONS

All boson descriptions are based on the quantization of the quadrupole
shape variables , and o and lead in the geometric limit to a semiclassical
description formally equivalent to the one provided by the TRM.

Important differences however appear among the same boson descriptions
when these are in quantized form. This is to be expected since the Hamiltonians
and the methods used to handle the eigenvalue problem differ from model to
model. In particular a major difference between IBM and the other two models
can be noticed. While in fact the IBM is a boson number conserving scheme,
the other two approaches are not.

The microscopic implications of such a difference are of great importance.
The IBM bosons, as we saw, can be considered to lowest order as highly corre-
lated valence nucleon pairs. The bosons in the NPD and the GCS models are
instead to be viewed to lowest order as highly correlated p-h nucleon states. The
IBM can be indeed considered as a truncated shell-model scheme where valence
nucleons are so strongly pairwise correlated to allow a description in terms of
bosons. The microscopic counterpart of NPD and CGSM is to lowest order the
random phase approximation (RPA) scheme.

The microscopic descriptions of the scissors mode fall indeed in these too
major schemes, standard shell-model and RPA. The shell model has been adop-
ted to study M1 excitations only in light and medium-light nuclei. In heavy
nuclei, calculations of this kind are prohibitive because of the exceedingly large
dimensions of the configuration space. Only shell-model calculations using
group theoretical basis and relying on severe approximations have been carried
out for these latter nuclei.

A. Shell-Model Approaches in Light Nuclei. Zamick [39—41] has shown
that M1 states with a strength of about IH/ZV can be generated in the restricted

f.l"/2 shell-model space. These states have the form
¥,= Y DL, L0, ®U) 1 (4.1)
L L i *

where v is the seniority quantum number, D, is the probability amplitude for
two protons, coupled to angular momentum Lp, and n neutrons coupled to

angular momentum L, , to couple to total spin J.
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The M1 operator induces a transition from the J™=0% ground state to the
p g
JT = 1% excited states with a strength

B(M1, 0" - 1" = |<‘P1+l| MM ‘P0+)|2=

= (3/4m) e, - 8,)°

> Dy(LLv) D(LLV) NL({L + 1) 2 4.2)
Ly

where the proton and neutron gyromagnetic factors are the effective ones appro-
priate for a single j shell

! + & (4.3)
8 _j gl 2] . .
Using the orthogonality relation
- 2D, (LD, (LL)=3,,, (4.4)

o
it is straightforward to obtain the integrated strength

2 212
> BYML 0t - 11 = (3 /4m) ufv(gp—gn) > DD PLi+1).  @5)
a L
The appearance of the factor (gp—g") stresses the isovector character of the

transitions. The scissors nature can be proved by rendering explicit the link with
the TRM. Indeed

2 DD PLa+ 1=l 2w =
L

%(Wolszlw()):%s@ (4.6)
We then get the standard TRM expression (2.11). In this case, however, the
strength gets contribution from both the orbital and the spin components. This
is due to the fact that the calculation is carried out within a single j shell so that
the M1 operator takes the form (2.63) with effective gyromagnetic ratios (4.3).
Similar expressions have been derived for the strengths of magnetic transitions
of higher multipolarity (A=3,5,7).

Numerical calculations have been performed for Ti isotopes using a nuc-
leon-nucleon interaction empirically determined from the observed levels of

2S¢ under the assumption that these 428¢ states are due to the configuration
(1f7/2)2. The numerical results show that the M1 transition strength is mostly

concentrated into the lowest J™ =17 state. The strengths of the transitions of

higher multipolarity are instead strongly fragmented and get a spin contribution
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which increases with the multipolarity, a result also found by Heyde and
Sau [160].

The schematic shell-model underestimates the orbital, with respect to spin,
contribution to the M1 strength. For 46T} the calculated ratio is R = \/E/\/l—??:'
~ 0.86, while the observed one is R ~ 3.5. If configuration mixing with higher

shell is accounted for [161,162] the ratio raises to R~ 2.5. The calculation
reproduces nicely the M1 and M3 form factors.

Studies of the M1 mode in Ti isotopes have been carried out with satis-
factory and, in many ways, similar results also in RPA [71].

B. SU(3) Shell Model. It has been pointed out already that the M1 mode is
excited through the operator

S, = Lff) A 4.7)

(V)

L can be

If we confine ourselves within a major shell and use a HO basis, L
viewed as the generators of the SU (3) groups. The connection with this group

can be made more transparent by observing that

S+l0):—(8n/15)]/2m(w1+u)3)2 |k™=1",n)(k"=1"nlQ, 10), 48)

n

where
Q=r2Y (r )—rzY (r) (4.9)
p 2,1V p n- 2,1V n’" )

Namely, L(:) acts just like the quadrupole operators Qfl) which are also gene-
rators of SU (3).

In the SU(3) model [163] the Hamiltonian is composed of an HO one-body
term H, plus a quadrupole-quadrupole (Q-Q) two-body potential. For a given

major shell this interaction represents the leading term in the expansion of any
long range Wigner interaction. Its use is therefore justified in the LS coupling
limit. This is the case of light nuclei. For these nuclei, isospin is also a good
quantum number. The states must therefore belong to the antisymmetric repre-
sentation of the group SU(3) ® SU__(4). Being the orbital space of a major shell

of degeneracy s, the states with a given symmetry can be classified according
to the irreps of the U(s), U(3) and SO(3). If the spin-isospin components are
characterized by S and 7, the basis states can be written

| W)=l 1 KLM S T), (4.10)
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where [f] and (Ap) label the U(s) and the U(3) representations, respectively,
KLM are the rotational quantum numbers, while S and T label the spin and
isospin wave function. The scissors states are obtained by acting with the scis-

sors operator S_ on the ground state. In 20Ne for instance the M1 state is
|1+T:l):S+l[4] B80)K=0L=J=05=0T=0)=
:|[31](61)K:1L=IS=0T=1>. 4.11)

It is worth noticing that the generator S, turns the completely symmetric (anti-
symmetric) orbital (spin-isospin) part into one of mixed symmetry. In other

nuclei with T#0 like 2*Ne, S, generates more than one scissors state.
A shell-model SU(3) study of M1 excitations in light nuclei of the sd shell,

like 2ONe, 22Ne and 36Ar, and of the pf shell, like 44'l"i, was carried out by Poves
et al. [45—47]. The findings of their calculation were:

i) The integrated M1 strength of all J™=1" states is Z BMI1)=12.43 ui/ in
*Ne and Y B(M1)=3.60 2, in Ar.

ii) In 2°Ne the 75% of the strength is concentrated into the lowest /" =17
state at ® ~ 11 MeV and mostly comes from the convection current.

iii) In *®Ar the strength is mainly shared by four J™ =17 states. The diffe-
rence between the M1 distribution in the well deformed *’Ne and that in the

vibrational *®Ar can be interpreted as a confirm of the peculiarity of the scissors
mode, whose existence is closely related to deformation according to the TRM
and the schematic RPA.

In heavy nuclei the SU(3) symmetry is spoiled by the strong spin-orbit
coupling term. This causes a large separation between the members of the
Nilsson spin-orbit doublets and pushes the state of maximum j down to the
next lower major shell. As a result a major shell is composed of a set of normal
parity orbits and one abnormal parity s.p. state.

One can observe, however, that the states of a given N shell with [—1/2
and (I-2)+1/2 are very close in energy [164—166]. Exploiting the fact that
the normal parity states of a given shell have the same total angular momenta
as the levels of an oscillator shell with N=N —1, one can make the mapping
NoN-1I1-1/2-51+1/2=(1-1D)+1/2,(1-2)+1/2>(U-1)-1/2.

After relabeling the Nilsson states with pseudo-oscillator quantum numbers
[NRAQ], the members of the new spin-orbit doublet with Q=A£1/2 appear
very close in energy. The normal parity states can therefore be classified accor-
ding to a pseudo-SU(3) [167,168]. Such a scheme can work only under the
assumption that i) particles in the abnormal parity single j shell are dominated
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by the pairing interaction so that the dominant configurations arising from this
shell are zero seniority states with ]: =J\:4 =0, 1i) the interaction between nor-
mal and abnormal parity states is weak, iii) proton and neutron spatial wave
functions in the normal parity space are totally symmetrical so that S‘n = §v =0.

Under these assumptions, the nuclear state is of the form [48,49]

_ N A
‘PJM—(‘I‘JM@)‘PM)JM, (4.12)

where the completely antisymmetric normal parity (‘l’j}x,) and abnormal parity

(‘PJ/:‘) states are respectively classified according to the chains

U(Qg) - U(Q,, ) ® UQR) —» SUB) ® SUR2) —» 0(3) ® SUR2) = SU2)

N/2
uQy) - 5, Q3 - 003), (4.13)

where €, and Q, are the dimensions of the two groups and Sp is the compact

symplectic group. Because of the pseudospin s.p. basis and the assumptions
made, the magnetic dipole operator M(M1) is purely orbital

MMI)=1/2g +g)L+1/2g g ML ~L). (4.14)

The theory predicts from one to four J™ = 1" states, the actual number depen-
ding on the leading SU(3) proton and neutron irreps. For completely symmetric

proton and neutron SU(3) representations (Xn, ())(XV, 0), as in 1345m and 238U,

there is only one J " = 1" state. For such a state the M1 transition strength is
given by
i N 5 2h_ A,
BM = =364 - —_— 4.1
(M1,J7=0—>17) =364n(g, gv) (kn+)\'v——l) (4.15)

which has the same structure as in IBM2 expression (eq. 3.29), with }\.T re-

placing N_.

When only one m (or v) irreps is symmetric, as in 156Gd, there are two
Jr=1* states, both collective. In general, as in 164’Dy or 168Er, neither the
SUT[(3) nor the SU, (3) irreps are symmetric. In this case there are four JE=1"

states, three of them corresponding to K™ = 1" bands and the other belonging to
a K™=0" band. Only two of the three J™ =17 states have large M1 strength,
while the state belonging to the K™ = 0* band is moderately collective.
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Aside from the M1 strengths, the authors have calculated also the magnetic
moments W, which fixed the gyromagnetic factors (g =1 and g, =0), as well as

the branching ratio B(M1, 1" — 2% /B(M1, 1" = 0%) which supports the axial
symmetry of the nuclei under study. The calculations underestimate the M1
strength by about a factor two.

5. RPA DESCRIPTIONS

Most of the experimental analyses have been devoted to the search for and
characterization of the mode in heavy nuclei, specially of the rare-earth region.
A main feature of the mode in these nuclei is the fragmentation of the M1
strength. None of the phenomenological or schematic approaches discussed pre-
viously can account for such a property. Full shell-model studies would be
needed. They are not feasible, however, for heavy nuclei. One must therefore
rely on approximations. RPA has been the approximation scheme more exten-
sively adopted.

A. RPA General Formalism. In RPA the nuclear eigenvalue problem is
formally turned into a HO eigenvalue equation [169,170]. To this purpose one
defines the eigenstates of the nuclear Hamiltonian as

1Ay =0 o), (5.1)

where the operators O{ are such that its hermitian conjugates satisfy the equa-
tion

0,10 =0. (5.2)
The latter equation defines the nuclear ground state lO) as the vacuum for the
operators O, and 0{. Such a vacuum is in general a highly correlated state.

Because of the above assumptions the eigenvalue equation can be written in the
HO form

[, 0,110y = 0,0, |0) = (&, - E) 0, 0). (5.3)

RPA consists in solving these equations in a restricted p-h space so that the

operator O}T is of the form

+ A+ A+
NEDY (Y pdaay, = Zyaya ). (5.4)

The states |7\,) are normalized according to
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5,,, =y =0lo0fl0y=lio,, of1loy=(lo,, 011, (5.9

where I) is the p-h vacuum. The last approximate equality expresses the quasi-
boson approximation. In virtue of this approximation, the normalization con-
dition yields

Ak A
D (Y Yo~ z* h ph) 8y - (5.6)
The RPA eigenvalue equations are
A B Y;L Y)\
% = ho 5.7
! B* A z, r |-z, (5.7
where
Ay = laga, (Hoaba 1) = (e, - &) 8 8 + Vo
By yw="(llaa, (H a p,]] D=V - (5.8)

The transition amplitudes for the generic one-body operator W are given by

alwloy=colio,, miloy =<(lto,, wily =

Ax Ax
= Yo W + Zop Wy): (5.9
ph
In QRPA the states have the form
+ X + A
Iy=0l0)=3 (¥ ooy~ Zgoga 110), (5.10)

where (xl((xa) are creation (destruction) quasiparticle operators defined by the

Bogoliubov transformation

T _ T 2 2 _
o, =ua, —va, U, + 0, = 1.

(5.11)

The QRPA eigenvalues are obtained by still solving eqs.(5.7) with matrix
elements

Aaﬁ,ﬁ:(ol[a (H, (x(x' 10)5(Ea+E)8a Bas + Vape

(ol[a [H, oo 1] 1Hoy= v’ (5.12)

aB v~ a[iyé >

where E  is the quasiparticle energy and |0) is now the quasiparticle vacuum.

We omit the explicit expressions of T/OtBYS and ;/0:[3\(5 which are rather involved

and can be found for instance in Ref.169.
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The QRPA transition amplitudes for the generic operator W are given by

alwloy ~ lto,, wiloy =

=Y alﬂ Weg + 2 algwﬁa) (10 + TUg), (5.13)

o> f
where T =+ | or — | according that the operator W is even or odd under time-
reversal.

The eigenvalues and the transition amplitudes can be determined only
numerically using a proper s.p. deformed basis. In the BCS approach only the
coefficients u, and v _-are determined selfconsistently using the pairing force
only, while the s.p. basis is determined independently. In Hartree-Bogoliubov
(H.B.) both s.p. states « and v, and coefficients are to be determined self-

consistently from a unique interaction.

B. RPA Hamiltonians. The first studies of the mode have been carried out
in schematic RPA [34—37]. As already pointed out, their results coincide with
those derived in Sec.1ID for the TRM. We therefore will not report on them. We
only like to mention that a schematic calculation which accounts also for spin-
admixtures was carried out to compute the M3 transition [171]. The results were
close to the ones derived for the TRM [106].

Apart from few calculations using a Skyrme interaction [55] or a Landau-
Migdal force [59,67,68], most of the realistic studies have been carried out
using a separable interaction either in RPA [52—54,56—58,60—66,69—77] or
in Tamm-Dancoff approximation [78,79].

A guide for guessing which multipoles should enter in the interaction is
provided by phenomenological and schematic models. From their analysis we
can infer that an RPA Hamiltonian should contain at least the following terms

H=H,+V, ,+ VQ_Q+ Voo (5.14)

The first term 1s a one-body deformed Hamiltonian

1

H, = 2 ho=Y (T, + V), (5.15)

where T’. 1s the nucleon kinetic term; and Vi, the nucleon deformed potential.

This is either of the Nilsson [78] or Woods~Saxon form (for instance [53,60]).
The p-h energy spectrum produced by the one-body potential is extremely frag-
mented with intermixed orbital and spin excitations [172,173].
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The second piece is the monopole and quadrupole pairing for protons and
neutrons

— (k) p (k)T p (k) kp (KT p (k)
Vo_p= 2, (GOPITPY + G PP, (5.16)
k=p,n
where
PI=Y[d ®al] (5.17)
J « Bl :
o, B
The third is the Q—Q interaction which in the isospin formalism is
T ¥
Vo_o=1/22 1D 1AMD QM +Q (D AT, (5.18)
T=0,1
where
0V gL oW
Q[T—IJ—QHiQH. (5.19)
Finally we have the spin-spin interaction
Vo =1/2 2 14D [6(1) S'(D) + &' (1) o(D)), (5.20)
T=0,1
where
U B (5 R )
O[T—])—%lisH. (521

The importance of the -0 and monopole pairing interactions appears clear
from the microscopic analysis of the TRM or, which amounts to the same thing,
from schematic RPA calculations (Sec. 2D). As shown there, the quadrupole
fields are related closely to proton and neutron angular momenta. They enter
directly in the M1 p-h channel. Monopole pairing qualifies the rotors as super-
fluids and has the effect of quenching the M1 strength without spoiling the
scissors picture. The necessity of the quadrupole pairing can be inferred from
the fact that the L = 2 correlated valence pairs are the building blocks of the
IBM states. The major role played by such a term emerges explicitly from
displaying the structure of the schematic SM wave function {39]

Wy=DyL,=0,L, =0) [0y + DyL,=2L,=2) [ 2, ® 2n),),
¥ =D\, =2L =2 I 2,®2)) (5.22)
The M1 transition is clearly due to the L = 2 correlations among alike valence

nucleons. Monopole and quadrupole pairings have the effect of redistributing
the p-h M1 spectrum by inducing a concentration of scissors excitation around
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3 MeV [172,173]. The role of quadrupole pairing in RPA was studied in Ref.70.
The spin-spin term is dictated by the spin-orbit admixtures in the s.p. states and
by a large number of low energy p-h spin excitations intermixed with the orbital
ones. Because of its repulsive character, the spin-spin interaction has the impor-
tant effect of pushing up in energy the spin excitations, which get separated
from the M1 orbital transitions, consistently with experiments and with the
scissors picture [78].

Although all terms included in eq.(5.14) play a major role, it is not ex-
cluded that other pieces of the nuclear Hamiltonian not present in eq.(5.14) may
affect the M1 channel. It has been stressed for instance that the so-called recoil
term reduces the fragmentation of the two-quasiparticle spectrum, thereby con-
centrating the strength around a main peak consistently with experiments, and
enforces the scissors nature of the transitions [174—176].

C. Spurious Rotational Admixtures. The study of the mode in a realistic
RPA approach has gone through a series of problems [177]. A major one was
the occurrence of spurious rotational admixtures pointed out for the first time in
Ref.60. Since the RPA eigenvalue problem is formulated in the intrinsic system,
the RPA ground state breaks spherical symmetry so that

I, loy=o. (5.23)

This state separates out at zero energy from the other RPA states if the starting
Hamiltonian is rotationally invariant. In this case in fact we have

H-EpJ, loy=1m1_1l0)y=0. (5.24)

Namely, J_, |> is an exact eigenstate with zero eigenvalue. It is therefore auto-

matically orthogonal to the other RPA states.

The Hamiltonian used in almost all calculations however is not rotationally
invariant so that

(k™ =1%1s_ 1oy =o0. (5.25)

Several techniques have been developed to remove the rotational state. The
first one [60] consists in adding a symmetry restoring term to the Hamiltonian

’r_ + T _ 4t
H—H=H=-Y VAJOYK"=1", (5.26)

where the Lagrange multipliers A, are determined by the constraint

<K"=1+,v|J+|0):<0|0v(K"=1+)J+|0>=0. (5.27)
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Since such a condition depends upon the solution, the RPA equations become
nonlinear, so that their final determination requires an iterative procedure.

A second procedure, adopted in TDA [78], consists in using the Schmidt
orthogonalization procedure on the two-quasiparticle states. These have the
form

lot,0) = lalaz)sp ~J.10)ls_| o) (5.28)

The states so constructed are no longer eigenstates of the starting unperturbed
Hamiltonian, so that an iterative procedure is needed also in this case.

A third one, adopted in Ref.72, consists in using Pyatov prescription [178]
of replacing the quadrupole field in the Hamiltonian with

(v _ (™
F1 = [HO, J+ ]. (5.29)
The condition of rotational invariance

(H,J,]1=0 (5.30)

imposes on the fields F the following constraint
1+ kpp <[FI(IJ)T’ pr)]> + knn <[F1(n)" ](")]) =0

L+k (F™, 1)+ ky (FP%, 1P = 0. (5.31)

In other approaches [77] the problem is avoided by using a j-projected s.p. basis
which enables one to formulate the problem directly in the laboratory frame.
Finally the separation can be achieved by using a selfconsistent basis. This has
been done in Ref.61 and partly in Ref.55. The problem can be clearly illustrated
in schematic RPA [179].

D. Selfconsistent Fields and Rotational Admixtures: A Simple Approach.
Let us assume [179] that Z protons and N neutrons move in a spherical HO
mean field with frequency ®, and interact through a Q — Q force. The Hamil-

tonian is therefore of the rotational invariant form
l * *
H=Hy+5y 2 Q7" 0P + 00 ) +
+ 3, Z Q@E" 0 + 0" 00, (5.32)

where
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0,0 = Z HOEDIAS A0} (5.33)
i

1. Selfconsistent Mean Field and Doubly-Stretched Coordinates. In the
Hartree approximation we obtain for the i, proton or neutron deformed mean

field
v = % malr® - B molgly, (5.34)
having defined
X QI+ x,, ()=~ Bmox,
X AQa )+ X, Q)= = B,masy, (5.35)

The Hartree potential can be written in the form of an anisotropic HO potential

1

v ® = =5 me (I) (x + x5 ° )+ l ma: (T) (t) (5.36)
with frequencies
N 2 1
0, (1) = o, l+§8r :“’o[ 1 +§61],
2
w3(1)=m0V1—gat:wo[l—gat], (5.37)

where &_= V45 /(16m) B, The same potential can be put in the «spherical»

form

l - 2 (2
Vv ® = =5 m(x)o(x @’ + xzm + .\'3(” ) (5.38)
if we use double stretched coordinates {180—183] ,?,. =, /o, . These are to

be used in the quadrupole operator entering into the Q — Q Hamiltonian so as
to preserve its spherical character. This transformation indeed ensures that the
Hartree field is not further distorted once the interaction is switched on. We
have in fact

@)= y=0 (5.39)

if we impose the conditions
(1) zt (1) 21 (0 zt '
w, | =W, X =y . _ (5.40)‘

T T ~
where = (n. + 1/2). The explicit form of the Q operators is
i it P
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2
- B (01(.03 - _ &
+1° 2 Qil’ QiZ_ 2Qi2’
Do o
~ 1 \/5_
Qy =7 (@ +200) @, -~ (o] — w)) ~Y,. (5.41)
3w 3w

Since the double stretched quadrupole operator contains also a monopole term,
the new (Q-Q potential is composed of pure quadrupole-quadrupole plus
monopole-quadrupole and monopole-monopole terms.

The Hartree conditions fix the isoscalar coupling constant. Summing the
two eqs.(5.34) and making use of standard formulas for the quadrupole mo-
ments, we obtain, to lowest order in 9, the well-known result [133]

1
XO) =5 X+ %) ¥ (5.42)

The isovector coupling constant (1) can be derived from the symmetry energy
mass formula [133] and results to be related to x(0) by the ratio b=
=—x(1)/x(0) ~ 3.6. According to some analyses [75,184], however, this value
is too large.

A quasiparticle RPA calculation formulated in the AN =0 + 2 space has
been carried out [179]. It is shown that, in virtue of the selfconsistent conditions
(5.35), the schematic quasiparticle RPA gives a vanishing root. This is the
eigenvalue of the redundant rotational mode. Such a state results to be comple-
tely removed from the intrinsic ones. One obtains indeed

(K™ =1L 0) xP(x) = x* + ax® + bx + ¢ = 0, (5.43)
where P(x) = P(mz) =0 is the eigenvalue equation giving the roots of the M1
physical states.

The method presented here to remove the spurious rotational state, though

developed within schematic RPA, has a more general valence. Indeed, the
Hartree conditions (5.35) can be written in the form

et 5 Wt gy -
L4k, (RO 090+ (P, 1) =0,

QL) @F 7@y =
Lk, (F )+ b (PP, 1P =0, (5.44)

where
() (v
F1 = [HO, J+ ]. (5.45)

These are just Pyatov ansatz (5.31) for removing the rotational mode. They are
therefore valid for any one-body potential and any separable Hamiltonian.
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2. Scissors Sum Rule in RPA. It has been pointed out already that for the
scissors mode the energy weighted M1 sum rule is given by eq.(2.66). This
quantity has been computed in phenomenological domains such as IBM2 [79,
86—88], in spherical shell-model [42] and in a schematic approach using a
deformed mean field (no interaction) [81]. Recently the same sum rule has been
computed in RPA [185]. To this purpose a separable interaction which includes
a 0—Q interaction with double stretched coordinates has been adopted. The final
result was

S 1) = —(S () 4 5550 4 g ) g2 2 (5.46)
The first term comes from the Hartree field and is given by
g6 _ 1 _
509=2 X ol i, s,1l0) =
p==1
= 3mayg(B, (@) + B, (20" (5.47)

which is what obtained in Ref. 81, where only a deformed mean field is con-
sidered. The second piece comes from the two-body interaction involving the
monopole operators and is given by

8,7 = = 3may(B, (Q,))+ B, (00" (5.48)

It is, namely, equal and opposite to the one-body contribution (5.47), which
therefore cancels out. It remains therefore only the contribution from the pure
0-0Q potential, apart from modifications induced by the use of stretched coor-
dinates. This is given to lowest order in & by

SSM1) =~ — 4 Xon (2 B VE) T - 2 B VE2) T (5.49)

which is the result obtained in spherical shell model [42]. Stretched coordinates
are responsible for higher order terms which however are not negligible [185].

Experimentally the E2 strength to the lowest 27 state is by orders of magnitude
larger than the strengths of the other transitions. If these are ignored, one gets

) SRR ®.._9 (0)
W OBMT + oPBMNY >~y BI(E) T. (5.50)
It follows that

BM1D® 0B O(E2) T 8. (5.51)
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The sum rule approach presented here gives a quite general theoretical proof of
the quadratic deformation law holding for the M1 strengths of both low-lying
and high energy scissors modes.

E. Realistic RPA Calculations. The earlier RPA calculations produced con-
tradictory results. Some of them had seriously questioned the scissors nature of
the mode [53,54,59]. The reason of these discordances can be easily explained.
The M1 channel is extremely sensitive to s.p. energies, to the kind of interaction
used and, for a given interaction, to the choice of the strengths of the different
separable pieces. As already pointed [177], these early approaches used
different and incomplete Hamiltonians and relied on several untested appro-
ximations. Moreover, the M1 states produced by these calculations were conta-
minated with spurious rotational admixtures. Most of the recent studies are free
of most of these limitations and, consequently, tend to converge to similar
results.

The goal of RPA calculations can be summarized in the following points.
They should i) account for the collective properties of the mode such as the
quadratic deformation dependence of the total M1 strength, ii) put on display
the microscopic structure of the M1 states so as to enable one to decide about
the scissors nature of the mode, iii) reproduce closely the energy distribution of
the M1 strength.

Concerning the first point, calculations carried out by different groups have
reproduced fairly well the deformation law [69,74,77,79]. The crucial role of
pairing correlation in enforcing such a law was particularly stressed. As clearly
illustrated in Fig.3, the agreement with experiments would be almost perfect if
the spin contribution could be suppressed [74,79]. Indeed, such a good agree-
ment is reached in Ref.77, where the spin contribution is effectively suppressed
by the j-projected basis. In this basis, in fact, deformation is accounted for only
perturbatively. The necessity of spin suppression dictated by the experimental
data supports implicitly the scissors picture. Such a picture is tested more expli-
citly by computing the summed overlap

> &t nly )% (5.52)
n
where |wsc) is the scissors state defined as
— 7@ n
Iy y=os @0y + Bs0). (5.53)

The coefficients are determined by imposing its normalization to unit and its
orthogonalization to the rotational state

<wsc 1 Ve )=1 <wsc |J+ I 0)=0. (5.54)
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Fig.3. Deformation dependence of the M1 strength computed in RPA versus experiments.
The dotted line gives the orbital contribution

The summed overlap for the states below 4 MeV is found to be about 40%, a
very large number in view of the fact that, as discussed in Sec.2D, the model
predicts another scissors state at high energy [177]. This latter mode is predic-
ted also by realistic RPA calculations [59,68,72,76]. Its extent of fragmentation
however is not settled. It seems [186] that if the two-quasiparticle space is
truncated up to 30 MeV, the mode is basically not fragmented in agreement
with the schematic picture [177]. It becomes strongly fragmented if the two-
quasiparticle space is enlarged.

As we said, the experimental systematic study of the scissors mode has led
to the other interesting discovery of spin excitations [21,22]. These have been

detected in °*Sm and '*°Gd in the energy range 5 + 11 MeV and have a very
peculiar property. The profile of the spectrum exhibits two distinct bumps.
These transitions have been studied with good success in TDA [187,188] as
well as in RPA [67,68,70,74,77]. There is however no conclusive answer to the
interpretation of the observed two-peak structure. It is indeed not clear whether
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the two peaks correspond to different proton and neutron excitations [70,77,
187,188] or are of isovector and isoscalar nature [74]. The calculations which
support the first picture use a vanishing coupling constant for the isovector
spin-spin interaction. The supporters of the other interpretation use a nonvanish-
ing value. In the first case, deformation plays an important role, in the second
case, it is not relevant. This fact suggests that the issue can be settled by a
systematic analysis which covers both spherical and deformed nuclei.

RPA calculations have been carried out to describe the M1 excitations not
only in rare-earth nuclei, but also in actinides [66,73], in medium-light [71] and
medium nuclei {63]. On the whole, the results are satisfactory. An unsolved
problem remains however. The energy distribution of the M1 strength is not
well reproduced. This suggests that maybe the RPA space should be enlarged
so as to allow for higher configurations.

6. BEYOND RPA: THE QPNM APPROACH

Notably, TDA and RPA calculations are carried out in a p-h or two-quasi-
particle space. On energetic ground, however, higher order configurations can
also contribute to the mode. Many four-quasiparticle excitations fall within or
just above the energy range where the low-lying M1 transitions are observed. In
order to study the effect of these states it is necessary to enlarge the space. This
has been achieved within the QPNM [93]. In this approach [94] the nuclear
system is studied in a space spanned by one plus two RPA phonon states. Most
of the properties of all nonrotational states up to 2.5 MeV in deformed
nuclei, including all EA and MA transitions, have been studied in this scheme
[189—196].

A. Brief Description of the QPNM. The starting QPNM Hamiltonian has
the following structure

H:Hs.p.+Hpair+HM+HS+HT' 6.1)

The first term is the one-body Hamiltonian which includes a deformed axially
symmetric Saxon-Wood potential, the second is a proton (neutron) monopole
pairing interaction, the other three are isoscalar and isovector spin-independent
(Hyp), spin-dependent (HS) and tensor (HT) two-body interactions. All these

pieces are written in separable form. The two-body interaction acts in the p-h as
well as in the particle-particle (p-p) channels. The p-p component of the spin-
independent part yields also a quadrupole pairing term which adds to the
monopole pairing interaction. One may notice that the QPNM Hamiltonian is
considerably more complex than those adopted in RPA.
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The first step of the QPNM is to make use of the Bogoliubov canonical

transformation and express the Hamiltonian in terms of quasiparticle operators
& and oc;c. The symbols go stand for the s.p. asymptotic quantum numbers
g =Nn AT for K=A+1/2 and g0 = Nn A | for K=A—1/2. RPA pho-

nons are then constructed
l no4T Kn
Ok = 2 )) {Wclz(lquKo(qlqz) - (Pq]quK_c(qlqz)}, (6.2)
9,9,

where A;G(qlqz) (Ags(9,9,)) are pairs of creation (annihilation) quasiparticle
operators. Their actual structure can be found in Ref.194. Using the equations
defining Q;ﬂc and Q, it is possible to bring the Hamiltonian (6.1) into the

quasiparticle phonon form

HQPNM = Hq +H + Hm], (6.3

where Hq and Hq are respectively the one-body quasiparticle and RPA phonon
Hamiltonians and Huq is the quasiparticle phonon coupling term. Their expres-

sions can be found in Ref.194.
The transformed Hamiltonian is finally put in diagonal form by using the
variational principle with a trial wave function

T __ T 1 n ¥ +
¥, (0K " = /ZRQ ) Sono iy Qo Qo) ¥y (64
V o Vv.Co 2 2
1122
where
o _ 1/2
s =0 (1+8 ) (6.5)
vlc'lvzo'2 61“1 +02p2, [¢7.4 Vt’ v2

The labels v and v, stand for the multipolarities of the RPA phonons,
v = (Rolp), = (21); and v, = (M), . The eigenvalues E are the roots of the
secular equation

det|| (®, - E)) 81.’ v

v v
z C(VIVZ) lev2 lev2 ” 0 6.6)
o, + (,\)v2 + A(D(vlvz) + A(vlvz) - FE ’ )

v Zv 1

where

I+lC(vl, 2)
1+8 )

v,V
1’2

Cv,v,) = 6.7
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The quantity ©, denotes the RPA energies, vav describes the coupling between
12

one- and two-phonon states, K is a term introduced to take into full account the
Pauli principle in the two-phonon components of the total wave function
(eq.(6.4)). This term induces the energy shift Aw(v,v,) in the eigenvalue equa-

tion. The other energy shift A(v,v,) is due to the coupling with three-phonon

states not included explicitly into the calculation. Its value is approximately
A(v,v,) =~ = 0.2A0(vv,).

B. Calculations and Results. Numerical calculations have been carried out
for a chain of Gd and Dy isotopes. Single particle energies and wave functions
were computed from the deformed axially symmetric Woods—Saxon potential
by solving the eigenvalue problem in a space spanned by quasiparticle plus
quasiparticle RPA phonon states for each odd nucleus. The calculation, whose
details can be found in Refs. 94,194,196,197, is then iterated until a good agree-
ment with the experimental data is reached. Such a procedure fixes the para-
meters of the potential as well as the quadrupole and hexadecapole deformation
parameters Bz and [34. The values of all parameters can be found in Refs.93,197.

The s.p. spectrum was taken from the bottom of the well up to + 5 MeV.

Two-quasiparticle configurations up to an excitation energy of 30 MeV
were taken into account. Monopole and quadrupole pairing were included in the
calculation of the quasiparticle energies and amplitudes. The quadrupole pairing
was extracted from the Al = 20 p-p interaction. This term plays an important

role in determining the properties of the 0" states in deformed nuclei {198]. For
a fixed value of its strength GZO, the strength of the monopole pairing was
determined so as to reproduce the experimental odd-even mass differences.

Blocking effect and the Gallagher-Moszkowski corrections [199] were taken
into account in computing the two-quasiparticle energies.

The separable interaction includes spin dependent and spin independent p-h
multipole terms. The strengths of the spin independent isoscalar p-h interaction
terms )80‘“ were fixed so as to reproduce the lowest experimental energy level
for each K™ # 1 [194—196]. The only parameters left were the isovector
multipole constants and the spin strengths. The first were fixed according to the
relation K}l‘“ =- 1.51(%“1 in substantial agreement with other choices [60]. The
spin isoscalar coupling constant was taken to be ten times smaller than the
isovector one consistently with the estimates obtained in a sum rule description

of spin excitations in heavy spherical nuclei [200]. All parameters used in the
study of the M1 modes can be found in Ref.93. The only parameter left was the
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coupling constant of the isoscalar AL = 21 Q—Q interaction. This was taken to

be slightly larger than a critical value, for which the lowest RPA K™ = 1% state
vanishes. With this value the redundant rotational state results to be practically
orthogonal to the other intrinsic states. Its overlap with each one of them is less
than 0.005.

The basis consists of RPA phonons with A = 2-5 multipolarities. Twenty

At = 21 phonons and ten of the others were included. The K ™ = 1T RPA states
were computed by including p-h and p-p isoscalar and isovector quadrupole and
spin-spin interactions. The M1 strength has been calculated by using a spin
quenching factor of g, =07

The M1 strength distributions obtained in RPA and QPNM for 138Gd is
shown in Fig.4 for illustrative purposes.

From the Figure and from a systematic analysis of the results one may draw
the following general conclusions:

1) In each nucleus the RPA calculation yields a strong peak of the order of

(1 +1.5) p,zv. Because of the coupling with the two-phonon space this peak

splits into two of weaker intensity.

1) The fragmentation induced by the coupling is otherwise modest. It is
appreciable only above 3 MeV. This reflects the fact that the coupling between
one- and two-phonon states 1s weak.

iii) On the whole, the moderate increase in fragmentation improves the
agreement with experiments. This can be improved by slight changes of pro-
perly chosen parameters. As is shown in the Figure, a change of the strength of
the A =21 p-p (pairing) interaction brings sizeable changes on the M]
spectrum.

iv) The nature of the transition is not modified by the coupling with the
two-phonon states. Most of the strongly excited low-lying QPNM states are
dominated by a single RPA phonon. In both RPA and QPNM calculations,
practically all transitions are of orbital nature. A modest spin admixture, how-
ever, affects considerably the intensity of the transition. In general the spin
contribution to the amplitude is additive.

v) The total overlap with the scissors state is 49% in RPA and 45% in
QPNM. Most of the other percentage goes to the high-lying states.

vi) The theoretical summed M1 strength is larger than the one observed
experimentally by a factor ~ 1.2 + 1.4, mainly because of the spin contribution.

vii) As in RPA (see Fig.3), the agreement with experiment would improve
drastically if a mechanism leading to a partial suppression of the spin contri-
bution could be found. '

The QPNM was also adopted to study magnetic excitations® with higher
multipoles, in particular the M3 transitions [191]. It was found that the spin-
octupole isovector interaction plays an important role and shifts the M3 strength
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Fig.4. QPNM and RPA M1 strength distributions in 158Gd. The full part of each peak gives
the orbital strength

up in energy in the region of the isovector magnetic resonances. The M3

strength left is fragmented and mainly of spin nature.
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7. EXCITATIONS
IN ODD-MASS DEFORMED NUCLEI

The question of whether the scissors mode survives as we move from even-
to odd-mass nuclei was posed some time ago in studies carried out within the
interacting Boson-Fermion model (IBFM) [95,96], in schematic RPA [97] and
within the generalized coherent state model (GCSM) [98].

~ After a first negative attempt [99], dipole transitions which seem to have
the properties of the scissors mode have been detected in several odd-mass
deformed nuclei of the rare-earth region [20,100,101]. The first experimental
search for M1 transitions in odd-mass nuclei was carried out in an inelastic
electron scattering on 1654, [99]. No strong M1 transition around 3 MeV was
found in this nucleus.

Subsequent NRF experiments on 163Dy have detected a sizeable M1
strength around 3 MeV which, though more fragmented, fits nicely into the
systematic of the scissors mode in the neighboring even-even Dy isotopes
[100]. A concentration of dipole strength with the same properties has been
found also in other rare-earth nuclei [20] and more recently in 1675, [101]. In
this latter experiment, which covered a wider energy range, 1.9 + 4.3 MeV,
peaks around and above 4 MeV have been detected. The interpretation of these
excitations as a manifestation of a scissor-like oscillation mode found support
in a theoretical analysis carried out within the IBFM [100,101].

Though appealing, such a response cannot be considered conclusive. In
IBFM, in fact, as in all other schematic approaches [97,98], the problem of
fragmentation, of crucial importance in odd nuclei, is overlooked.

The theoretical study of M1 excitations in odd-nuclei is rendered difficult
not only by the extreme fragmentation of some of these spectra, but also by
uncertainties inherent in the experimental analysis which will be discussed later.
In fact, the polarization techniques, adopted for parity assignment in doubly-
even nuclei, are ineffective when applied to odd-mass nuclei. Because of this
limitation, the presence of El excitations intermixed with M1 transitions cannot
be ruled out. The schematic models are clearly inadequate for clarifying the
nature of spectra of such a complexity. One may hope to gain a more clarifying
response from microscopic calculations. A fully microscopic calculation which
accounts also for the coupling with two-phonon states has been carried out
recently [103].

A. With RPA Core States. Equations for describing the nonrotational states
in odd-mass deformed nuclei using RPA core state were derived in [201]. These
states have the form
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\PTO 7:0 —
n (GpKy ) =
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0 n i 0 n T T

=2 Cta _+ >3 p" o Q' ¥, (.1
9y qoco z G‘K1+czu2, c’OK() 9% qlcl Vzcz 0

9 9,9, %%

with the normalization condition

T T K
OEH R @) I+ L g vl =1 (7.2)
0 12
4, g
Here the factor

K v
E%%gh—xw&f (7.3)

9

comes from antisymmetrizing the quasiparticle-phonon components of (7.1).
This has been done for the first time in Ref.202. Using the above wave function
one deduces energies and eigenvectors from the variational principle. They can
be found in Ref.94.

B. With QPNM Core States. As shown in [93,195,203], at energies above
2.5 MeV the coupling with the two-phonon configurations induces fragmen-

tation of the K™ =17 and K™ =07, 1" modes in doubly-even nuclei. Being
interested in the distribution of the magnetic and electric transitions falling in
the energy range (2.5—3.5) MeV, we need to take such a two-phonon coupling
into account also in odd-mass nuclei. The mathematical procedure developed in
[204] is followed. The basic idea is to use the already fragmented phonons in
the wave function of excited states according to the procedure described by
€qs.(4.86)—(4.90) in [94]. To this purpose the following trial wave function is
chosen

T n T T .
+ 0 n T i
¥ %5, K. ") = °CMfal o+ S D" o QO +
n 00 ; 9 95 2 Z 0K oMy, 0Ky 9V, 99,700,
)

4,9, v2°2__
7‘2“2 # Al
T J—
0 n T +
+ o D"__ _o _Q_ b d 7.4
z 2 oK, +GRL oK qMin 405 Ainc 0 (7.4)

4,0, no

with the normalization condition
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3 (o ) 3 @, 21+ £ 5o v+ X (D =1 @)
4, 9% q,n

kzuZ;:XH
The QPNM core states have the quantum numbers {n, A
M1 excitations and {7, A = 3, L =0} or {n, A= 3, u=1}
AK =1 E1 transitions respectively.

=2, 0 =1} for the
for the AK =0 or
Under the assumption
[ Q=0 (7.6)
719} v

which is a valid approximation when the energy of the core states is above
2.5 MeV, a variational calculation yields a secular equation whose rank equals
the number of one-quasiparticle states of the wave function (7.4).

The E1 and M1 transition probabilities were computed by using the total
wave function

y! :’\'2]4-1 n!

nMK 1()7t2 [ MK

1+ Kpy!
S L A H A R R G )

For the reduced El transition probabilities an effective charge

eli(t) = - [IZ—N;Z](Ier). (7.8)

The factor ¥ is a fitting parameter introduced to quench the too large El tran-
sition probabilities obtained with the standard expression (x = 0). For the M1
reduced strength a bare orbital gyromagnetic factor and an effective spin factor

giff: 0.7g£rcc were used. Given the impossibility of distinguishing experimen-

tally between El and M1 transitions in odd-mass nuclei, it is appropriate to
compute the widths, multiplied by the statistical factor g = (2lf+ /@Iy + 1)

These quantities are in fact parity and spin independent and are related to the
reduced strengths according to

gT(ED) = 1.0467(EY[MeV])3B(El) T [2fm’ 107 meV,
ghy(M1) = 11.547(Ey[MeV])3B(M1) T[] meV. (7.9)
A more closely related quantity is represented by the reduced widths
gTrY(E1) = 1.0467B(E1) T [*fm?107°) meV (MeV)~>,

grydM1) = 11.547B(M1) T (03] meV (MeV)™. (7.10)
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The phonons of different multipolarity were calculated using isoscalar and iso-
vector interactions embodying the appropriate multipole fields. The phonon
basis consists of ten (i = 1,2,... 10) phonons of a given multipolarity: Au = 20,
22, 32, 33, 43, 44, 54 and 55. Twenty-five (i =1, 2,..., 25) phonons of
AL =21 and Ap = 30 and 31 multipolarities were used. The same phonon basis
was used for doubly-even and odd-mass nuclei.

Numerical calculations were carried out for 157Gd, 159Tb, l(’lDy, }63Dy and

'87Er. The core states entering into the quasiparticle-phonon basis are respec-

tively the states of 156Gd, 158Gd, 16ODy, 162Dy and '®CFr.
1. M1 Transitions. In going from even- to odd-nuclei the fragmentation of
the strength is dramatically enhanced. This phenomenon is illustrated in Fig.5

showing the M1 spectra computed within RPA and QPNM for '®’Dy and

163Dy. The spectrum of the odd-mass nucleus is much richer than in the case of

the doubly-even one. A further increase in fragmentation is observed when the
M1 core states are computed in QPNM rather than RPA.

That the strength should get strongly fragmented in going from doubly-
even to odd-mass nuclei was largely expected. On the one hand, the quasipar-
ticle ® (kﬁ)i components couple to several one-quasiparticle configurations. As
a rule, the fragmentation so induced is rather weak due to the small number of
one-quasiparticle states. On the other hand, the strength collected by each M1
state in a doubly-even nucleus is distributed among four M1 levels in the
neighboring odd-mass nucleus. In this latter system, in fact, the M1 operator can
couple the {K,, [, = K,} ground state to a multiplet of four excited states
with quantum numbers {(KO -1, 10 -1, (K() -1, 10), (K() -1, l() + 1)} and
{Ky+ 1.1y + 1}

Let us study this problem more quantitatively by analyzing the results
obtained for 103
szy at an excitation energy E = 2.90 MeV and estimated to be B(MI) T~

~ 0'90“/2V is distributed in 163Dy almost equally among the Kf7r =3/2" and

K;t =7/2" levels, both having an intrinsic excitation energy 2.89 MeV. The

Dy. The strength of the strongest M1 transition occurring in

two K/7r states, indeed, collect respectively

T _ T é T o_ é T 2
XB(Ml)[K’. =1T=3 ->K'=0 L j_o.45uN,
IK
’ 57 7"
T S n_yn_1 3 2
B(Ml)[Ki =1T=3 K =1"=1 )_0.47;1N.
The Kf" =3 /2" strength, however, is further distributed among the If7t =3/27,

5/27, 7/2 states with strengths B(M1) ~ 0.30, 0.13, 0.02 HIZV’ respectively.
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Fig.5. QPNM and RPA M1 strength distributions in '6?Dy and 193Dy. Full and dotted lines

refer respectively to transitions to Kf= 3/2 and Kf =7 /2 final states

The 1" = 3 /27 state gets about 2/3 of the strength. That the

f

1T = Kjfr states take

2/3 of the K" strength is a general feature to be ascribed to angular momentum

!
coupling.
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The states collecting appreciable amounts of M1 strength are dominated by
a single quasiparticle-phonon configuration obtained by coupling the valence
quasiparticle to the (Al) = 21 phonon. The effect of the substantial purity of the
M1 states is illustrated in the lower part of Fig.5 showing the M1 strength
distributions when only the (A1) are included in the calculation. This is what is
done in schematic approaches [97]. The spectrum so obtained is quite similar to
the corresponding one deduced from including all core states.

The spectra of the reduced widths of 163Dy, computed in QPNM, are com-
pared with the experimental data in Fig.6. The following points are noteworthy:
i) The computed M1 transitions fall in the region of the observed peaks in all
nuclei. The discrepancies in the energy distribution with respect to experiments
are of the same order as in the nearby doubly-even nuclei. ii) The

K™ > K™+ 1 M1 transitions are fewer but in general much stronger than in
163Dy, the M1 strength of the

neighboring doubly-even nuclei is equally shared by the two Kf" states, but for

K/t = K,." — 1 the strength is further distributed mostly among two out of the

three Jf components of the Kf" multiplet. iii) The magnitude of the strongest

M1 peaks is about twice the intensity of the corresponding observed transitions.
Also the summed reduced widths are in general about twice the experimental
values.

the K™ > K™~ 1 case. As already said for

2. El Transitions. In odd-mass nuclei the fragmentation mechanism of the
AK =t 1 E1 strength is obviously the same as for the M1 transitions. Exactly
as in the case of the M1 transitions, the AK = I' E1 strength is also equally

. T _ T n_pn : T_ el .
shared by the Kf = Kf 1 and Kf Kf + | levels and the If Kf states

take 2/3 of the Kf1t strength. However, as in doubly-even nuclei [193], the

AK =1 E1 strength represents a small fraction of the total transition probability.
This is mostly concentrated in the AK = O transitions. These transitions are in
general more than 5 times stronger. As in the M1 case, the El states have a
dominant configuration embodying the (Ail) phonon.

Figure 6 shows that the M1 widths are much larger than the corresponding
AK =1 E1 widths. Indeed, as in the doubly-even nuclei, the E1 strength is
concentrated almost entirely in the AK =0 transitions. These can be quite
strong. The strongest peaks are larger than the magnetic transitions and more
than 3 times the experimental widths. These strong E1 transitions correspond to
strong E1 excitations of collective octupole core states. However, no strong El
transitions above 2 MeV have been observed in the nearby doubly-even nuclei.
One could reduce the strength of these transitions by using a smaller effective
charge, as done in Ref. 205. This new effective charge, however, would quench
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also the low-lying E1 transitions thereby spoiling the agreement with expe-
riments. This is an unsolved problem yet, which requires detailed specific
studies.

We can conclude that the occurrence of E1 transitions of appreciable
strength in the observation region cannot be ruled out but cannot be assessed
with certainty due to the discrepancies between theory and experiments found
in the doubly-even nuclei for these transitions. On the other hand, the M1 and
E1 transitions are predicted to carry different AK quantum numbers. More refi-
ned experiments may hopefully exploit this fact in order to settle upon the exact
nature of the observed widths. In any case, the problem of reproducing the

extreme fragmentation of the M1 strength, specially in some nuclei like 157Gd,
remains unsolved.

8. CONCLUSIONS

We have seen that the collective features of the low-lying M1 excitations,
chiefly the quadratic deformation law, are described fairly well in several
phenomenological approaches. All these models have been shown to be
mutually correlated. They can actually be put within a unified context having
the TRM as the common root. Each of them can be indeed turned into TRM-
like models when the variables which describe the shapes oscillations of the
nuclei are frozen. The differences among them are to be attached mainly to the
different microscopic structure underlying each model. While in fact the IBM
boson operators are to be considered as highly correlated valence fermion pairs,
in the other two interacting boson models under investigations (NPD and
GCSM) the bosons should be viewed, at least in lowest order, as highly cor-
related p-h fermion states. The microscopic counterpart of IBM is therefore the
standard shell model, while RPA is the microscopic scheme underlying the
other Boson models. We have shown that in their schematic version both shell-
model and RPA are intimately related to the TRM and actually provide the tools
for computing the TRM quantities in a realistic way.

In going from schematic to realistic RPA descriptions the correspondence
with the TRM as well as with the other phenomenological models is far from
appearing obvious. Because of the extreme fragmentation of the two-quasipar-
ticle spectrum the naive HO picture with one single degenerate p-h level seems
therefore quite far from reality. It is rewarding that because of the spin-spin
interaction which pushes the spin excitations up in energy, the quadrupole
pairing which rearranges the M1 strength distribution among different p-h levels
and the recoil term, the fragmentation is drastically reduced.

The many RPA calculations carried out since the discovery of the mode
have shown that such a mode is extremely sensitive to the choice of the s.p.
energy and of the two-body interaction as well as to the approximations invol-
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ved. Because of this extreme sensitivity, the calculations had to meet certain
requirements. A major one was the removal of the redundant rotational mode
from the physical M1 states. This problem has been clearly illustrated here and
a simple prescription for its solution has been given. All recent RPA calcu-
lations are free from this problem and tend toward converging results. Indeed,
all of them agree in interpreting the low-lying M1 peaks around 3 MeV as the
signature of a scissors like rotational oscillation between proton and neutron
deformed fluids. The simple TRM picture appears therefore valid. Only one
should think of a rotational oscillation between two superfluids rather than two
rigid bodies or two normal irrotational fluids.

The only point which is still under debate is the collective character of the
mode. We observe in this respect that the collectivity of this M1 excitation
should not be «measured» in terms of s.p. units as for instance in the case of
the E1 or E2 giant resonances. The mode under study here, arises in fact from
deformation and disappears as deformation is turned off. This emerges nicely
from the & dependence of the M1 strength. A more sensitive test of the collec-
tivity of the mode is provided by the M1 energy weighted sum rule. Recent
calculations [185] show that the observed strength is short from exhausting such
a sum rule. A strong indication in this respect is further provided by the fact
that the excitation is observed throughout all deformed (light and heavy) nuclei
and its strength goes smoothly with deformation.

The RPA descriptions are not able to reproduce faithfully the M1 energy
spectrum. A progress in this direction has been achieved by going beyond RPA.
This has been done by accounting for the coupling with the two-phonon RPA
state within the QPNM. Even this extension seems not sufficient. It is to be
pointed out however that the calculations carried out in this context are para-
meter free calculations. Minor adjustments may improve the agreement with
experiments considerably.

One of the most exciting recent discoveries was the detection of M1 excita-
tions exhibiting the properties of the scissors mode in odd-mass nuclei but with
a much more fragmented strength. The only microscopic thorough description
of these spectra has been carried out recently in QPNM. Many aspects have
been clarified. Many problems remain unsettled. The calculation in fact indica-
tes that the occurrence of E1 excitations intermixed with M1 transitions cannot
be ruled out. It also indicates that the detected total strength is quite smaller
than that predicted by the calculations. Moreover, the extreme fragmentation
observed in some nuclei remains an unexplained puzzle.

Let us now move to future perspectives. It is of great interest the possible
occurrence of a high energy mode of scissors nature. The sharing of the M1
strength among a low and a high energy modes is reminiscent of the isoscalar
E2 strength known to be concentrated in a high and a low energy modes. The
detection of such a mode is related to the discovery of the E2 isovector giant
resonance in deformed nuclei.
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Strongly excited M1 excitations of scissors nature both at low and high
energy are predicted also for superdeformed nuclei. Whether these modes can
be observed directly is an open question.

The perspective of finding the mode in y-soft nuclei is becoming a reality.
Pursuing in the search for M3 transitions would help to complete the picture.

We like to conclude by saying that the occurrence of orbital M1 excitations
has uncovered a beautiful example of dynamical symmetry in nuclei and has
provided a unique and sensitive test ground for many phenomenological models
as well as for microscopic theories. From its extensive study we have tested
effective interactions and correlations among nucleons in nuclei and we have
enriched considerably our knowledge on the low energy nuclear properties.
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