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A review of the problem whether the violation of the OZI rule in nucleon-antinucleon annihilation
at rest can be explained in the framework of conventional mechanisms is given in detail. While the
vector dominance model and the rescattering model qualitatively describe the OZI rule violation in
the reactions p̄p → φγ and p̄p → φπ0 for the annihilation from the S state of protonium atom, the
latter model cannot explain the fact that the annihilation into φπ0 from the P state is not seen and
the OZI rule in the reaction p̄p→ f ′2π0 is not satisˇed. We also discuss what information about the
OZI rule violation can be extracted from the reaction p̄p→ φπ+π− and decays of the J/Ψ meson.

�·µ¢µ¤¨É¸Ö ¤¥É ²Ó´µ¥ µ¡¸Ê¦¤¥´¨¥ ¶·µ¡²¥³Ò, ³µ¦¥É ²¨ ´ ·ÊÏ¥´¨¥ ¶· ¢¨²  �–ˆ ¢ ´Ê±²µ´-
 ´É¨´Ê±²µ´´µ°  ´´¨£¨²ÖÍ¨¨ ¢ ¶µ±µ¥ ¡ÒÉÓ µ¡ÑÖ¸´¥´µ ¢ · ³± Ì µ¡ÒÎ´ÒÌ ³¥Ì ´¨§³µ¢. ‚ Éµ ¢·¥³Ö
± ± ³µ¤¥²Ó ¢¥±Éµ·´µ° ¤µ³¨´ ´É´µ¸É¨ ¨ ³µ¤¥²Ó ¶¥·¥· ¸¸¥Ö´¨Ö ± Î¥¸É¢¥´´µ µ¡ÑÖ¸´ÖÕÉ ´ ·ÊÏ¥-
´¨¥ ¶· ¢¨²  �–ˆ ¢ ·¥ ±Í¨ÖÌ p̄p → φγ ¨ p̄p → φπ0 ¤²Ö  ´´¨£¨²ÖÍ¨¨ ¨§ S-¸µ¸ÉµÖ´¨Ö  Éµ³ 
¶·µÉµ´¨Ö, ³µ¤¥²Ó ¶¥·¥· ¸¸¥Ö´¨Ö ´¥ ³µ¦¥É µ¡ÑÖ¸´¨ÉÓ Éµ, ÎÉµ  ´´¨£¨²ÖÍ¨Ö ¢ φπ0 ¨§ P -¸µ¸ÉµÖ´¨Ö
´¥ ´ ¡²Õ¤ ² ¸Ó ¨ ¶· ¢¨²µ �–ˆ ¢ ·¥ ±Í¨¨ p̄p → f ′2π

0 ´¥ ¢Ò¶µ²´Ö¥É¸Ö. �¡¸Ê¦¤ ¥É¸Ö É ±¦¥,
± ± Ö ¨´Ëµ·³ Í¨Ö µ ´ ·ÊÏ¥´¨¨ ¶· ¢¨²  �–ˆ ³µ¦¥É ¡ÒÉÓ ¨§¢²¥Î¥´  ¨§ ·¥ ±Í¨¨ p̄p→ φπ+π−
¨ · ¸¶ ¤µ¢ J/Ψ ³¥§µ´ .

1. INTRODUCTION

The OkuboÄZweigÄIizuka (OZI) rule [1] was proposed originally for the
explanation of several unusual phenomena, in particular of the fact that the width
of the decay φ → 2π is much smaller than the width of the decay φ → 2K
although the phase space in the ˇrst case is much greater and the process φ→ 2π
is not forbidden by any conservation law. As argued by Lipkin [2], a more
relevant name of this rule is AÄZ (AleksanderÄZweig).

In its present formulation the OZI rule says that processes described by
disconnected quark diagrams (i.e., diagrams which can be connected by only
gluon lines) are suppressed.
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There exist many papers in which the decays of the J/Ψ and Υ mesons are
considered in the framework of the three-gluon mechanism and the agreement
between theory and experiment is rather impressive (see, e.g., Ref. [3]). The
success of these calculations was treated by some physicists as the ˇrst proof of
asymptotic freedom in QCD. On the other hand, attempts to substantiate the OZI
rule in the framework of QCD encounter serious difˇculties (see, e.g., Refs. [4Ä7]
and references therein). In particular, the problem whether the OZI rule applies
to baryons is not clear [8Ä12], but anyway the usual point of view is that any
substantial violation of this rule in some process is a signal that some unusual
physics plays an important role in this process.

The recent experimental data on the p̄p and p̄n annihilation at rest obtained
by the ASTERIX, CRYSTAL BARREL and OBELIX groups [13Ä16] at LEAR,
have shown that the branching ratios of the reactions p̄p → φγ, p̄p → φπ0,
and p̄n→ φπ− are much bigger than expected from naive OZI rule estimations.
Indeed, let θ be the φ−ω mixing angle such that the ω and φ states are constructed
from the u, d and s quarks as follows:

ω =
1√
6
(
√
2cos θ + sin θ)(uū+ dd̄) +

1√
3
(cos θ −

√
2sin θ)ss̄,

φ =
1√
6
(cos θ −

√
2sin θ)(uū+ dd̄)− 1√

3
(
√
2cos θ + sin θ)ss̄ (1)

Then if θ takes the values (36 ÷ 39)0 (see, for example, Ref. [17]), the φ/ω
production ratio takes the values

| (cos θ −
√
2sin θ)

(
√
2cos θ + sin θ)

|2 = (0.2÷ 4.2) · 10−3

while in practice [13Ä16]

Br(p̄p→ φγ)/Br(p̄p→ ωγ) = 0.243± 0.086, (2)

Br(p̄p→ φπ0)/Br(p̄p→ ωπ0) = 0.096± 0.015, (3)

Br(p̄n→ φπ−)/Br(p̄n→ ωπ−) = 0.083± 0.025. (4)

The ratio of the corresponding phase volumes is 0.853 for the reaction (2) and
0.849 for the reactions (3) and (4). Therefore the discrepancy between theory and
experiment is very large.

The extent of the violation of the OZI rule in other reactions of the nucleon-
antinucleon annihilation is given, for example, in Ref. [18].

A rather simple explanation of the OZI rule violation in the reaction (2)
has been proposed by Locher, Lu and Zou [19]; for completeness we describe
this explanation in Sec.2. However the main purpose of the present paper is to
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review the state of the art in explaining the data (3) and (4) in the framework of
the so-called rescattering model considered by Locher, Lu and Zou [19], Locher
and Lu [20] and Buzatu and Lev [21, 22]. The main question here is whether
the explanation given in those references is reliable (and then there is no reason
to think that something unusual happens in the reactions (3) and (4)) or this
explanation is clearly insufˇcient (leaving the problem of the OZI rule violation
open). The discussion of some aspects of this problem is given in Ref. [23].

In the present paper we do not consider explanations of the OZI rule violation
in other models, for example, in models in which the OZI rule violation is the
instanton effect [24], in the model of hidden strangeness [25,26], in the Skyrme
model [27] and others (a review of different explanations can be also found in
Ref. [28]). All such models suggest from the beginning that the explanation of
the OZI rule violation in the reactions (3) and (4) can be obtained only in the
framework of unconventional mechanisms.

As follows from the isotopic invariance, the reactions p̄p → φπ0 and p̄n →
φπ− can be easily related to each other (see, for example, Refs. [21, 29] and
Sec.9).

In Secs.3 and 4 we show that there exist many options in choosing the
form of the amplitude in the rescattering model, in particular we mention two
essentially different choices called Model A and Model B. Neither of these models
have theoretical advantages in comparison with the other (or perhaps Model B is
substantiated in greater extent), but, as shown in Sec.5, a fairly well agreement
with the data can be obtained in Model A while, as shown in Sec.6, Model B
gives the values much below the data.

However the success of Model A immediately poses the problem why the
reaction p̄p→ φπ0 is not seen when the proton and the antiproton annihilate from
the P state of the hydrogen like p̄p atom. This problem is considered in Sec.7.

As shown in Sec.8, the important process for understanding the OZI rule
violation is p̄p → f ′2π

0 since the rescattering contribution to this process is
negligible.

The conclusion about the OZI rule violation in the process (4) follows from
the data of the OBELIX Collaboration [15,16] on the reaction p̄d→ pφπ− when
the proton can be considered as a spectator, i.e., its momentum p is such that
|p| < 200MeV/c. However the same extent of the OZI rule violation has been
observed in the case when |p| ∈ (400, 800)MeV/c. Therefore the problem arises
whether the reason of the OZI rule violation in this case is the same (i.e., the OZI
rule violation in the reaction (4)), or some nuclear effects are important. This
problem is considered in Sec.9.

In Sec.10 we consider the problem what can be learned about the rescatter-
ing contribution taking into account the existing data about some decays of the
J/Ψ meson. Finally, as shown in Sec.11, an analog of Model A in the reaction
p̄p → φπ+π− is inconsistent since the corresponding amplitude does not sat-
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Fig. 1. Vector dominance model for the reaction p̄p→ φγ

isfy the unitarity relation. Therefore this reaction poses additional problems for
understanding the OZI rule violation.

2. REACTION p̄p→ φγ IN THE VECTOR DOMINANCE MODEL

We describe in this section the explanation of the OZI rule violation in the
reaction p̄p→ φγ proposed in Ref. [19]

Consider ˇrst the reaction p̄p → φρ. The amplitude of this reaction can be
written in the form

Ap̄p→φρ = F (k
2
1 = m

2
ρ, ...)eµνρσe

∗µ
1 e

∗ν
2 k

ρ
1k
σ
2 , (5)

where µ, ν, ρ, σ = 0, 1, 2, 3, eµνρσ is the absolutely antisymmetric tensor (e0123 =
−1), e1 and k1 are the polarization vector and the four-momentum of the ρ meson,
respectively, e2 and k2 are the corresponding quantities for the φ meson, a sum
over repeated indices is assumed and mρ is the ρ meson mass. The function F in
this expression depends on the polarizations of the proton and antiproton and on
the masses of all particles in question but we assume that the proton, antiproton
and φ meson are always on-shell, the proton and antiproton are at rest and only
the dependence of F on k1 is explicitly indicated.

In the framework of the vector dominance model the amplitude of the reaction
p̄p → φγ is described by the diagrams shown in Fig.1. By analogy with Eq.(5),
the amplitude of the reaction corresponding to the ρ meson in the intermediate
state can be written in the form

Ap̄p→φγ = F (k
2
1 = 0, ...)cργeµνρσe

∗µ
3 e

∗ν
2 k

ρ
3k
σ
2 , (6)

where e3 and k3 are the polarization vector and the four-momentum of the photon,
respectively, and cργ is a constant describing the strength of the ρ→ γ transition.

Let us introduce the quantity

g(k21) =
∑
|F (k21 , ...)|2 , (7)

where
∑

implies that we take the average value over all initial polarizations and
sum over ˇnal ones. Following Ref. [19] we also express cργ in terms of the
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universal constant fρ [30]: cργ = em2ρ/fρ. Then it follows from Eqs. (5-7) that
the ratio of the branching ratios for the reactions p̄p→ φγ and p̄p→ φρ is given
by

BR(p̄p→ φγ)

BR(p̄p→ φρ)
= [

g(0)

g(m2ρ)
]
e2

f2ρ
(
kγφ

kρφ
)3 , (8)

where kγφ is the c.m. frame momentum in the γφ system and kρφ is understood
analogously.

The authors of Ref. [19] do not take into account the dependence of g on
k21 , so they assume that g is some constant. Then, taking into account that
e2/4π = 1/137, f2ρ/4π = 2.5 and BR(p̄p→ φρ) = (3.4± 1.0) · 10−4 according
to Ref. [14], the result of Ref. [19] is

BR(p̄p→ φγ) = 1.27 · 10−5 (9)

in excellent agreement with the experimental result 1.0 · 10−5 in Ref. [14]. The
authors of Ref. [19] also discuss the contribution of the ω meson but this contri-
bution is not very important.

It is interesting to note that in the model described above the unexpectedly
large value of BR(p̄p → φγ) is a consequence of the purely kinematical factor
(kγφ/kρφ)

3 which is equal to 13.1. Although the success of the simple model
proposed in Ref. [19] is rather impressive, it is necessary to take into account that
the additional assumption used in deriving the result is that the dependence of the
function g on the off-shellness of the ρ meson is not important. It is clear that
at the present stage of the theory of strong interactions we cannot verify whether
this assumption is correct.

3. THE PROBLEM OF CALCULATING THE PROCESS p̄p→ φπ0 WITH
K∗K INTERMEDIATE STATES

As it has been pointed out by several authors (see, e.g., Refs. [31Ä33]) a
large amplitude of some OZI-forbidden transitions may be a consequence of
the possibility that they can go via two-step processes in which each individual
transition is OZI-allowed.

As an example, we ˇrst consider the contribution of K∗K intermediate states
to the reaction p̄p → φπ0. There exist four diagrams shown in Fig.2 and, as
easily follows from the isotopic invariance, the contributions of these diagrams
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Fig. 2.

in the channel with the isospin I = 1 and spin S = 1 are equal to each other.
To calculate these contributions we have to know the amplitudes of the reactions
p̄p→ K∗+K−, K∗+ → π0K+ and K+K− → φ entering into the diagram a of
Fig.2. We use p1 and p2 to denote the four-momenta of the initial proton and
antiproton, respectively, k1 and k2 to denote the four-momenta of the ˇnal π0

and φ mesons, respectively, k′1, k
′
2, and k′3 to denote the four-momenta of the

K∗+, K−, and K+ mesons, respectively, and e and e′ to denote the polarization
vectors of the φ and K∗+ mesons, respectively. The initial proton is described by
the Dirac spinor u(p1) and the initial antiproton is described by the Dirac spinor
with the negative energy v(p2). We also use m, mπ, mK , m∗ and mφ to denote
the proton mass and the masses of the corresponding mesons.

Consider the amplitude p̄p→ K∗+K−. If all particles are on-shell, the only
amplitude in the channel with I = S = 1, which survives when the momenta p1
and p2 are small, is

M
(11)
p̄p→K∗+K− = f

(11)
p̄p→K∗+K− [v̄(p2)γ

µu(p1)]eµνρσe
′∗νk

′ρ
1 k

′σ
2 , (10)

where fp̄p→K∗+K− is some constant and γµ is the Dirac γ matrix. The total cross
section corresponding to the amplitude (10) can be calculated in a standard way
and the result is

σ
(11)
p̄p→K∗+K− = |f

(11)
p̄p→K∗+K− |

2 (3m
2 + 2p2)k

′3

12πp
, (11)

where p is the proton momentum in the c.m. frame of the p̄p system, p = |p|
and k′ is the magnitude of the c.m. frame momentum for the K∗+K− system.
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By analogy with Eqs. (10) and (11), the amplitude of the reaction p̄p→ φπ0

has the form

Mp̄p→φπ0 = fp̄p→φπ0 [v̄(p2)γ
µu(p1)]eµνρσe

∗νkρ1k
σ
2 , (12)

where fp̄p→φπ0 is some constant, and the total cross section corresponding to the
amplitude (12) has the form

σp̄p→φπ0 = |fp̄p→φπ0 |2
(3m2 + 2p2)k3

12πp
, (13)

where k is the magnitude of the c.m. frame momentum for the φπ0 system.
The amplitude of the reaction K∗+ → π0K+ has the form

MK∗+→π0K+ = fK∗+→π0K+(k1 − k′3)µe
′µ (14)

and a standard calculation shows that the width of the decay is equal to

ΓK∗+→π0K+ =
|fK∗+→π0K+ |2k3πK

6πm2∗
, (15)

where kπK is the magnitude of c.m. frame momentum in the πK system. If Γ∗
is the total width of K∗+, then it is easy to show that Γ∗ = 3ΓK∗+→π0K+ .

By analogy with Eqs. (14) and (15), the amplitude of the reaction K+K− →
φ is given by

MK+K−→φ = fK+K−→φ(k
′
2µ − k′3µ)eµ∗, (16)

and the width of the decay φ→ K+K− is equal to

Γφ→K+K− =
|fK+K−→φ|2k3KK̄

6πm2φ
, (17)

where kKK̄ is the magnitude of the c.m. frame momentum in the KK̄ system.
Since φ decays into KK̄ in 87% cases it is easy to show that 2Γφ→K+K− =
0.87Γφ, where Γφ is the total width of φ.

Taking into account Eqs. (10), (14), (16) and the fact that all the four
diagrams in Fig.2 give equal contributions, we can write for the amplitude of the
reaction p̄p→ φπ0

Mp̄p→φπ0 = 8ı[v̄(p2)γ
µu(p1)]eµνρσe

∗λkν1 ×

×
∫
f
(11)
p̄p→K∗+K−fK∗+→π0K+fK+K−→φk

′ρ
1 k

′σ
2 (k

′λ
2 − k

′λ
3 ) ×

× δ(4)(k′1 − k1 − k′3)δ(4)(k2 − k′2 − k′3)
(2π)4[k

′2
1 − (m∗ − ıΓ∗/2)2](k

′2
2 −m2K + ı0)

×

× d4k′1d
4k′2d

4k′3
k
′2
3 −m2K + ı0

. (18)
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Fig. 3.

Let us note that the term with k
′ν
1 k

′β
1 in the propagator Πνβ = (k

′ν
1 k

′β
1 /m

2
∗−gνβ)

of theK∗ meson (gνβ is the metric tensor in Minkowski space) does not contribute

to the amplitude (18) since eµνρσk
′ν
1 k

′ρ
1 = 0 and for the same reason kν1 −k

′ν
3 can

be replaced by 2kν1 . We have also taken into account that the K∗ meson is the
BreitÄWigner resonance and therefore the propagator of the K∗ meson depends
on the complex mass (m∗ − ıΓ∗/2).

In the general case the quantities fp̄p→K∗+K− , fK∗+→π0K+ and fK+K−→φ
entering into Eq. (18) differ from the corresponding quantities in Eqs. (10), (14)
and (16) since the K∗+, K− and K+ mesons are off-shell. One might assume
that the dependence of these quantities on the off-shell form factors is not strong
and neglect this dependence. However the integral in Eq. (18) strongly diverges
in this case. Therefore we should either introduce the form factors ªby handsª or
try to estimate the amplitude (18) with the help of additional assumptions.

It is important to note that the covariant Feynman approach does not fully
agree with our physical intuition that the process p̄p → φπ0 can be described
as p̄p → (K∗K̄ + K̄∗K) → KK̄π → φπ0. As a rule, one Feynman diagram
contains the contribution of a few diagrams of the ªold fashionedª time ordered
perturbation theory. In particular, the three vertices in the Feynman diagram in
Fig.2 are not necessarily time ordered as we assume. For example, the Feynman
diagram in Fig.3 contains the contributions of the diagrams a and b of the time
ordered perturbation theory. The diagram a indeed describes the process p̄p →
φπ0 as p̄p → (K∗K̄ + K̄∗K) → KK̄π0 → φπ0 while the diagram b describes
the nonphysical process p̄p→ K∗K̄ → K∗K̄φ→ φπ0 since the virtual K̄ meson
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Fig. 4.

in this diagram decays into K̄ and φ and then the interaction between K∗ and K̄
leads to the production of π0.

The difˇculties with the interpretation of Feynman diagrams and with the
divergence in Eq. (18) can be partly overcome if we assume that the main
contribution to the integral in Eq. (18) is given by the residues in the poles of
the propagators of some intermediate particles. According to our interpretation
of the process p̄p → φπ0 we choose two possibilities which we call Model
A and Model B. In Model A we drop Γ∗ in Eq. (18) and replace [(k

′2
1 −

m2∗+ ı0)(k
′2
2 −m2K + ı0)]−1 by (−2ıπ)2θ(k′01 )θ(k

′0
2 )δ(k

′2
1 −m2∗)δ(k

′2
2 −m2K)/2.

Analogously, in Model B we replace [(k
′2
2 −m2K + ı0)(k

′2
3 − m2K + ı0)]−1 by

(−2ıπ)2θ(k′02 )θ(k
′0
3 )δ(k

′2
2 −m2K)δ(k

′2
3 −m2K)/2. Schematically Model A can be

described by Fig.4a, i.e., K∗ and K̄ in the diagram of Fig.4a are on-mass shell.
Analogously, Model B can be described by Fig.4b, i.e., K̄ and K in the diagram
of Fig.4b are on-mass shell.

One might think that from the theoretical point of view Model B seems
more substantiated than Model A. Indeed, as shown in Refs. [34,35], the on-shell
approximation is connected with the unitarity relation for the S matrix but this
relation must be formulated only in terms of stable particles. In particular, KK̄π0

is an admissible intermediate state while K∗K̄ is not. In addition, the vertices
K∗+ → π0K+ and K+K− → φ entering into the amplitude K∗K̄ → φπ0 in
Model A are not necessarily time ordered and therefore this amplitude contains
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Fig. 5.

the contribution of not only the process K∗K̄ → KK̄π0 → φπ0 but also the
contribution of the nonphysical process K∗K̄ → K∗K̄φ → φπ0. However,
as shown in Refs. [20, 21], the numerical results in Model A are in qualitative
agreement with the experimental data. For this reason we investigate below the
consequences of both Model A and Model B.

4. THE PROBLEM OF CALCULATING THE PROCESS p̄p→ φπ0 WITH
ρ+ρ− INTERMEDIATE STATES

.
As shown in Refs. [19, 20], the ρ+ρ− intermediate states may essentially

contribute to the process p̄p → φπ0. There exist two diagrams describing the
process p̄p → φπ0 via ρ+ρ−: p̄p → ρ+ρ− → π+π0ρ− → φπ0 and p̄p → ρ+ρ−

→ ρ+π−π0 → φπ0 (see Fig.5) and the contributions of these diagrams are equal
to each other if I = S = 1. To ˇnd these contributions we need the expressions
deˇning the amplitudes p̄p→ ρ+ρ−, ρ+ → π+π0 and ρ−π+ → φ.

When I = S = 1, a possible choice of the amplitude, which survives in the
limit, when p1 and p2 are small, is

M
(11)
p̄p→ρ+ρ− = f

(11)
p̄p→ρ+ρ− [v̄(p2)γ

µu(p1)][e
′∗
1µ(Pe

′∗
2 )− e

′∗
2µ(Pe

′∗
1 )], (19)

where e′i (i = 1, 2) are the polarization four-vectors of the ρ+ and ρ− mesons,
respectively and P = p1+p2. We take into account that the C parity of the ρ+ρ−

system should be equal to -1.
There also exist two other amplitudes which satisfy all necessary conditions.

One of them was used in Refs. [19, 20] and the corresponding result is small
(see the discussion in Ref. [20]). The contribution of the other which is cubic in
k′1 − k′2 is expected to be small, too. Following Ref. [22] we describe here the
calculations with the amplitude given by Eq. (19).

A standard calculation shows that the total cross section σ(11)
p̄p→ρ+ρ− has the

form

σ
(11)
p̄p→ρ+ρ− = |f

(11)
p̄p→ρ+ρ− |

2
(3m2 + 2p2)(E2ρ +m

2
ρ)k

′3

6πpm4ρ
, (20)
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Fig. 6.

where now k′ is the magnitude of the c.m. frame momentum in the ρ+ρ− system,
mρ is the mass of the ρ meson and Eρ = (m2ρ + k

′2)1/2.
The amplitude ρ+ → π+π0 and the decay width of the ρ meson can be

written by analogy with Eqs. (14) and (15):

Mρ+→π+π0 = fρ+→π+π0(k1 − k′3)µe
′µ
1 , Γρ+→π+π0 =

|fρ+→π+π0 |2k3ππ
6πm2ρ

, (21)

where k1 and k′3 are the four-momenta of π0 and π+, respectively and kππ is the
magnitude of the c.m. frame momentum in the ππ system.

The amplitude π+ρ− → φ has the form

Mπ+ρ−→φ = fπ+ρ−→φeµνρσe
µ∗e

′ν
2 k
ρ
2k

′σ
2 , (22)

where k′2 is the 4-momentum of ρ−. A direct calculation shows that the decay
width Γφ→π+ρ− is equal to

Γφ→π+ρ− =
|fφ→π+ρ− |2k3πρ

12π
, (23)

where kπρ is the magnitude of the c.m. frame momentum in the πρ system. Since
φ decays into πρ in 12% cases it is obvious that Γφ→π+ρ− = 0.12Γφ/3.
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As follows from Eqs. (19), (21) and (22), the amplitude p̄p → φπ0 corre-
sponding to the Feynman diagrams in Fig.5 can be written in the form

Mp̄p→φπ0 = 2ı[v̄(p2)γ
µu(p1)]eαβγδe

α∗kγ2P
ν ·∫

fp̄p→ρ+ρ−fρ+→π+π0fπ+ρ−→φk
′δ
2 (k1 − k′3)ρ ·

[(
k′1µk

′
1ρ

m2ρ
− gµρ)δβν − (

k′1νk
′
1ρ

m2ρ
− gνρ)δβµ ] ·

δ(4)(k′1 − k1 − k′3)δ(4)(k2 − k′2 − k′3)
(2π)4[k

′2
1 − (mρ − ıΓρ/2)2][k

′2
2 − (mρ − ıΓρ/2)2]

·

d4k′1d
4k′2d

4k′3
k
′2
3 −m2π + ı0

, (24)

where δ is the Cronecker symbol.
As in Eq. (18), the integral in Eq. (24) diverges if no form factors are

introduced into the vertices p̄p → ρ+ρ−, ρ+ → π+π0 and ρ−π+ → φ. By
analogy with Sec.3 we use the on-shell approximation where the intermediate
states are either ρ+ρ− or ρππ. We again call the corresponding models as
Model A and Model B, respectively. These models correspond to the cuts of the
Feynman diagrams as shown in Fig.6.

5. THE CONTRIBUTION OF K∗K AND ρ+ρ− INTERMEDIATE STATES
IN MODEL A

As follows from the prescription described in Sec.3, Eq. (18) in Model A
reads

Mp̄p→φπ0 = −8ı[v̄(p2)γµu(p1)]eµνρσe∗λkν1k
ρ
2f
(11)
p̄p→K∗+K− ×

×
∫
fK∗+→π0K+fK+K−→φk

′σ
2 k

′λ
2 θ(k

′0
1 )θ(k

′0
2 )δ(k

′2
1 −m2∗) ×

× δ(k
′2
2 −m2K)δ(4)(k1 + k2 − k′1 − k′2)d4k′1d4k′2

(2π)2[(k′1 − k1)2 −m2K + ı0]
, (25)

where we have taken into account that (k2λeλ) = 0. The quantity f (11)
p̄p→K∗+K−

in this expression is the same as in Eq. (10) since K∗ and K̄ are on-mass shell.
It is convenient to consider Eq. (25) in the c.m. frame of the p̄p system

which, at the same time, is the c.m. frame of the K∗K̄ and φπ0 systems. The
vector P in this frame of reference has the components P 0 =

√
s, P = 0. and
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therefore Eq. (25) can be written in the form

Mp̄p→φπ0 =
−ı
4π2k

f
(11)
p̄p→K∗+K− [v̄(p2)γ

iu(p1)]eiklk
k ×

×
∫
do′fK∗+→π0K+fK+K−→φ

k
′l(EK̄e

0∗ + k
′mem∗)

a− x , (26)

where a = (2E∗Eπ + m2K − m2∗ − m2π)/2kk′, Eπ = (m2π + k2)1/2, E∗ =
(m2∗ + k

′2)1/2, EK̄ = (m
2
K + k

′2)1/2, k = |k|, k′ = |k′|, k ≡ k1, k′ ≡ k′1,
n = k/k, n′ = k′/k′, x = nn′, do′ is the element of the solid angle corresponding
to the unit vector n′ and a sum over repeated indices i, k, l,m = 1, 2, 3 is assumed.

Let us consider the integrals

I l =

∫
f(x, s)k

′ldo′, I lm =

∫
f(x, s)k

′lk
′mdo′, (27)

where f(x, s) is an arbitrary function of x and s. It is easy to show that

I l = 2π
k′

k
kl
∫ 1
−1
f(x, s)dx, I lm = π(k′)2

∫ 1
−1
f(x, s) ×

× [(1− x2)δlm + (3x2 − 1)k
lkm

k2
]dx. (28)

Then as follows from Eqs. (12), (26-28)

fp̄p→φπ0 =
ı(k′)2

4πk
√
s
f
(11)
p̄p→K∗+K− ×

×
∫ 1
−1
fK∗+→π0K+(k

′2
3 )fK+K−→φ(k

′2
3 )
1− x2
a− x dx. (29)

We explicitly note that fK∗+→π0K+ and fK+K−→φ depend on the off-shell
form factor for the K meson with the four-momentum k′3. The importance
of taking into account this form factor has been pointed out in Refs. [19, 20].
Following these references we write

fK∗+→π0K+(k
′2
3 ) = fK∗+→π0K+

Λ−m2K
Λ− k′23

×

× fK+K−→φ(k
′2
3 ) = fK+K−→φ

Λ−m2K
Λ− k′23

, (30)

where now the quantities fK∗+→π0K+ and fK+K−→φ are the same as in Eqs.
(14) and (16). Then we get from Eq. (29) the ˇnal result

fp̄p→φπ0 =
ı(k′)2

4πk
√
s
f
(11)
p̄p→K∗+K−fK∗+→π0K+fK+K−→φ ×
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×
∫ 1
−1

1− x2
a− x [

Λ−m2K
Λ + 2E∗Eπ −m2∗ −m2π − 2kk′x

]2dx. (31)

As follows from Eqs. (11), (13), (15), (17) and (31)

R ≡ σp̄p→φπ0

σ
(11)
p̄p→K∗+K−

= 0.87 · 3
8

kk′Γ∗Γφm
2
∗m
2
φ

s(kπKkKK̄)
3
×

× |
∫ 1
−1

1− x2
a− x [

Λ−m2K
Λ + 2E∗Eπ −m2∗ −m2π − 2kk′x

]2dx|2. (32)

Since for the amplitudes p̄p → K∗+K− and p̄p → φπ0 we assume the
structure deˇned by Eqs. (10) and (12), Eq. (32) can be valid only if the value of
p is rather small. In Ref. [22] the dependence of R on the laboratory momentum
plab in the range (0 ÷ 0.4) GeV/c (what corresponds to the values of p in the
range (0÷ 0.2) GeV/c) has been calculated. Following Refs. [19,20], the values
of 1.2 GeV2, 2 GeV2 and ∞ have been chosen for Λ (the last value means the
absence of the off-shell form factors). The result of Ref. [22] is that R practically
does not depend on plab in the range 0Å0.4 GeV/c.

In Refs. [13, 14] the branching ratio of the reaction p̄p → φπ0 has been
measured not for the annihilation in �ight but for the annihilation at rest from the
S state of the hydrogen-like p̄p atom. When p → 0, only the contribution of the
S wave survives in Eq. (32). Assuming that the p̄p system in the hydrogen-like
atom is unpolarized and taking for the branching ratio BR(p̄p→ K∗+K−)(11) its
experimental value 5.85 · 10−4 [36], the result for the branching ratio BR(p̄p→
φπ0) is 2.9 · 10−4, 0.99 · 10−4 and 0.4 · 10−4 for Λ = ∞, Λ = 2 GeV2 and
Λ = 1.2 GeV2, respectively. According to Ref. [13], BR(p̄p → φπ0) = (4.0 ±
0.8) · 10−4 and according to Ref. [14] BR(p̄p → φπ0) = (5.8 ± 0.4) · 10−4.
We conclude that if the off-shell form factor for the K meson does not strongly
depend on k′3, then the contribution of K∗K intermediate states in Model A is in
fairly well agreement with experimental data.

The calculation of the contribution of ρ+ρ− intermediate states can be carried
out by analogy with the above calculation. Using Eqs. (19), (21), (22), (27) and
(28) we get

fp̄p→φπ0 =
ı(k′)3

8πm2ρ
√
s
f
(11)
p̄p→ρ+ρ−fρ+→π+π0fπ+ρ−→φF (s), (33)

where

F (s) =

∫ 1
−1
[(1− x2)(EρEπ − kk′x) + 2Eρ(

Eρkx

k′
− Eπ)−
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−2xEφ(Eρx− Eπ
k′

k
)][

Λ−m2π
Λ + 2EρEπ − 2kk′x−m2ρ −m2π

]2 ×

× dx

2EρEπ − 2kk′x−m2ρ − ı0
. (34)

In contrast with the K∗K case, now the kinematical conditions are such that
all the three intermediate particles can be on-mass shell in contradiction with the
Peierls theorem [37]. In turn, this theorem follows from the fundamental fact that
the S matrix can be formulated only in terms of stable particles. However such a
situation is only a formal difˇculty which takes place because we drop Γρ in the
propagators of the ρ+ and ρ− mesons and treat these mesons as stable particles.

As follows from Eqs. (20), (21), (23) and (33)

R1 =
σp̄p→φπ0

σ
(11)
p̄p→ρ+ρ−

= 0.12
3

4
(
kk′

kπρkππ
)3
ΓρΓφm

2
ρ

s(s+ 4m2ρ)
|F (s)|2. (35)

In Refs. [19, 22] the result for R1 as a function of plab has been calculated
for the cases Λ = 1.2 GeV2, Λ = 2 GeV2 and Λ = ∞. The dependence
of R1 on plab also has turned out to be weak but it is not clear what is the
upper bound for those plab for which the result is still valid. If plab = 0, then
R1 = 1.13 · 10−3, R1 = 3.2 · 10−3 and R1 = 7.01 · 10−3 for these three cases,
respectively. The experimental value of BR(p̄p→ ρ+ρ−)(11) at rest is unknown,
but the theoretical model developed in Ref. [38] predicts the value of 23.6 · 10−3.
Then the contribution of ρ+ρ− intermediate states to BR(p̄p → φπ0) at rest is
1.9 · 10−4 if Λ = ∞. Therefore, as ˇrst noted in Ref. [19], Model A predicts a
rather substantial contribution of ρ+ρ− intermediate states to the branching ratio
of the reaction p̄p→ φπ0.

As argued by Lipkin, GeigerÄIsgur and others (see, e.g., Refs. [5, 7]), a
possible reason of the OZI rule violation is the interference of amplitudes cor-
responding to different intermediate states. For example, Lipkin [5] argues that
ªthe contribution from the K+K− and K∗+K∗− intermediate states has the same
phase and this is opposite to the phase of the contribution from the K+K∗− and
K−K∗+ statesª. This problem has been also discussed by Sapozhnikov [39]
and Zou [40]. It has been also noted by Locher [41] that if in the diagrams in
Fig.2 K∗ mesons are replaced by K ones, then the corresponding contribution
is equal to zero. Indeed, the KKπ coupling is equal to zero since three (0−)
particles cannot couple (parity and angular momentum conservation). It is not
also clear which diagrams describing K∗K̄∗ intermediate states can compensate
the diagrams in Fig.2. We will see in Sec.11 that these intermediate states are
natural for the reaction p̄p→ φπ+π−, but not p̄p→ φπ0. On the other hand, it is
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important to stress that in the theory of strong interactions any conclusion about
the dominant role of some ˇnite set of diagrams can be based only on intuition
which often does not work. So any explanation of the OZI rule violation taking
into account only a ˇnite set of diagrams can be at best qualitative.

6. THE CONTRIBUTION OF KK̄π0 AND ρππ0 INTERMEDIATE STATES
IN MODEL B

As follows from the prescription described in Sec.3, Eq. (18) in Model B
reads

Mp̄p→φπ0 = 4ıf
(11)
p̄p→K∗+K−fK∗+→π0K+fK+K−→φ ×

× [v̄(p2)γµu(p1)]eµνρσe∗λkν1 ×

×
∫

k
′ρ
3 k

′σ
2 (k

′λ
2 − k

′λ
3 )δ

(4)(k2 − k′2 − k′3)d3k′2d3k′3
16π2ωK(k′2)ωK(k

′
3)[(k1 + k

′
3)
2 − (m∗ − ıΓ∗/2)2]

, (36)

where ωK(k) = (m2K+k
′2)1/2, we take into account that the constants fK∗+→π0K+

and fK+K−→φ are the same as in Eqs. (14) and (16), and no form factor is in-
troduced into the vertex p̄p→ K∗K̄ .

It is obvious that

eµνρσk
′ρ
3 k

′σ
2 = eµνρσ(k

′ρ
2 + k

′ρ
3 )(k

′σ
2 − k

′σ
3 )/2

and therefore Eq. (36) can be written in the form

Mp̄p→φπ0 = 2ıf
(11)
p̄p→K∗+K−fK∗+→π0K+fK+K−→φ ×

× [v̄(p2)γµu(p1)]eµνρσe∗λkρ2kν1 Iσλ , (37)

where Iσλ is the relativistic symmetrical tensor

Iσλ =

∫
(k
′σ
2 − k

′σ
3 )(k

′λ
2 − k

′λ
3 )δ

(4)(k2 − k′2 − k′3)d3k′2d3k′3
16π2ωK(k′2)ωK(k

′
3)[(k1 + k

′
3)
2 − (m∗ − ıΓ∗/2)2]

. (38)

This tensor depends only on k1 and k2 and therefore the general form of Iσλ is

Iσλ = c1gσλ + c2k1σk1λ + c3k2σk2λ + c4(k1σk2λ + k2σk1λ) . (39)

It is obvious that only c1gσλ contributes to Eq. (37). The simplest way of
calculating c1 is to consider Eq. (38) in the reference frame, where the ˇnal φ
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meson is at rest. The magnitude of the pion momentum in this reference frame
is q = (

√
sk)/mφ and, as follows from Eqs. (38) and (39):

kKK̄
4π2mφ

∫
{do′k′ik′l/[m2π +m2K +mφ(m2π + q2)1/2 +

+2qkKK̄x− (m∗ − ıΓ∗/2)2]} = −c1δil + c2qiql , (40)

where q is the pion momentum, k′ is the momentum of the K̄ meson, x =
qk′/qkKK̄ and we integrate over the solid angle corresponding to the unit vector
n = k′/kKK̄ . Then the quantity c1 can be easily calculated by analogy with the
calculation of the quantity c1 in Sec.5 and, the ˇnal result for fp̄p→φπ0 is:

fp̄p→φπ0 = −if (11)p̄p→K∗+K−fK∗+→K+π0fK+K−→φ
(kKK̄)

2

4π
√
sk
×

× [2b+ (1− b2)ln(b+ 1
b− 1)], (41)

where b = [m2π + m
2
K + mφ(m

2
π + q

2) − (m∗ − ıΓ/2)2]/2qkKK̄ and we have
taken into account that:

∫ 1
−1

(1− x2)dx
b− x = 2b+ (1− b2)ln(b+ 1

b− 1) . (42)

By analogy with the derivation of Eq. (32) we now get:

σp̄p→φπo

σ
(11)
p̄p→K∗+K−

= 0.87
3

8

kkKK̄Γ∗Γφm
2
∗m
2
φ

sk3πKk
′3

|2b+ (1 − b2)ln(b+ 1
b− 1)|

2 . (43)

A simple numerical calculation shows that, if s = 4m2, then σp̄p→φπ0 ≈ 10−4 ·
σ
(11)
p̄p→K∗+K− . Therefore the contribution ofKK̄π0 intermediate states in Model B

is negligible.
Let us now consider the contribution of (ρ+π−+ρ−π+)π0 intermediate states

in Model B. In this model Eq. (24) reads:

fp̄p→φπ0 [v(p2)γ
µu(p1)]eµνρσe

ν∗kρ1k
σ
2 =

= −if (11)
p̄p→ρ+ρ−fρ+→π+π0fπ+ρ−→φ[v(p2)γ

µu(p1)]eαβγδe
α∗kγ2 ×

×
∫

(2π)4δ(4)(k2 − k′2 − k′3)d3k′2d3k′3
[2(2π)3]2ωρ(k′2)ωπ(k

′
3)[(k1 + k

′
3)
2 − (mρ − ıΓρ/2)2]

×

× k′δ2 [(k1 − k′3)µPβ − gµβ(P, k1 − k′3)], (44)
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where ωρ(k′) = (m2ρ + k
′2)1/2, ωπ(k′) = m2π + k

′2)1/2.
It is obvious that

∫
(2π)4k

′δ
2 k
′µδ(4)(k2 − k′2 − k′3)d3k′2d3k′3

[2(2π)3]2ωρ(k′2)ωπ(k
′
3)[(k1 + k

′
3)
2 − (mρ − ıΓρ/2)2]

=

= c1g
µδ + c2k

µ
1 k
δ
1 + c3k

µ
2 k
δ
2 + c4k

µ
1 k
δ
2 + c5k

µ
2 k
δ
1, (45)

where the ci (i = 1, . . . 5) are some relativistically invariant quantities. As
follows from Eq. (44), we have to calculate only c1, c2 and c5. It is convenient
to calculate these quantities in the reference frame, where the ˇnal φ meson is at
rest, and use Eqs. (28). The ˇnal result is (compare with Eq. (35))

σp̄p→φπ0

σ
(11)
p̄p→ρ+ρ−

= 0.12
3

16

kkπρ

k′3k3ππ

ΓρΓφm
6
ρ

s(E2ρ +m
2
ρ)
|F1(s)|2, (46)

where, as in Eq. (35), k′ is the magnitude of the c.m. frame momentum in the
ρ+ρ− system and

F1(s) =

∫ 1
−1

dx

2m2π + 2ωπ(kπρ) + 2qkπρx− (mρ − ıΓρ/2)2

{1
2
(s−m2φ)[x−

kπρ

2q
(1− 3x2)]− 1

2
(s+m2φ)

[
ωπ(kπρ)x

mφ
− ωπ(q)kπρ
2mφq

(1− 3x2)]− kπρq(1− x2)}. (47)

A simple numerical calculation shows that if s = 4m2, then Eq. (46) can be
written as

σp̄p→φπ0 = 3.13 · 10−5 σ(11)p̄p→ρ+ρ− . (48)

Therefore, if we again assume that σ(11)
p̄p→ρ+ρ− = 23.6 · 10−3 [38], then the

(ρ+π−+ ρ−π+)π0 intermediate states in Model B do not play an important role.

7. THE RELATION BETWEEN THE BRANCHING RATIOS OF THE
REACTIONS p̄p→ φπ0 AND p̄p→ K∗K̄ IN THE ANNIHILATION
FROM THE P STATE OF THE HYDROGEN LIKE p̄p ATOM

In contrast with the annihilation p̄p→ φπ0 from the S state of the hydrogen
like p̄p atom, the branching ratio of this annihilation from the P state is small
and the reaction p̄p → φπ0 from the P state was not observed as yet. The data
on the annihilation p̄p→ K∗K̄ from the P state are also much more scarce than
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for the annihilation from the S state , but experiments which are under way are
expected to give a more detailed information on the p̄p annihilation from the
P state. In view of the above discussion it is interesting to investigate what is
the prediction of Model A for the ratio of the rates of the reactions p̄p → φπ0

and p̄p → K∗K̄ in the annihilation from the P state. More precisely, since
the annihilation p̄p → φπ0 from the P state can take place only in the channel
with I = 1, S = 0, Model A makes it possible to give predictions on the
quantity Br(p̄p→ φπ0)/Br(K∗+K−)(10). One might think that in Model A this
quantity should be of the same order as in the case of the annihilation from the
S state and hence the explanation of the OZI rule violation in the framework of
the rescattering mechanism is inconsistent. We ˇrst describe the calculation in
Ref. [42] which shows that there exists nevertheless a possibility that Model A
explains both, the large value of the quantity Br(p̄p → φπ0)/Br(K∗+K−) in
the annihilation from the S state and a small value of the same quantity in the
annihilation from the P state. Then we discuss the criticism of this mechanism
in Refs. [40,43] .

To describe the relativistically invariant amplitude for the annihilation p̄p→
φπ0 from the P state we have to construct the relativistic wave function describ-
ing the p̄p system not in the case when the antiproton and proton have deˇnite
momenta, but when they have the deˇnite quantum numbers L = 1, S = 0.
However since we need only the ratio of the quantities BR(p̄p → φπ0) and
Br(p̄p→ K∗+K−)(10), the following procedure can be used. We again describe
the antiproton and proton by the Dirac spinors and write such relativistically in-
variant amplitudes p̄p→ φπ0 and p̄p→ K∗+K− which are of order |p|/m, when
|p| → 0. Therefore, when |p| → 0, the leading contribution to the corresponding
cross sections is given by the P states and these cross sections are also of order

|p|/m. However the ratio σp̄p→φπ0/σ
(10)
p̄p→K∗+K− when |p| → 0 becomes just the

ratio of the quantities BR(p̄p → φπ0) and BR(p̄p → K∗+K−) in the annihila-
tion from the P state of the hydrogen like p̄p atom if we assume that p̄ and p in
this state are unpolarized.

The general form of the amplitude p̄p→ φπ0 with the needed properties is

Mp̄p→φπ0 = [v̄(p2)γ
5u(p1)][F

′
1(p1 − p2, e∗) +

+
F ′2
m2φ
(p1 − p2, k1 − k2)(k1 − k2, e∗)], (49)

where F ′1 and F ′2 become constants when |p| → 0. In contrast with the annihila-
tion from the S state the amplitude given by Eq. (49) is deˇned by two unknown
constants since the ˇnal φπ0 system has the orbital angular momentum either
L = 0 or L = 2.

It is convenient to consider the amplitude (49) in the c.m. frame. Then we
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can write

Mp̄p→φπ0 = [v̄(p2)γ
5u(p1)][F1(pe

∗) +
F2

m2φ
(pk)(ke∗)], (50)

where F1 and F2 are the linear combinations of F ′1 and F ′2. Analogously we can
write

M
(10)
p̄p→K∗+K− = [v̄(p2)γ

5u(p1)][f1(pe
∗) +

f2

m2∗
(pk′)(k′e

′∗)], (51)

where f1 and f2 are another constants. As easily follows from Eqs. (50) and
(51)

R2 =
Br(p̄p→ φπ0)L=1

Br(p̄p→ K∗+K−)
(10)
L=1

=

= {k[|F1|2(1 +
k2

3m2φ
) +

k2

3m2φ
(1 +

k2

m2φ
)×

× (F1F ∗2 + F ∗1 F2 +
k2

m2φ
|F2|2])}/{k′[|f1|2(1 +

k′2

3m2∗
) +

+
k′2

3m2∗
(1 +

k′2

m2∗
)(f1f

∗
2 + f

∗
1 f2 +

k′2

m2∗
|f2|2])}. (52)

By analogy with the derivation in Sec.5 we obtain that in Model A

Mp̄p→φπ0 =
−ık′p
2π2
√
s
[v̄(p2)γ

5u(p1)]fK∗+→π0K+fK+K−→φ

∫
do′(k2λe

λ∗)

(k′1 − k1)2 −m2K
[f1(
k′(k1k

′
1)

m2∗
− k) +

+
f2

m2∗
k′(
(k′)2(k1k

′
1)

m2∗
− kk′)]. (53)

Since the relation between the reactions p̄p → φπ0 and p̄p → K∗+K− in the
annihilation from the S state can be qualitatively explained assuming that the
off-shell form factors in the vertices K∗+ → π0K+ and K+K− → φ do not
considerably diminish the amplitude p̄p → φπ0, we do not take into account the
contribution of these form factors.

Using Eq. (28) we can derive the relation between the quantities Fi and fi
(1 = 1, 2), and the ˇnal result is

Fi =
ık′

π
√
s
fK∗+→π0K+fK+K−→φ

2∑
l=1

Ailfl , (54)
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where

A11 =
k′

4km2∗

∫ 1
−1

(1− x2)(E∗Eπ − kk′x)dx
a− x ,

A12 =
k′2

4km2∗

∫ 1
−1
[
k′(E∗Eπ − kk′x)

m2∗
− kx] (1− x

2)dx

a− x ,

A21 =
m2φ
2kk′

∫ 1
−1
{ (E∗Eπ − kk

′x)

m2∗
[−EKk

′x

Eφk
+
k
′2(3x2 − 1)
2k2

] +

+
EK

Eφ
− k

′x

k
} dx

a− x ,

A22 =
m2φk

′

2m2∗k
2

∫ 1
−1
[
k′(E∗Eπ − kk′x)

m2∗
− kx] ×

× [−EKx
Eφ

+
k′(3x2 − 1)
2k

]
dx

a− x . (55)

As follows from simple numerical calculations and Eqs. (15), (17), (52),
(54) and (55)

R2 =
0.77 + 0.36yz + 0.044y2

1.16 + 0.46yz + 0.11y2
, (56)

where y = |f2/f1| and z is the cosine of the relative phase of the quantities f1
and f2. If f2 = 0, then R2 = 0.66 and if f1 = 0, then R2 = 0.40. However
in the general case the quantity R2 can take the values from Rmin = 0.02 when
y = 4.2, z = −1 to Rmax = 0.67 when y = 0.7, z = 1. In addition, if we take
into account a possible contribution of the off-shell form factors, we can conclude

that the quantities BR(p̄p→ φπ0)L=1 and BR(p̄p→ K∗+K−)
(10)
L=1 are probably

of the same order of magnitude. In this case the problem remains whether the
results of the rescattering model for the P wave annihilation are compatible with
the results for the S wave annihilation. At the same time one cannot fully exclude
the possibility that the ˇrst quantity is much smaller than the second one.

As noted by Zou [40,43], the L = 2 decay is unlikely to be of similar strength
to L = 0 decay due to strong centrifugal barrier effect for L = 2 K∗K̄ decay.
The experiment which can shed light on the situation is the measurement of the
angular distribution in the K∗K system produced in the p̄p annihilation from the
P state. If, for example, one of the states with L = 0 or L = 2 is dominant, then
the destructive interference described above is not possible.

Anyway, the value of R of order 10−2 which can explain the difference
between the situations in the S and P annihilations in the model considered above
seems unlikely. However, as argued by Zou [40,43], the destructive interference
is only a minor reason while there is another more solid and important reason,
i.e., the small total decay width of I = 1 1P1 protonium.
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As noted in Refs. [40,43], the fact important for understanding the problem
under consideration is that for p̄p annihilation from P states K∗K̄ can come
from 1P1, 3P1 and 3P2 states with both isospin 0 and 1 while φπ can only come
from 1P1 state with isospin 1. According to various optical potential models for
protonium annihilation [44, 45], the total decay width for the I = 1 1P1 state
is only about 1/8 of the summation of the total decay width for all possible P
state to K∗K̄. The K∗K̄ decay width may be not directly proportional to the
total decay width for different P states due to some dynamic selection rule. It is
quite possible that K∗K̄ from the I = 1 1P1 state is only a very small part of
K∗K̄ from all the P states. Only this small part can contribute to the rescattering
mechanism to φπ ˇnal state. This is contrary to the case for p̄p annihilation
from S states where the allowed partial wave (I = 1 3S1) for φπ is found to be
dominant for K∗K̄.

Are there another reasons (in addition to optical models) to think that the
K∗K̄ annihilation from the I = 1 1P1 state of protonium is indeed suppressed?
As argued by Zou [40, 43] these reasons are the following. First, the ASTERIX
Collaboration found that the branching ratios for ηρ and η′ρ from P states are
much smaller than from S states [46]. The ηρ and η′ρ from P states can only
come from the I = 1 1P1 state. Second, a recent analysis by the OBELIX
Collaboration [47] show that ωπ is also not seen from p̄p annihilation from the
I = 1 1P1 state. So the ratio of φπ/ωπ for P state annihilation may be in fact
not suppressed.

As noted in Refs. [40,43], it is desirable to measure among all K∗K̄ produc-
tions from P states how much percentage comes from the I = 1 1P1 state. Only
after all conventional effects were found to be not enough to explain the data,
might we claim any conclusive evidence for new physics, such as the strange
quarks in the nucleon [25].

On the other hand, as noted in Ref. [48], although the observations in Ref.
[43] are important but the problem is whether they are enough to explain the
experimental situation according to which even the upper bound for the ratio of the
φπ and K∗K̄ channels in the annihilation from the P states is probably of order
10−2. Indeed, according to Ref. [46] the branching ratios of the φπ and K∗+K−

channels in the 33S1 state are (4.0±0.8)·10−4 and (5.8±0.5)·10−4, respectively.
According to the data in Ref. [47] the branching ratio of the φπ channel in the
31P1 state is ≤ 3 ·10−5, according to [49], this quantity is ≤ 1 ·10−5 and the most
recent analysis [50] gives the value ≤ 4.7 · 10−5 (with 95% conˇdence level). At
the same time the data of Refs. [49, 50] shows that when going from liquid to
gas targets the yield of KK̄π increases.

The data of Ref. [46] are that the branching ratios of the ηρ channel are
(0.94 ± 0.53) · 10−3 in the P state and (3.29 ± 0.90) · 10−3 in the S state. The
ratio of these quantities is of about 0.3. The same data for the η′ρ channel are
(∼ 0.3) · 10−3 and (1.81 ± 0.44) · 10−3, respectively, i.e., the ratio is of about
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1/6. These values are consistent with the quantity 1/8 in optical models but such
an extent of suppression of the annihilation of the 31P1 protonium is one order
of magnitude less than needed to explain the problem under consideration. In
addition, the statistics in the data of the OBELIX Collaboration on the angular
distribution in the ωπ system given in [47] does not make it possible to clearly
distinguish the annihilation from the S and P waves.

We conclude that at present stage of our understanding of the rescattering
mechanism it is not possible to explain the fact that φπ is not seen in the
annihilation of the 31P1 protonium.

8. THE PROBLEM OF THE OZI RULE VIOLATION IN THE REACTION
p̄p→ f ′2π

0

In view of the above discussion it is important to know whether there exist
reactions with the property that if the OZI rule in them is violated, then the
rescattering model or other conventional mechanisms deˇnitely cannot explain
this violation. Following Ref. [51] we show in this section that p̄p→ f ′2π

0 is just
the reaction with such a property.

The situation with the f2 − f ′2 mixing is analogous to that with the ω − φ
mixing, but the mixing angle is not so close to the ideal one: according to
Ref. [17], cosθ = 0.78. Therefore, as follows from the f2 − f ′2 analog of
Eq. (1), the ratio BR(p̄p → f ′2π

0)/BR(p̄p → f2π
0) should be approximately

equal to 0.01. The experimental data on the branching ratio for the annihilation
p̄p→ f2π

0 at rest are (3.4±0.5) ·10−2, (2.1±0.1) ·10−1 and (2.0±0.6) ·10−2 in
the cases of the 1S0, 3P1 and 3P2 states, respectively [52]. Therefore the quantity
BR(p̄p→ f ′2π

0) is expected to be of order 10−4 in the cases of the 1S0 and 3P2
states and of order 10−3 in the case of the 3P1 state. This makes it necessary to
estimate the role of the rescattering contribution in the reaction p̄p→ f ′2π

0.
The major decay mode of the f ′2 meson is KK̄ as well as for the φ meson.

Therefore, in view of the above discussion it is reasonable to estimate the role of
(K∗K̄ + K̄∗K) intermediate states in Model A. We shall consider only the S-
wave annihilation, and we shall see that even the upper bound for the rescattering
contribution is much less than the value expected from the OZI rule.

The only relativistically invariant amplitude of the process p̄p → K∗+K−

which survives when p → 0 and K∗+K− system is in the state with I = 1,
S = 0 is

M
(10)
p̄p→K∗+K− = f

(10)
K∗+K− [v̄(p2)γ

5u(p1)](e
′∗P ), (57)

where f (10)
K∗+K− is some constant. Then the corresponding cross section is equal

to

σ
(10)
p̄p→K∗+K− =

|f (10)
K∗+K− |2sk

′3

32πm2∗p
. (58)
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We also need the amplitude of the reaction K+K− → f ′2. It has the form

MK+K−→f ′ = fK+K−→f ′(k
′
3 − k′2)µ(k′3 − k′2)νe∗µν , (59)

where eµν is the polarization tensor of the ˇnal f ′2 meson. The corresponding
decay width is equal to

Γf ′→K+K− =
4|fK+K−→f ′ |2k5KK̄

15πm2f ′
, (60)

where kKK̄ is now the magnitude of the momentum of the K+ and K− mesons
in the reference frame, where the f ′2 meson is at rest. Since the decay of the f ′2
meson into KK̄ occurs in 72% cases, then the total width of the f ′2 meson is
equal to Γf ′2 = 2ΓK+K−→f ′2/0.72.

As follows from Eqs. (14), (57) and (59), if the form factors are dropped,
then the amplitude of the reaction p̄p→ f ′2π

0 in Model A is equal to

Mp̄p→f ′2π0 = 16f
(10)
K∗+K−fK∗+→π0K+fK+K−→f ′2 [v̄(p2)γ

5u(p1)]e
∗µνIµν , (61)

where

Iµν =

∫
(2π)4δ(4)(k1 + k2 − k′1 − k′2)d3k′1d3k′2

(2(2π)3)2ω∗(k′1)ωK(k
′
2)[(k

′
1 − k1)2 −m2K + ı0]

×

× [ (Pk
′
1)(k1k

′
1)

m2∗
− (Pk1)]k′2µk′2ν , (62)

ω∗(k
′) = (m2∗ + k

′2)1/2 and k2 is the four-momentum of the ˇnal f ′2 meson.
The quantity Iµν is the relativistic symmetrical tensor which depends only

on k1 and k2, and since P = k1 + k2 we can write

Iµν = c1PµPν + c2gµν + c3(Pµk2ν + Pνk2µ) + c4k2µk2ν , (63)

where ci (i = 1, . . . 4) are some quantities which may depend only on s. Since
eµνgµν = e

µνk2µ = e
µνk2ν = 0, only the term with c1 contributes to Eq. (61).

Therefore it is sufˇcient to ˇnd only c1. For this purpose we note that the tensor

Xµν =
(Pk2)

2k2µk2ν

m4f ′
− (Pk2)

m2f ′
(k2µPν + k2νPµ) + PµPν −

−1
3
(
k2µk2ν

m2f ′
− gµν)[

(Pk2)
2

m2f ′
− P 2] (64)

has the property
Xµνgµν = X

µνk2µ = X
µνk2ν = 0. (65)
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Therefore, as follows from Eqs. (63) and (65),

c1 =
IµνX

µν

PµPνXµν
, (66)

and, as follows from Eq. (61),

Mp̄p→f ′2π0 = 4f
(10)

K∗+K−fK∗+→π0K+fK+K−→f ′2 ×
× [v̄(p2)γ5u(p1)]c1eµν∗PµPν . (67)

The explicit expression for c1 can be easily obtained in the c.m. frame of the
π0f ′2 system (by analogy with Sec.5). In this frame of reference

(2π)4δ(4)(k1 + k2 − k′1 − k′2)
[2(2π]3)2ω∗(k′1)ωK(k

′
2)

=
k′do′

16π2
√
s
, (68)

where do′ has the same sense as in Sec.5.
Taking into account Eqs. (15), (62), (64), and (65Å67), the ˇnal result can

be written in the form

σp̄p→f ′2π0

σ
(10)
p̄p→K∗+K−

= 0.72
45

2

kk′Γf ′
2
Γ∗

sk3πKk
5
KK̄
m2f ′

×

× |
∫ 1
−1

k′Eπ − E∗kx
m2π +m

2
∗ − 2EπE∗ + 2kk′x−m2K + i0

×

×{(EKk − Ef ′k′x)2 −
1

3
[(Ef ′EK − kk′x)2 −m2Km2f ′ ]}dx|2. (69)

A simple numerical calculation gives for s = 4m2: BR(p̄p→ f ′2π
0) = 2.66 ·

10−2BR(p̄p → K∗+K−)(10). According to Ref. [36], BR(p̄p → K∗+K−) =
(2.1±0.4)·10−4. Therefore even the upper bound of the quantity BR(p̄p→ f ′2π

0)
is of order 10−6.

It is also possible to calculate the contribution of the ρπ channel to the re-
action p̄p → f ′2π

0. The corresponding amplitude has the same spin structure as
the amplitude describing the (K∗K̄ + K̄∗K) contribution. A simple numerical
calculation gives BR(p̄p → f ′2π

0) = (4.08 · 10−4) · BR(p̄p → ρ+π−)(10). Ac-
cording to Ref. [52], BR(p̄p → ρ+π−)(10) = (0.65 ± 0.3) · 10−2 and therefore
the ρπ contribution is also small.

We see that the upper bound for the rescattering contribution to the reaction
p̄p→ f ′2π

0 from the S state is of order 10−6 and by analogy with the calculation
in the preceding section we can expect that the upper bound for the rescattering
contribution to the reaction p̄p → f ′2π

0 from the P states is also of order 10−6.
Therefore the role of rescattering in this reaction is negligible, and any violation
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Fig. 7. a) Pole diagram for the reaction p̄d→ φπ−p and b) diagram describing the process
p̄d → φπ−p proceeding through the rescattering of π, η and ω mesons produced in the
intermediate state

of the OZI rule in the reaction p̄p → f ′2π
0 will be an evidence of some unusual

phenomena.
According to the preliminary data of the OBELIX Collaboration reported in

Ref. [39], the ratio of the branching ratios for the f ′2π
0 and f2π0 annihilations

from the P state is in the range (4 − 10) · 10−2 and the most recent result for
this ratio is (13± 2) · 10−2 [50]. This is by one order of magnitude bigger than
predicted by the OZI rule.

9. OZI RULE VIOLATION IN THE p̄d ANNIHILATION

As noted in Sec.1, the data on the reaction p̄d→ φπ−p are the source of the
information about the process (4), but this reaction is of interest by its own. The
matter is that if the reactions in which the OZI rule is strongly violated involve
exotic states (such as hybrids and glueballs), then as argued by several authors
(see, e.g., the review paper [53]), the masses of these states probably lie in the
region 1.4Å1.7 GeV/c, that is below the threshold of antiproton annihilation
on a free nucleon. The above reaction makes it possible to study antiproton
annihilation on a bound nucleon at

√
s < 2m.

If the process p̄d→ φπ−p is described by the pole diagram given in Fig.7a,
then it is easy to show that for slow antiprotons the quantity

√
s for the reaction

p̄n → φπ− is related to the energy E′ of the spectator proton by the relation
s = 10m2 − 6mE′. In a recent experiment of the OBELIX group [16] the
branching ratio of the reaction p̄d → φπ−p was measured in the region of
proton momenta 0.4Ä0.8 GeV/c. These values correspond to

√
s in the range

1.37÷ 1.76 GeV, i.e., in the range of prime interest for our study. We denote the
branching ratio of the above reaction by Bφ2 , the branching ratio of the reaction

p̄d → φπ−p at proton momenta in the region 0 ÷ 0.2 GeV/c by Bφ1 and the
corresponding branching ratios for the reaction p̄d → ωπ−p by Bω1 and Bω2 .
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Then, as follows from the data reported in Ref. [16],

Bφ1 = (6.62± 0.49) · 10−4 , Bφ2 = (0.93± 0.22) · 10−4,
Bω1 = (4.97± 0.89) · 10−3 , Bω2 = (8.38± 1.09) · 10−4. (70)

Hence we have
Bφ1 /B

ω
1 = 0.13, Bφ2 /B

ω
2 = 0.11. (71)

At the same time, as noted in Sec.1, the data on the φω mixing angle [17] and the
OZI rule give values of order 10−3 for these ratios. Thus, according to the data
reported in Ref. [16], the violation of the OZI rule in the reaction p̄d→ φπ−p at
proton momenta in the region 0.4 ÷ 0.8 GeV/c is as strong as for the reactions
(2Å4).

Following Ref. [54] we investigate in this section whether the above effect
is indeed a consequence of the OZI rule violation in the process p̄n → φπ− or
such a violation is imitated by some nuclear effects in the deuteron.

The amplitude of the reaction p̄n→ φπ− can be written as

Ap̄n→φπ− = fp̄n→φπ−(ūγ
µv)eµνρσe

ν∗pρ1, p
σ
2 , (72)

where fp̄n→φπ− is some function of invariant variables, u is a Dirac spinor
describing the initial neutron, v is a Dirac spinor corresponding to negative
energy and describing the initial antiproton, eν is the polarization vector of the φ
meson, p1 is the four-momentum of the π− meson and p2 is the four-momentum
of the φ meson.

At small momenta of the incident antiproton this is the only form of the
amplitude that is consistent with the conditions that annihilation proceeds from
the state of the p̄n system with the spin S = 1, and that the ˇnal φπ− system
be produced in the state with orbital angular momentum l = 1. It can easily be
shown that these conditions follow from the conservation laws for ordinary parity
and G parity.

Assuming that fp̄n→φπ− is constant and expressing the d → pn vertex in
terms of the nonrelativistic deuteron wave function and Dirac spinors describing
the antiproton and neutron in terms of ordinary spinors in the nonrelativistic
approximation, we can easily evaluate the contribution of the pole diagram in
Fig.7a to the branching ratio of the reaction p̄d→ φπ−p. The result is written as

Bφ1 =
4m2r

π2p0
Br(p̄p→ φπ0)

∫ 0.2
0

(ϕ20(p
′) + ϕ22(p

′))
pp′2dp′

2E′
√
s
, (73)

where p1 is the momentum of the φπ− system in its c.m. frame, p0 is the same
quantity at

√
s = 2m, p′ is the ˇnal-proton momentum (so that E′ =

√
m2 + p′2),

ϕ0(p
′) and ϕ2(p′) are the wave functions of the S and D deuteron states in

momentum representation, and r is the ratio of the total cross sections σp̄p and
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σp̄d near the threshold. We take into account the fact that owing to isotopic
invariance, the amplitude of the reaction p̄n→ φπ− is greater than the amplitude
of the reaction p̄p → φπ0 by a factor of

√
2. The value of Bφ2 is determined

by the same formula, but the integral with respect to p′ is taken from 0.4 to
0.8 GeV/c; Bω1 and Bω2 are given by similar expressions.

According to the analysis performed in [29] r = 0.552. Then using the
data from Ref. [14], choosing the Reid soft core model [55] for ϕ0(p′) and
ϕ2(p

′), and performing numerical integration, one obtains Bφ1 = 8.7 · 10−4 and
Bω1 = 6.4 · 10−3, which values are in agreement with the data from Ref. [16],
while the values Bφ2 = 0.68 · 10−5 and Bω2 = 1.3 · 10−4 obtained in a similar
way are signiˇcantly smaller than the corresponding results presented in (70).
The smallness of Bφ2 and Bω2 seems natural because the deuteron wave function
is small at p′ ∈ [0.4, 0.8] GeV/c. By analogy with the Glauber theory and the
results obtained in [56], we can expect that the diagrams in Fig.7b with π, η and
ω mesons in the intermediate state make an important contribution in this region.

In calculating the contribution of the diagram in Fig.7b, we will ignore spin
effects and the dependence of elementary amplitudes on the Fermi motion of
nucleons inside the deuteron. Calculating the amplitude M corresponding to
the diagram in Fig.7b with the aid of the rules of the nonrelativistic diagram
technique, we obtain

M = − A1A2

(2π)3
√
m

∫
ϕ0(q)d

3q

k2X − µ2 + iµΓ− 2kXq
, (74)

where kX is the four-momentum of the intermediate meson X , µ is its mass, Γ is
its width, A1 is the amplitude of the annihilation process p̄N → φX (N is either
the proton or the neutron, and A2 is the amplitude of the process XN → π−p.

Let K be the total laboratory energy of the φ meson and k =
√
K2 −m2φ

be its momentum. We introduce the function

F (K,µ,Γµ) =| −
i

8πk

∫ ∞
q1

ϕ0(q)qdq +

∫ ∞
0.

ϕ0(q)q

16π2k
·

ln |
(5m2 − 4mK − µ2 + 2kq)2 + µ2Γ2µ
(5m2 − 4mK − µ2 − 2kq)2 + µ2Γ2µ

| dq |2 (75)

where q1 = |5m2− 4mK−µ2|/2k. We denote by p1 the c.m. frame momentum
in the φX system. The square of the invariant energy s for this system depends
on E′, as above; therefore p1 also is a function of E′. We denote by Eφ =√
m2φ + p

2
1 the φ meson energy in the c.m. frame of the φX system. It is

clear that Eφ is also a function of E′. The process of the X meson collision
with the nucleon is characterized by the invariant quantities s1 = s1(K) =
9m2 − 6mK +m2φ and t1 = t1(E′) = 2m(m− E′).
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Taking into account that the widths of the π, η and ω mesons are small, it
is possible to calculate the contribution of amplitude (74) to the branching ratio
of the reaction p̄d→ φπ−p and the results are the following. For the case when
the π0 and π− mesons are produced in the intermediate state we must take into
account the interference of the corresponding diagrams. This is equivalent to
extracting from the πN scattering amplitude only the part corresponding to the
isospin I = 1/2. Indeed, since the deuteron and the φ mesons are isoscalar
particles, the πN system in the intermediate state can only have isospin 1/2. The
contribution of the corresponding diagrams to the branching ratio of the reaction
p̄d→ φπ−p is given by

Br(p̄d→ φπ−p) =
6r

πp0
Br(p̄p→ φπ0) ×

×
∫ ∫

F (K,mπ,Γπ)[s
2
1 − 2s1(m2 +m2π) + (m2 −m2π)2] ×

× (dσπ
−p→π−p(s1, t1)

dt1
+
dσπ−p→π0n(s1, t1)

dt1
−

−1
3

dσπ+p→π+p(s1, t1)

dt1
)dKdE′. (76)

The contribution of the diagram with the η meson in the intermediate state has
the form

Br(p̄d→ φπ−p) =
2r

πp0
Br(p̄p→ φη) ×

×
∫ ∫

F (K,mη,Γη)[s
2
1 − 2s1(m2 +m2π) + (m2 −m2π)2]×

×
dσπ−p→ηn(s1, t1)

dt1
dKdE′. (77)

The contribution of the diagram with the ω meson in the intermediate state is
obviously given by Eq. (77), where η is replaced by ω.

In Eqs. (76) and (77) the integration with respect to K at given E′ is made
over the segment K ∈ [K1,K2], where

K1 =
Eφ(3m− E′)− pp′√

s
, K2 =

Eφ(3m− E′) + pp′√
s

. (78)

Moreover, the condition

K ≤ 1

6m
[9m2 +m2φ − (m+mX)2] = K0

is imposed because at s1 ≤ (m+mX)2 the cross section of the process XN →
π−p must be set equal to zero.
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As there are no parametrizations of the differential cross sections for the
processes πN → πN , π−p→ ηn and π−p→ ωn as functions of two variables s1
and t1 in the region under consideration, it is reasonable to neglect the dependence
of dσ(s1, t1)/dt1 on t1 replacing this differential cross section by the expression

dσ(s1t1)

dt1
=
σ(s1)

s1
{[1− 2(µ

2 +m2)

s1
+
(m2 − µ2)2

s21
] ×

× [1− 2(m
2
π +m

2)

s1
+
(m2 −m2π)2

s21
]}−1/2. (79)

Then calculations show that the contributions of rescattering to Bφ1 and Bω1
are much smaller than the contribution of the pole diagram (see above). The
contributions to Bφ2 of the diagrams with π, η, and ω mesons in the intermediate
state are 4.37 · 10−5 , 1.18 · 10−5, and 0.21 · 10−5, respectively; the corresponding
contributions to Bω2 are equal to 1.32 · 10−4, 0.29 · 10−4, and ≤ 1 · 10−6. The
contribution of the ω meson is small because only a small part of the spectrum
contributes to the integral analogous to (77), in view of the condition K ≤ K0.
If one assumes that the diagrams with π, η, and ω mesons do not interfere, the
ˇnal results (including the contribution of the pole diagram) are given by

Bφ2 = 7.4 · 10−5, Bω2 = 2.9 · 10−4, (80)

which values are in qualitative agreement with the experimental data presented in
Eq. (70).

For the reaction p̄d → ωπ−p, both total branching ratios Bω1 and Bω2 and
the proton spectrum in the momentum range 0.4÷ 0.8 GeV/c were measured in
Ref. [16]. Equations (76), (77) and (79) enable us to compare the contribution
of the diagrams in Figs.7a and 7b to the proton spectrum with the experimental
data of Ref. [16]. Figure 8 taken from Ref. [54] shows the experimental data
from Ref. [16] and the results of the calculations in Ref. [54] for the individual
channels and for the total contribution, found under the assumption that the pole
diagram and the diagrams with the π and η mesons do not interfere. Therefore the
calculations in Ref. [54] are in qualitative agreement with the data from Ref. [16].
As noted in Ref. [54], the results obtained using the Reid soft core model do not
differ signiˇcantly from the results of calculations made with the deuteron wave
function in the Paris model [57]. In this reference the proton spectrum in the
reaction p̄d → φπ−p has been calculated too but here the experimental data are
not yet available.

The qualitative agreement of the above results with the experimental data
from Ref. [16] leads to the assumption that the large violation of the OZI rule
observed in Ref. [16] is possibly associated not with exotic nuclear mechanisms
in the deuteron but with the OZI rule violation in the reaction p̄n → φπ−



242 BUZATU D., LEV F.M.

Fig. 8. Calculated relative differential (with respect to the ˇnal-proton momentum) branch-
ing ratio of the process p̄d→ ωπ−p. Contributions of the pole diagram (curve 1) and of
the diagrams with π (curve 2) and η (curve 3) mesons in the intermediate state and their
total contribution (curve 4) are shown separately (the contribution of the diagram with the
ω meson in the intermediate state is negligible)

(conˇrmed in the same experiment in the cases when the proton is a spectator)
and with the rescattering of an intermediate meson; the latter effect is described
by the diagrams shown in Fig.7b. In order to calculate the contribution of these
diagrams more reliably, it is necessary to take into account spin effects and the D-
wave admixture in the deuteron wave function. However the main obstacle is that
the momentum and spin dependence of the amplitude of the process XN → π−p
are unknown. Locher and Zou [58], who investigated the reaction p̄d → 3πN ,
calculated diagrams similar to those shown in Fig.7b under the assumption that
the amplitude of the process XN → π−p can be approximated by several BreitÄ
Wigner amplitudes corresponding to different ∆ isobars. Such an approximation
is not applicable to our case because (see above) the XN system can only be in
a state with isospin I = 1/2.

10. J/Ψ DECAYS AS A TEST OF THE OZI RULE VIOLATION IN
NUCLEON-ANTINUCLEON ANNIHILATION

In this section we consider the problem whether the investigation of the J/Ψ
decays into K∗K and φπ0 can shed light on the OZI rule violation in the reactions
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(3) and (4). This problem has been raised in the recent paper [59].
As noted in Secs.3 and 5, one of the main uncertainties in the rescattering

mechanism is that the parameter Λ characterizing the vertex K∗ → Kπ is not
known and as noted in Sec.5, formally the branching ratio of the reaction p̄p →
φπ0 can be explained assuming that the main contribution is given by the region
of integration, where K∗ is on-shell and Λ =∞.

The rescattering contribution to the process J/Ψ→ φπ0 is described by the
same four Feynman diagrams as in Fig.2, but the p̄p pair is replaced by J/Ψ.
Therefore the structure of the vertices in these diagrams is known. In particular
the amplitude of the process J/Ψ→ K∗+K− has the form:

M(J/Ψ→ K∗+K−) = f(K∗+K−)Eµeµνρσe
′∗νk′ρ1 k

′σ
2 , (81)

where f(K∗+K−) is some constant, E and e′ are the polarization vectors of J/Ψ
and K∗+, respectively. It is easy to show that the contribution of diagram a is
equal to that of diagram d as a consequence of C invariance, and analogously the
contribution of diagram b is equal to that of diagram c. The contribution of all
the four diagrams depends on the quantity f(K∗+K−)− f(K∗0K̄0). If isotopic
invariance is not violated, then f(K∗+K−) = f(K∗0K̄0) and the amplitude of
the decay J/Ψ → φπ0 is equal to zero. This is obvious from the fact that the
isospin of J/Ψ is equal to zero while the isospin of the φπ0 system is equal to
one (note that the decay J/Ψ→ ωπ0 also is possible only if isotopic invariance
is violated). We see that in the rescattering model the decay J/Ψ→ φπ0 can be
a consequence of the isotopic symmetry breaking in the decays J/Ψ→ K∗K .

What is the measure of this breaking? If isotopic invariance is not broken,
then the branching ratios BR(J/Ψ→ K∗+K−) and BR(J/Ψ→ K∗0K̄0) should
be the same while according to Ref. [60]

BR(J/Ψ→ K∗+K− + c.c) = (5.26± 0.13± 0.53) · 10−3,
BR(J/Ψ→ K∗0K̄0 + c.c) = (4.33± 0.12± 0.45) · 10−3, (82)

and according to Ref. [61]

BR(J/Ψ→ K∗+K− + c.c) = (4.5± 0.7± 0.8) · 10−3,
BR(J/Ψ→ K∗0K̄0 + c.c) = (4.25± 0.25± 0.65) · 10−3. (83)

The values of the corresponding reduced branching ratios given in Ref. [60] are
(1.017± 0.061) · 10−3 and (0.836± 0.055) · 10−3, respectively, while practically
there is no difference between the c.m. frame momenta of the ˇnal particles
in the K∗+K− and K∗0K̄0 systems (these momenta are equal to 1.3713 and
1.3734 GeV/c, respectively). Therefore although the data do not fully exclude a
possibility that the isotopic symmetry breaking is negligible, they show that the
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quantity

ε =
BR(J/Ψ→ K∗+K−)−BR(K∗0K̄0)

BR(J/Ψ→ K∗+K−)
(84)

is probably of order 10−1 while, since isotopic symmetry is broken by electro-
magnetic interactions, this quantity is expected to be of order 10−2.

As noted in Sec.3, there is no unambiguous way of calculating the diagrams in
Fig.2. If they are calculated in the same way as in Ref. [21], then the calculation
analogous to that in Ref. [21] gives:

BR(J/Ψ→ φπ0)

BR(J/Ψ→ K∗+K−)
= |ε1|2 0.87

3kk′Γ∗Γφm
2
∗m
2
φ

128m2
J/Ψ(kπKkKK̄)

3
×

× |
∫ 1
−1

(1− x2)dx
a− x |2 = 0.26 |ε1|2, (85)

where mJ/Ψ is the mass of the J/Ψ meson and ε1 = [f(K∗+K−) −
f(K∗0K̄0)]/f(K∗+K−).

Let us consider two extreme cases when ε1 is real and ε1 is imaginary. If ε1
is real, then it is obvious that |ε1| = |ε|/2 and therefore:

BR(J/Ψ→ φπ0) = 0.065 |ε|2 BR(J/Ψ→ K∗+K−). (86)

If ε1 is imaginary, then it is obvious that |ε1|2 = |ε| and therefore:

BR(J/Ψ→ φπ0) = 0.26 |ε| BR(J/Ψ→ K∗+K−). (87)

We see that if ε is of order 10−1, then Eq. (86) is compatible with the upper
limit of the quantity BR(J/Ψ → φπ0) which is equal to 6.8 · 10−6 [60] while
Eq. (87) is not compatible with this limit.

The general conclusion which follows from the above results is that the
accuracy of the present data on the branching ratios of the decays of J/Ψ into
K∗+K−, K∗0K̄0 and φπ0 does not make it possible to conˇrm or disprove the
rescattering model. This model will be disproved if the right-hand side of Eq.
(86) is much bigger that the left-hand one.

11. PROBLEM WITH THE RESCATTERING CONTRIBUTION TO THE
REACTION p̄p→ φπ+π−

The OZI rule in the process p̄p → φπ+π− is not strongly violated since,
according to Refs. [13,62], the quantity

BR(p̄p→ φπ+π−)/BR(p̄p→ ωπ+π−)
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Fig. 9. Diagrams describing the process p̄p→ K∗K̄∗ → φπ+π−

Fig. 10. Feynman diagram for the process K∗+K∗− → φπ+π−

is approximately equal to 7 ·10−3 for the annihilation from the S state and 9 ·10−3
for the annihilation from the P state.

Several mechanisms of the reaction p̄p → φπ+π− have been considered
in Ref. [20] but the results are essentially model dependent. In view of the
small φ/ω ratio in the process under consideration, the experimental value of
BR(p̄p → φπ+π−) may be simply a consequence of the small deviation of the
φ−ω mixing angle from the ideal one. Nevertheless, the process p̄p→ φπ+π− is
important for understanding the role of rescattering in the reaction (3). Indeed, a
possible rescattering contribution to this process is given by the diagrams in Fig.9,
where K∗ can be either K∗+ or K∗0 and analogously for K̄∗. These diagrams
contain the same vertices as the diagrams in Fig.2. Therefore any choice of the
vertices compatible with the data on the reaction (3) should be also compatible
with the data on the reaction p̄p → φπ+π−. In particular, the contribution of
rescattering diagrams to BR(p̄p → φπ+π−) should not exceed the experimental
value.

In calculating the diagrams in Fig.9 we encounter the same difˇculties as in
calculating the diagrams in Fig.2. Since Model A has turned out to be successful
for describing the reaction (3) for the annihilation from the S state, one might
restrict himself to calculating only the on-shell contribution of the diagrams in
Fig.9. Then K∗ and K̄∗ in the amplitude K∗K̄∗ → φπ+π− (this amplitude is
shown in Fig.10) are both on-shell. We will show in this section that such an
amplitude is incompatible with unitarity and therefore such an analog of Model A
cannot be used for the analysis of the process p̄p→ φπ+π−.

If MK∗+K∗−(s, 0) is the amplitude of the elastic K∗+K∗− scattering at zero
angle and MK∗+K∗−→n is the amplitude of the K∗+K∗− transition to some
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channel n, then, according to the unitarity relation (see, e.g., Ref. [63]),

ImMK∗+K∗−(s, 0) =
∑
n

∫
|MK∗+K∗−→n|2dΓn, (88)

where dΓn is the volume element of the channel n at given s and
∑

implies a
sum over ˇnal polarizations. It is obvious that each term in the sum (88) should
be ˇnite.

We use wK∗+K∗−→φπ+π− to denote the contribution of the channel φπ+π−

to the sum (88) averaged over the initial polarizations. Let K1 and K2 be the
four-momenta of the initial K∗+ and K∗− mesons, respectively, k1 and k2 be
the four-momenta of the ˇnal π+ and π− mesons, respectively, and k3 be the
four-momentum of the ˇnal φ meson. Then as follows from Eqs. (14) and (16)

wK∗+K∗−→φπ+π− = const

∫ |fK∗+→π0K+ |4
|(K1 − k1)2 −m2K + ı0|2

×

× |fK+K−→φ|2
|(K2 − k2)2 −m2K + ı0|2

[
(K1k1)

2

m2∗
−m2π][

(K2k2)
2

m2∗
−m2π] ×

× [ (k3,K1 −K2 − k1 + k2)
2

m2φ
− (K1 −K2 − k1 + k2)2]dΓ, (89)

where the value of const is of no importance for us,

dΓ = (2π)4δ(4)(K1 +K2 − k1 − k2 − k3)
d3k1

2(2π)3E+
×

× d3k2
2(2π)3E−

d3k3
2(2π)3Eφ

, (90)

and E± are the energies of the corresponding π mesons.
For simplicity we now consider a model where the total energy of the

K∗+K∗− system is not 2m, but 2m∗, i.e., this system is at rest. Let us also
neglect the quantity mπ. Then a standard calculation gives

wK∗+K∗−→φπ+π− = const

∫ |fK∗+→π0K+ |4|fK+K−→φ|2
|m2∗ −m2K − 2E+m∗ + ı0|2

×

×
E2+E

2
−[4m∗(E+ + E−)− (4m2∗ −m2φ)]
|m2∗ −m2K − 2E−m∗ + ı0|2

dE+dE− . (91)

For us it is important that if E− < m∗ −mφ/2 ≈ 0.38 GeV, then

E+ ∈ [
4m2∗ −m2φ
4m∗

− E−,m∗ −
m2φ

4(m∗ − E−)
]. (92)
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It is obvious from Eq. (91) that the integrand contains singularities at

E± =
m2∗ −m2K
2m∗

≈ 0.31GeV. (93)

Therefore, as follows from Eq. (92), if E− is given by Eq. (93), then E+ ∈
[0.29, 0.44]GeV. We conclude that the integral in Eq. (91) contains divergencies
in the integration over both variables E+ and E− and therefore this integral is
divergent.

The above model example is useful since all the calculations can be performed
explicitly. However it is also clear that the integral in Eq. (89) is also divergent
when the total energy of the K∗+K∗− system is equal to 2m and the mass of
the π meson is not neglected. The matter is that dΓ is again proportional to
dE+dE− and there exists the integration region where the denominators of both
propagators are equal to zero. The last property is a consequence of the fact that
the kinematical conditions allow the reaction

K∗+K∗− → K0K̄0π+π− → φπ+π−

with both intermediate K mesons on-mass shell. It is also important to note that
the choice of the form factors in the vertices K∗ → Kπ and KK̄ → φ does
not play a role since the quantities fK∗+→π0K+ and fK+K−→φ are constants
when all the particles in question are on-mass shell. Therefore the above analog
of Model A in the reaction p̄p → K∗K̄∗ → φπ+π− is incompatible with the
unitarity relation.

12. CONCLUSION

Let us brie�y summarize the results described in the present paper.
Following Ref. [19] we have shown in Sec.2 that the OZI rule violation in the

reaction (2) can be probably explained in the framework of the vector dominance
model.

In Secs.3 and 4 we have discussed two models Å Model A and Model B Å
describing different on-shell contributions to the reaction p̄p → φπ0 (see Figs.4
and 6). We argue that from the theoretical point of view Model B is substantiated
in greater extent than Model A. Nevertheless, as shown in Secs.5 and 6, the values
of BR(p̄p→ φπ0) given by Model B are much less than experimental data, while
Model A is in qualitative agreement with the data. At the same time, as shown
in Sec.7, Model A is not able to explain the fact that the process p̄p → φπ0 is
not seen when the p̄p system annihilates from the P state of protonium atom.

The recent data of the OBELIX Collaboration on the reaction p̄p → f ′2π
0

show that the OZI rule in this reaction is not satisˇed and, as shown in Sec.8,
this fact cannot be explained in the framework of the rescattering model.
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Following Ref. [54] we argue in Sec.9 that the large OZI rule violation in the
reaction p̄d → φπ−p at the ˇnal proton momenta in the range 0.4Å0.8 GeV/c
is a consequence of the OZI rule violation in the reaction p̄n→ φπ−.

Following Ref. [59] we argue in Sec.10 that some decays of the J/Ψ me-
son can shed light on the OZI rule violation in the p̄p annihilation at rest but
the accuracy of the existing data is clearly insufˇcient for drawing any deˇnite
conclusions.

Finally in Sec.11 it is shown that an analog of Model A in the reaction
p̄p→ φπ+π− is incompatible with the unitarity relation.

In spite of the partial success of Model A it is important to note that some
assumptions lying in the basis of this model seem questionable. First, it is
necessary to check numerically that if the widths of the K∗ and ρ mesons are
neglected, then the results will not essentially change (especially this concerns
the question of neglecting Γρ). Second, as argued in Sec.3, Model A does not
fully correspond to our assumption that the φ meson is created from the K and
K̄ mesons. Therefore, as pointed out in Refs. [19, 20], we have to take into
account the off-shell form factor for the K meson, but the data agree with Model
A if this form factor is not very important. The rescattering mechanism seems
also questionable from the following simple estimate. Since the K∗ meson lives
approximately 1/Γ∗ in the frame of reference where it is at rest, it is easy to see
then, when the K∗ meson decays, the distance between the K∗ and K mesons
in their c.m. frame is 2mk′/Γ∗m∗EK(k′) ≈ 6Fm. It seems doubtful that the
K∗ and K mesons can effectively interact being separated by such a distance.
On the other hand, the analogous distance between the ρ+ and ρ− mesons is of
about 2Fm, but the question arises whether it is possible to use the concept of ρ
meson in such a process.

To shed light on the problem of the OZI-rule violation in the reaction p̄p→
φπ0 new experimental data and theoretical results are needed. The most important
experimental quantities are BR(p̄p → K∗+K−) and BR(p̄p → φπ0) when the
p̄p system annihilates from the I = 1 P state of protonium atom, and BR(p̄p→
f ′2π

0) for the annihilation from the S and P states.
In view of the recent results of the Crystal Barrel Collaboration on the φπ0

and ωπ0 production in the p̄p annihilation in �ight [64], it is also interesting to
measure the K∗K production and to compare the data with the prediction of the
rescattering model [22].

From the theoretical point of view it is important to carry out calculations
not only in the on-shell approximation, but taking also into account the off-shell
contribution. The ˇrst results in this direction have been obtained in Refs. [59,65].
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