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The interplay of collective and noncollective excitations in spherical even-even nuclei is studied.
This is done using a version of the Quasiparticle-Phonon Model (QPM) which accounts for up to
three-phonon components in its excited-state wave functions and for the particle-particle channel of
the residual interaction. Modes, ranging from single-particle ones to collective ones, with isoscalar
and isovector nature and different multipolarity are included in the model basis. The structure of the
low-lying, negative- and positive-parity states are calculated for semimagic and neighbouring nuclei.
It is shown that the quasiparticle-phonon interaction is larger in the nuclei having two nucleons extra
closed shell, and the three-phonon terms in
uence considerably the structure of the low-lying states.
The low-lying M1 transitions linking 2+ states are investigated. The presence and in
uence of a
quadrupole low-lying isovector mode shared by several 2+ states is displayed. The excited state
structure of some N =84 nuclei, obtained in the QPM, is compared with the results of the Interacting
Boson Model. The domains of similarity and discrepancy between both models are discussed. The
properties of the low-lying 1− states and corresponding E1 transitions are investigated for some
N =82 nuclei. It is shown that these states can be interpreted as quadrupole-octupole two-phonon
states and their characteristics result from the interplay of isovector and isoscalar modes. Some
experimental evidences for the existence in 124Te of negative parity three-phonon states, involving
octupole excitations, are also discussed and comparison with QPM calculations is made.

ˆ¸¸²¥¤µ¢ ´µ ¢§ ¨³µ¤¥°¸É¢¨¥ ±µ²²¥±É¨¢´ÒÌ ¨ ´¥±µ²²¥±É¨¢´ÒÌ ¢µ§¡Ê¦¤¥´¨° ¢ Î¥É´µ-Î¥É´ÒÌ
¸Ë¥·¨Î¥¸±¨Ì Ö¤· Ì. „²Ö ÔÉµ° Í¥²¨ ¨¸¶µ²Ó§µ¢ ² ¸Ó ±¢ §¨Î ¸É¨Î´µ-Ëµ´µ´´ Ö ³µ¤¥²Ó Ö¤· . ‚µ²-
´µ¢ Ö ËÊ´±Í¨Ö ¢µ§¡Ê¦¤¥´´ÒÌ ¸µ¸ÉµÖ´¨° ¢±²ÕÎ ²  É·¥ÌËµ´µ´´Ò¥ ±µ³¶µ´¥´ÉÒ. “Î¨ÉÒ¢ ²µ¸Ó
µ¸É ÉµÎ´µ¥ ¢§ ¨³µ¤¥°¸É¢¨¥ ¢ ± ´ ²¥ Î ¸É¨Í -Î ¸É¨Í ,   É ±¦¥ ¨§µ¸± ²Ö·´Ò¥ ¨ ¨§µ¢¥±Éµ·´Ò¥
±µ³¶µ´¥´ÉÒ Î ¸É¨Î´µ-¤Ò·µÎ´µ£µ ¢§ ¨³µ¤¥°¸É¢¨Ö. ‚ · ¸Î¥É Ì ÊÎ¨ÉÒ¢ ²µ¸Ó ¡µ²ÓÏµ¥ µ¤´µÎ ¸É¨Î-
´µ¥ ¶·µ¸É· ´¸É¢µ.

� ¸¸Î¨É ´  ¸É·Ê±ÉÊ·  ´¨§±µ²¥¦ Ð¨Ì ¸µ¸ÉµÖ´¨° ¶µ²µ¦¨É¥²Ó´µ° ¨ µÉ·¨Í É¥²Ó´µ° Î¥É´µ¸É¨
¢ ¶µ²Ê³ £¨Î¥¸±¨Ì ¨ ¸µ¸¥¤´¨Ì ¸ ´¨³¨ Ö¤· Ì. �µ± § ´µ, ÎÉµ ±¢ §¨Î ¸É¨Î´µ-Ëµ´µ´´µ¥ ¢§ ¨³µ-
¤¥°¸É¢¨¥ ¸¨²Ó´¥¥ ¢ Ö¤· Ì, ¨³¥ÕÐ¨Ì ´  ¤¢  ´Ê±²µ´  ¡µ²ÓÏ¥, Î¥³ Ö¤·  ¸ § ³±´ÊÉµ° µ¡µ²µÎ-
±µ°. ‚²¨Ö´¨¥ É·¥ÌËµ´µ´´ÒÌ Î²¥´µ¢ ¢ ÔÉ¨Ì Ö¤· Ì ¢¥²¨±µ. ˆ¸¸²¥¤µ¢ ´Ò M1-¶¥·¥Ìµ¤Ò ³¥¦¤Ê
´¨§±µ²¥¦ Ð¨³¨ 2+-Ê·µ¢´Ö³¨. �µ± § ´µ, ÎÉµ ¶·¨ ´¨§±¨Ì Ô´¥·£¨ÖÌ ¢µ§¡Ê¦¤¥´¨Ö ´ ²¨Î¥¸É¢Ê¥É
¨§µ¢¥±Éµ·´ Ö ±¢ ¤·Ê¶µ²Ó´ Ö ¸¨² , ±µÉµ· Ö · ¸¶·¥¤¥²¥´  ¶µ ´¥¸±µ²Ó±¨³ 2+-Ê·µ¢´Ö³. � ¸¸Î¨-
É ´´ Ö ¢ · ³± Ì ±¢ §¨Î ¸É¨Î´µ-Ëµ´µ´´µ° ³µ¤¥²¨ ¸É·Ê±ÉÊ·  ´¨§±µ²¥¦ Ð¨Ì ¸µ¸ÉµÖ´¨° ¢ Ö¤· Ì
¨§µÉµ´µ¢ N = 84 ¸· ¢´¨¢ ¥É¸Ö ¸ Éµ°, ÎÉµ ¸²¥¤Ê¥É ¨§ ³µ¤¥²¨ ¢§ ¨³µ¤¥°¸É¢ÊÕÐ¨Ì ¡µ§µ´µ¢. �¡-
¸Ê¦¤ ÕÉ¸Ö ¸Ìµ¤¸É¢µ ¨ · §²¨Î¨Ö ¶·¥¤¸± § ´¨° ³µ¤¥²¥°. ˆ¸¸²¥¤µ¢ ´Ò ¸¢µ°¸É¢  ´¨§±µ²¥¦ Ð¨Ì
1−-¸µ¸ÉµÖ´¨° ¨ ¸µµÉ¢¥É¸É¢ÊÕÐ¨Ì E1-¶¥·¥Ìµ¤µ¢ ¢ Ö¤· Ì ¨§µÉµ´µ¢ N = 82. �µ± § ´µ, ÎÉµ ÔÉ¨
¸µ¸ÉµÖ´¨Ö ¸ ¢Ò¸µ±µ° ¸É¥¶¥´ÓÕ ¤µ¸Éµ¢¥·´µ¸É¨ ³µ£ÊÉ ¡ÒÉÓ ¨´É¥·¶·¥É¨·µ¢ ´Ò ± ± ¤¢ÊÌËµ´µ´´Ò¥
±¢ ¤·Ê¶µ²Ó-µ±ÉÊ¶µ²Ó´Ò¥. ˆÌ ¸¢µ°¸É¢  µ¶·¥¤¥²ÖÕÉ¸Ö Éµ´±µ° ¨£·µ° ¨§µ¸± ²Ö·´ÒÌ ±¢ ¤·Ê¶µ²Ó´µ°
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¨ µ±ÉÊ¶µ²Ó´µ° ¨ ¨§µ¢¥±Éµ·´µ° ¤¨¶µ²Ó´µ° ±µ³¶µ´¥´É µ¸É ÉµÎ´ÒÌ ¸¨². �¡¸Ê¦¤ ÕÉ¸Ö Ô±¸¶¥·¨-
³¥´É ²Ó´Ò¥ ¤µ± § É¥²Ó¸É¢  ¸ÊÐ¥¸É¢µ¢ ´¨Ö É·¥ÌËµ´µ´´ÒÌ ¸µ¸ÉµÖ´¨° µÉ·¨Í É¥²Ó´µ° Î¥É´µ¸É¨ ¢
124Te, ±µÉµ·Ò¥ § É¥³ ¸· ¢´¨¢ ÕÉ¸Ö ¸ ¶·¥¤¸± § ´¨Ö³¨ ±¢ §¨Î ¸É¨Î´µ-Ëµ´µ´´µ° ³µ¤¥²¨.

1. INTRODUCTION

As well known, the description of the structure and the properties of the
excited states in medium and heavy nuclei is a complicated task. It is obvious
a priori that no theory can account for all of the details of each individual nucleon
motion, because of the large number of degrees of freedom. This fact has led
to the formulation of various approaches, each convenient for a speciˇc domain
of problems. One important such domain is related to the existence in nuclei
of collective modes [1], mainly evinced by large electromagnetic transitions and
characteristic level spacing. Several models aimed at the problems related to
collective states have been proposed and used. As far as collective vibrational
states are concerned, there exist two lines of model development. The ˇrst of
them starts from the expected microscopic structure of the excitations, namely
keeps explicitly track of the underlying fermion structure. Such models, like
the Quasiparticle Phonon Model (QPM) [2,3] (also the Multiphonon model [4]),
use phonons (RPA or TDA) as building blocks for constructing more complicat-
ed states. The second type of models, formulates the problems expressing the
operators and wave functions in terms of superpositions of a few ideal bosons
(e.g., boson expansion and mapping technics [5Ä7], the Interacting Boson Mod-
el (IBM) [8]). The former type of models typically uses a sophisticated wave
function and relatively simple Hamiltonians. This is related to the fact that the
phonons can incorporate excitations with a different degree of collectivity Ä from
pure two-quasiparticle excitations to a superposition of many two-quasiparticle
components. This rich basis, to be effectively used, requires the account for the
Pauli principle, otherwise spurious solutions appear. It has been shown [3,9, 18]
that corrections due to the Pauli principle can be handled approximately in a
relatively simple way. The interpretation of the results within models using ide-
al bosons makes necessary some mapping to the fermion space to be performed.
Typically, the bosons in IBM are considered as counterparts of some two-fermion
excitations. Both approaches have their virtues and drawbacks. The QPM, as
representative of the so-called semimicroscopic models [2], has been used in the
investigation of spherical and deformed nuclei at different energy domains. The
large amount of results convincingly shows that this model gives valuable infor-
mation on the properties of the collective modes, both at low and high energies,
and on the fragmentation of these modes over the noncollective states in the
spectrum. This makes it possible to describe subtle properties stemming from the
interplay between collective and noncollective degrees of freedom. On the other
hand, the ideal boson-based models, some of which use a considerable number
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of parameters, describe in a smooth way the properties of groups of collective
excited states (usually re
ecting some dynamical symmetry of the Hamiltonian)
throughout different nuclei. The latter gives the possibility of making systematics
over a large number of nuclei. The drawback of these models, however, is the
restricted basis, the large number of parameters and the lack of details in the
description.

In spite of the usefulness of the IBM and of the QPM, the description they
provide is only approximate. In the framework of IBM the noncollective degrees
of freedom are neglected while the collective basis of QPM is very restricted. The
new experimental information obtained by means of high-resolution multidetector
systems points to a very complicated structure of the low-lying states. Even small
admixtures are important to explain the observed values. Recent theoretical stud-
ies of energy-level statistics of low-lying excited states display a nearly Gaussian
orthogonal ensemble distribution (see, e.g., [10]). The latter means that the nu-
clear dynamics is chaotic to a large extent, which suggests a complex interplay
of many factors. An important place among them must be certainly reserved for
the interplay between collective and noncollective modes, at least as far as the
low-lying states are concerned.

In a number of papers [11Ä16], we have studied the low-lying excited states
in medium and heavy even-even spherical nuclei in the framework of the QPM.
Our main interest was concentrated on the increase of the collective basis of
the model and the impact of the latter on the properties of the low-lying states.
Until recently, the basis of the QPM was restricted to one- and two-phonon
states. We have increased the number of phonons in the model wave function
up to three [11, 14]. We want to present here the most important, in our view,
results mainly concerning negative parity two- and three-phonon states involving
quadrupole and octupole excitations.

Section 2 of this paper contains a concise but complete presentation of the
QPM. In an Appendix a detailed presentation of the background of the model
is presented, including some new results. The next ˇve sections are devoted to
different applications of the formalism in different groups of nuclei. Sections 3,
4, 5, and 6 are devoted to the description of dipole two-phonon states in nuclei
with N =82 and N =84 and of isovector states in some N=84 nuclei. Section 7
presents the investigation of three-phonon negative parity states in 124Te. In the
conclusion, a summary of the main results is given and suggestions for further
research, both theoretical and experimental, are formulated.

2. GENERAL DESCRIPTION OF THE MODEL

There are several textbooks [2,3] and review articles [17-19] where the main
ideas of QPM are presented. In this section, we present in detail the extension
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of the model, which consists in the incorporation of three-phonon components in
the excited-state wave function.

Following Refs. 2,17 (see also the Appendix), we shall introduce some basic
notations. Building blocks of the model basis are the quasiparticle RPA phonons
deˇned as follows:

Q+
λµi =

1

2

∑
jj′

{
ψλijj′A

+(jj′;λµ)− (−1)λ−µφλijj′A(jj′;λ− µ)
}
, (1)

where the quantities j stand for all single-particle quantum numbers but the mag-
netic ones. The quantities A+(jj′;λµ) and A(jj′;λ − µ) (see eq. (27) in the
Appendix) are two-quasiparticle creation and annihilation operators, respectively,
coupled to angular momentum λ. Further, ψλijj′ and φλijj′ are the forward and
backward RPA amplitudes, respectively, deˇning a phonon with angular momen-
tum λ and root number i. The obtained phonons are not boson operators and
we use commutation relations which take care of their fermion structure [3], thus
accounting for the violation of the Pauli principle. We will refer to the RPA
phonon states using the notation [λπi ]RPA. The phonons are of different degree
of collectivity, from collective ones (e.g., [2+

1 ]RPA) to pure two-quasiparticle
conˇgurations.

The following commutation relations can be obtained if the fermion structure
of the phonon operators is taken into account:

[
Qλµi, Q

+
λ′µ′i′

]
= δλµ,λ′µ′

1

2

∑
jj′

(
ψλijj′ψ

λi′

jj′ − φλijj′φλi
′

jj′

)
−∑

jj′j2

{
ψλij′j2ψ

λ′i′

jj2
〈j′m′ j2m2|λµ〉〈jm j2m2|λ′µ′〉

−(−1)λ+µ+λ′+µ′φλijj2φ
λ′i′

j′j2〈jm j2m2|λ− µ〉〈j′m′ j2m2|λ′ − µ′〉
}
α+
jmαj′m′,

(2)
where Q+

λµi is deˇned in eq. (1). The quantities 〈j′m′ j2m2|λµ〉 are the Clebsch-

Gordan coefˇcients. The operators α+
jm and αjm are the creation and annihilation

quasiparticle operators, introduced by eq. (23). The double commutator of the
phonon operators, taken in the so-called diagonal approximation (i.e., preserving
the orthogonality of the two-phonon states), reads [3]:[[

Qλ′1µ′1i′1 , Q
+
λ1µ1i1

]
, Q+

λ2µ2i2

]
=

1

2

∑
λ′2µ
′
2i
′
2

Ikl

(
δλ1µ1,λ′1µ

′
1
δλ2µ2,λ′2µ

′
2
+ (−)λ1+λ2−Iδλ1µ1,λ′2µ

′
2
δλ2µ2,λ′1µ

′
1

)
×

〈λ1µ1 λ2µ2|Ik〉〈λ′1µ′1 λ′2µ′2|Ik〉KI(λ1i1 λ2i2) Q
+
λ′2µ
′
2i
′
2
,

(3)
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where

KI(λ1i1 λ2i2) = λ̂1λ̂2(2− δλ1λ2δi1i2)×∑
j1j2j3j4

m1m2m3m4

(
ψλ1i1
j1j2

ψλ2i2
j2j4

ψλ1i1
j1j3

ψλ2i2
j2j4
− φλ1i1

j1j2
φλ2i2
j2j4

φλ1i1
j1j3

φλ2i2
j2j4

)
j1 j2 λ1

j3 j4 λ2

λ1 λ2 I


(4)

the quantity in curly brackets is a 9j symbol [20] and here and further λ̂ =√
2λ+ 1.

The model Hamiltonian in terms of phonons reads:

H =
∑
λµi

ωλiQ
+
λµiQλµi +

1

2

∑
λ1λ2λ3
i1i2i3
µ1µ2µ3

〈λ1µ1 λ2µ2|λ3−µ3〉 ×

Uλ1i1
λ2i2

(λ3i3)[Q
+
λ1µ1i1

Q+
λ2µ2i2

Qλ3−µ3i3
+ h.c.]. (5)

The quantities ωλi denote the energies of the RPA phonons. The matrix elements
Uλ1i1
λ2i2

(λ3i3) are deˇned in eq. (45) in the Appendix.
The Hamiltonian (5) is diagonalized in a basis of wave functions constructed

as a superposition of one-, two- and three-phonon components [14]:

Ψν(JM) =

{∑
i

Ri(Jν)Q
+
JMi +

∑
λ1i1
λ2i2

Pλ1i1
λ2i2

(Jν)
[
Q+
λ1i1

Q+
λ2i2

]
JM

+
∑
λ1i1
λ2i2
λ3i3I

T λ1i1
I

λ2 i2
λ3i3

(Jν)
[[
Q+
λ1i1

Q+
λ2i2

]
I
Q+
λ3i3

]
JM

}
Ψ0, (6)

where [. . .]JM stands for angular momentum coupling, Ψ0 represents the phonon
vacuum state and the coefˇcients R, P , and T are unknown amplitudes. The
index ν speciˇes the particular excited state.

The normalization condition reads:

< Ψν(JM) | Ψν(JM) >=

=
∑
i

[Ri(Jν)]
2
+ 2

∑
λ1i1λ2i2

[
Pλ1i1
λ2i2

(Jν)
]2

KI(λ1i1 λ2i2)+

+6
∑
λ1i1
λ2i2
λ3i3I

[
T λ1i1
I

λ2i2
λ3i3

(Jν)
]2

CJI (λ1i1, λ2i2, λ3i3) = 1,
(7)

where

KI(λ1i1 λ2i2) = 1 +
1

2
KI(λ1i1 λ2i2)
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and

CJI (λ1i1, λ2i2, λ3i3) = 1 +
3

2
KI(λ1i1 λ2i2)

+
1

2
KI(λ1i1 λ2i2)

∑
I′

[
U(λ1λ2Jλ3; I, I

′)
]2
KI′(λ2i2 λ3i3).

The quantities K account for the Pauli principle and are deˇned through eq. (4).
The quantities U stand for the Jahn coefˇcients [20] (this somewhat unusual
notation is used to distinguish these quantities from the matrix elements U deˇned
by eq. (45)). After applying a variational procedure [3], a system of equations
can be written in the following form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ωJi − ηJν)Ri(Jν)−
∑

λ1i1λ2i2

Pλ1i1
λ2i2

(Jν)Uλ1i1
λ2i2

(Ji)KJ(λ1i1 λ2i2) = 0

[ωλ1i1 + ωλ2i2 − ηJν ]Pλ1i1
λ2i2

(Jν)− 1

2

∑
i′

Uλ1i1
λ2i2

(Ji′)Ri′ (Jν)

−3
∑

λ′1i
′
1λ
′
2i
′
2

T
λ′1i
′
1λ
′
2i
′
2

λ1λ2i2
(Jν)U

λ′1i
′
1

λ′2i
′
2
(λ1i1)C

J
λ1

(λ′1i
′
1λ
′
2i
′
2λ2i2) = 0

[
ωλ′1i′1 + ωλ′2i′2 + ωλ′3i′3 − ηJν

]
T
λ′1i
′
1λ
′
2i
′
2

Iλ′3i
′
3

(Jν)−∑
i′′

P Ii
′′

λ′3i
′
3
(Jν)U

λ′1i
′
1

λ′2i
′
2
(Ji′′)KJ(Ii′′ λ′i′) = 0,

(8)

where ηJν is the energy of the excited state υ with angular momentum J .
The coefˇcients R and T can be expressed as functions of the coefˇcients P

and the system of equations can be rewritten as a system of equations only for
the coefˇcients P . The corresponding expressions are:

Ri′(Jν) =

∑
λ1i1λ2i2

Pλ1i1
λ2i2

(Jν)Uλ1i1
λ2i2

(Ji)KJ(λ1i1 λ2i2)

ωJi − ηJν
,

T
λ′1i
′
1λ
′
2i
′
2

Iλ′3i
′
3

(Jν) =

∑
i′′
P Ii

′′

λ′3i
′
3
(Jν)U

λ′1i
′
1

λ′2i
′
2
(Ii′′)KJ(Ii′′ λ′3i

′
3)

ωλ′1i′1 + ωλ′2i′2 + ωλ′3i′3 − ηJν
.

After substitution in the second equation of the system of equations (8), we
obtain:

[ωλ1i1 + ωλ2i2 − ηJν ]Pλ1i1
λ2i2

(Jν)−

−1

2

∑
λ′1i
′
1λ
′
2i
′
2

∑
i′

Uλ1i1
λ2i2

(Ji′)
P
λ′1i
′
1

λ′2i
′
2
(Jν)U

λ′1i
′
1

λ′2i
′
2
(Ji)KJ(λ′1i

′
1 λ
′
2i
′
2)

ωJi − ηJν
−
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−3
∑

λ′1i
′
1λ
′
2i
′
2

∑
i′′

U
λ′1i
′
1

λ′2i
′
2
(λ1i1)C

J
λ1

(λ′1i
′
1, λ
′
2i
′
2, λ2i2)×

×
P
λ′1i
′′

λ′2i
′
2

(Jν)U
λ′1i
′
1

λ′2i
′
2
(λ1i

′′)KJ(λ1i
′′ λ′2i

′
2)

ωλ′1i′1 + ωλ′2i′2 + ωλ3i3
− ηJν

= 0.

In the general derivation of the above equations [3] (without a diagonal
approximation for the quantities K), for the two-phonon case, energy shifts of
the two-phonon poles appear. They are due to the inclusion of Hamiltonian terms
which do not contribute in RPA, but contribute when the exact commutation
relations between phonons are taken into account in QPM. In fact, the energy
shifts are proportional to only nondiagonal quantities K . In the derivation here,
we use the diagonal approximation from the very beginning and that is why such
shifts don't appear in eqs. (8). Moreover, the shifts of the two-phonon poles are
estimated to be small in spherical nuclei [3].

The electric transition operator in terms of phonons reads [2]:

M(Eλ) =
∑
µi

Xi(Eλ) (Q+
λµi + (−1)λ−µQλ−µi)

+
∑
λ1µ1i1
λ2µ2i2µ

〈λ1µ1 λµ|λ2µ2〉
[
Fλ1i1
λ2i2

(Eλ)Q+
λ2µ2i2

Qλ1µ1i1

+ F
λ1i1
λ2i2(Eλ)

(
Q+
λ2µ2i2

Q+
λ1µ1i1

+ h.c.
)]
, (9)

where
Xi(λ, τ) =

∑
jj′

fλtrjj′ u
(+)
jj′ (ψ

λi
jj′ + ϕλijj′ ),

Fλ1i1
λ2i2

(λ, τ) = λ̂1λ̂2

∑
jj′j′′

τfλtrjj′ v
(−)
jj′

{
λ1 λ2 λ
j j′ j′′

}(
ψλ1i1
j′j′′φ

λ2i2
j′′j + φλ1i1

j′j′′ψ
λ2i2
j′′j

)
,

F̄λ1i1
λ2i2

(λ, τ) = λ̂1λ̂2

∑
jj′j′′

τfλtrjj′ v
(−)
jj′

{
λ1 λ2 λ
j j′ j′′

}(
ψλ1i1
j′j′′ψ

λ2i2
j′′j + φλ1i1

j′j′′φ
λ2i2
j′′j

)
.

The quantities fλtrjj′ are the single-particle transition matrix elements, the quantities
in the curly brackets are the 6j symbols [20].

Using the operator (9) and the excited state wave function (6), we obtain for
the reduced transition probabilities the following expressions:

B(Eλ; 0+
g.s. → Jν) =

1

λ̂2

∣∣∣∣∣∑
τ

e
(λ)
eff (τ)

[∑
i

Xi(λ, τ)Ri(Jν)−
∑

λ1i1λ2i2

Fλ1i1
λ2i2

(λ, τ)Pλ1i1
λ2i2

(Jν)

]∣∣∣∣∣
2

,

(10)
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B(Eλ; Iρ→ Jν) =

[
Ĵ

Î

]2 ∣∣∣∣∣∑
τ

e
(λ)
eff (τ)

[
−Ĵ−1

∑
i

F̄ Ii
′

Ji (λ, τ)Ri(Jν)Ri′ (Iρ)−

Î
∑

λ1i1λ2i2λ′i′

F̄λ1i1
λ2i2

(λ, τ)Pλ1i1
λ′i′ (Jν)Pλ

′i′

λ2i2
(Iρ)

{
J I λ
λ2 λ1 λ′

}
+

+λ̂−1
∑
ii′

Xi(λ, τ)

[
Ri′(Iρ)P

Ii′

λi (Jν) +
Î

Ĵ
P Ii

′

λi (Iρ)Ri′ (Jν)

]
−

−λ̂−1
∑

λ1i1λ2i2i′

Fλ1i1
λ2i2

(λ, τ)

[
Î

Ĵ
Ri′(Iρ)T

λ1i1λ2i2
λ Ii′(Jν) + T λ1i1λ2i2

λJi′ (Iρ)Ri′(Jν)

]
+

+ 3λ̂−1
∑
i

Xi(λ, τ)
∑

λ1i1λ2i2

×

×
[
Pλ1i1
λ2i2

(Iρ)T λ1i1λ2i2
I λi′ (Jν) +

Î

Ĵ
T λ1i1λ2i2
Jλi′ (Iρ)Pλ1i1

λ2i2
(Jν)

]]∣∣∣∣∣
2

.

(11)

3. THE STRUCTURE OF LOW-LYING EXCITED STATES IN THE
SEMIMAGIC N = 82 AND THE NEIGHBOURING N = 84

EVEN-EVEN NUCLEI

The low-energy spectrum of the atomic nuclei reveals interesting features
of the interplay between collective and noncollective excitations. The observed
effects are related to the initial stage of the dissipation of the collective properties
in atomic nuclei. Usually, the phenomenon is associated with the excitation
energies in the domain of giant resonances, where the interaction of the collective
mode with surface vibrations leads to its damping and it is seen as a large
spreading width of the collective state [19, 21]. At low excitation energies the
strength of the collective mode usually is shared between several excited states, but
in some cases the strength is distributed within a few hundred keV energy range.
This effect is very well established in the magic, semimagic and their neighbouring
nuclei. A schematic picture presented in Fig.1 explains qualitatively the reason for
that. The two nuclei 144Sm (semimagic N =82) and 144Nd (having two neutrons
extra closed shell) are discussed. The energies of the two-quasiparticle states with
Jπ = 2+ are plotted. It is seen for both nuclei that the energies of several 2+ two-
quasiparticle states are between 2.5 and 4.0 MeV. On the other hand, the properties
of the ˇrst 2+ state in both nuclei are very different. The ˇrst 2+ state in 144Nd
is a collective state (B(E2; 2+

1 → g.s.)=16 W.u.) and its energy is relatively
far from the ˇrst group of two-quasiparticle states. The 144Nd is a vibrational
nucleus and the two-phonon quadrupole states are expected at excitation energy



1464 GRINBERG M., STOYANOV Ch., TSONEVA N.

Fig. 1. Non-perturbed energy (i.e. the sum of the energies of the constituent RPA phonons)
of one-, two- and three-phonon states with Jπ = 2+ and energies of the two-quasiparticle
states in (a) 144Sm and (b) 144Nd

equal to twice the energy of the ˇrst 2+ state. The energy of the expected triplet
is plotted in Fig. 1. It is seen that the triplet and the two-quasiparticle states are
at least 1 MeV apart. The energy of the 2+

1 state in 144Sm displays a different
picture. Its energy is 1.628 MeV and it is a collective state (seen from the
large B(E2)=13 W.u., which is however smaller than the corresponding value
for 144Nd), but the energy of the expected two-phonon quadrupole-quadrupole
multiplet is around 3.2 MeV Ä just in the middle of the two-quasiparticle group.
The comparison of these two nuclei leads to the conclusion that the strength of
the two-phonon states in 144Sm could be fragmented over several excited states,
while for 144Nd one could expect more concentrated two-phonon components.
This effect, for semimagic nuclei, has been investigated in Refs. 22,23. The
latter is seen from Fig. 2, which presents the distribution of the [2+

1 ⊗2+
1 ]2+

component over 2+ states in 144Nd and 144Sm. The calculations were performed
using the wave function (6). The histograms are in agreement with the above
considerations. The two-phonon [2+

1 ⊗2+
1 ]2+ component is shared between two

states in 144Nd and the larger portion is concentrated in the 1.7 MeV excited
state. The two-phonon component in 144Sm is distributed over several states
within 1 MeV energy range. This example demonstrates that the properties of
the low-lying states around closed shells are very sensitive to the details of the
fragmentation of the two-phonon components of the wave function (6). The last
statement raises the question about the dependence of the presented results on the
size of the collective basis. In QPM, the in
uence of the three-phonon term on the
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Fig. 2. Distribution of the two-phonon [2+
1 ×2+

1 ]2+ component in (a) 144Sm and (b) 144Nd

two-phonon one is crucial, as it can be seen from eqs. (5) and (45). The model
interaction mixes states differing by one phonon. This is the reason, why four-
and more complicated multiphonon states would change the distribution of the
two-phonon component much less than the three-phonon states. Some examples
are given in Table 1 ∗. In general, the energies of the excited states are not very
sensitive to the basis. For example, the energy of 2+

2 state in 144Nd is changed
from 1.772 MeV to 1.730 MeV when the three-phonon components are taken
into account (see Table 7).

Quantities bearing much interesting information are the B(E2) values in-
volving the states with a large two-phonon [2+

1 ⊗2+
1 ]2+ component. As shown in

Fig. 2, such states are the 2+
2 and 2+

3 states in 144Nd and the 2+
5 state in 144Sm

(in Fig. 2, the notation 2+
22 is used for the 2+

5 state, to stress the dominance
of the [2+

1 ⊗2+
1 ]2+ component in the structure of this state). It is seen that the

in
uence of the three-phonon terms is more important for 144Nd than for 144Sm.
The reason for this effect is the different collectivity of the quadrupole phonon
in both nuclei. The larger collectivity of the 2+

1 state in 144Nd leads to larger
quasiparticle-phonon interaction matrix element (45) and consequently to a larger
coupling of the two- and three-phonon quadrupole components, which increase
the contribution of the [2+

1 ⊗2+
1 ]2+ component in the wave function (see Table 7).

∗Tables 4 and 7 contain the energies and the structure of the excited-state wave function for two
cases Ä with and without the three-phonon components in the basis.
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Table 1. Relative in
uence of the three-phonon component of the wave function (6) on
the B(E2) value in QPM

B(E2) Exp. QPM with 3ph. QPM without 3ph. 3 ph. effect

[e2b2] [e2b2] [e2b2] [%]

144Nd 2+
2 → g.s. 0.001(1)(a) 0.0020 0.0036 44

2+
3 → g.s. 0.0045(b) 0.0073 0.0054 35

2+
2 → 2+

1 0.095(21)(a) 0.1200 0.0840 43

2+
3 → 2+

1 0.020(10)(a) 0.0400 0.0560 29

144Sm 2+
5 → 2+

1 - 0.0821 0.0816 0.6

2+
5 → g.s. - 0.0006 0.0006 0

aTaken from Refs. 31,33.
bTaken from Ref. 26.

For example, depending on the basis, the contribution of the [2+
1 ⊗2+

1 ]2+ compo-
nent in the 2+

2 states is changed from 48% (in the case when the three-phonon
components are not taken into account) to 61% (in the case when the three-phonon
components are taken into account). A similar redistribution is found for the 2+

3

state in 144Nd, while the structure of the two-phonon 2+
5 state in 144Sm is un-

changed by the interaction with three-phonon components (see Table 4). Table 1
convincingly shows that the in
uence of the three-phonon components is more
important for the N =84 nuclei than for the semimagic N =82 nuclei.

Table 2. Parameters of the Woods-Saxon potential (A=141, Z=59)

r [fm] V0 [MeV] κ [fm2] α [fm−1]

N 1.27 45.95 0.413 1.613

Z 1.31 53.435 0.349 1.538

The parameters that have been used in the calculations are the following.
The parameters of the Woods-Saxon potential are taken from Refs. 24,25 (see
Table 2) and the relevant part of the obtained single-particle spectrum can be found
in Fig.3. The pairing coupling constants are chosen according to Ref. 2. For the
mass region A≈144, the values of the pairing constantsGn and Gp are 0.116 MeV
and 0.119 MeV, respectively. The radial dependence of the separable multipole
interaction is taken in the form f(r) ∼ dV (r)/dr, where V (r) represents the
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Fig. 3. Energies of the (a) proton and (b) neutron single-particle states for A=141 (only
the states around the Fermi level are plotted)

central part of the Woods-Saxon potential. The separable interaction strength
is considered as a phenomenological parameter ˇxed so as to reproduce the
experimental energy of the corresponding lowest collective states for the states
with Jπ = 2+ and 3−. For the rest of the multipolarities, the ˇrst RPA root
energy is usually ˇxed to be close to the ˇrst two-quasiparticle state energy [17].
In the cases, when the reliable experimental information shows that a particular
lowest state has a collective component, the parameters are ˇxed in the same way
as for the quadrupole and octupole collective states. In the present investigation,
this is the case of the 4+

1 state in 144Nd [26]. The particle-particle channel is
included only for Jπ = 2+ and 3− . The strength of the interaction in this channel

between protons and between neutrons has been taken to be G(2)
p = G

(2)
n = 0.8Å

0.85 κ
(2)
0 and G

(3)
p = G

(3)
n = 0.6Å0.7 κ

(3)
0 for the multipolarities 2+ and 3−,

respectively. Here, κ(2)
0 (κ(3)

0 ) is the isoscalar quadrupole (octupole) parameter
for the particle-hole separable residual interaction. In the present calculation,
phonons with λπ = 1−, 2+, 3−, 4+, 5− and 6+ and several roots for each
multipolarity are included. The isovector constant for the 1− states is chosen in
a way to reproduce correctly the energy of the isovector dipole resonance.

The structure of the low-lying states is calculated for several nuclei with
N = 84 (140Ba, 142Ce, 144Nd, and 146Sm) and N = 82 (138Ba, 140Ce, 142Nd,
and 144Sm). In general, the parameters used for the considered nuclei coincide
within 5%.

For the RPA positive parity states with low energy and J ≤ 6 in the N=82
isotones, the main contribution comes from the single-particle proton conˇgura-
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tions 1g7/2 and 2d5/2. The latter correspond to the ˇlled subshells in 138Ba and
140Ce and in 142Nd and 144Sm, respectively. The [2+

1 ]RPA state is a collective

one, containing π[1g7/2]
2 (∼ 35 %) and π

[
2d5/2

]2
(∼ 22 %) as major compo-

nents for 140Ce and 138Ba. The main component for 144Sm (see Table 3) and
142Nd are π

[
2d5/2

]2
(∼ 34 %) and π

[
1h11/2

]2
(∼ 22 %). The other collective

RPA state is the [3−1 ]RPA state. The [3−1 ]RPA state obtained in our calculations
contains 74 % of the π

[
2d5/21h11/2

]
conˇguration and smaller admixtures of the

ν
[
3s1/22f7/2

]
and π[1g7/21h11/2] conˇgurations, which is consistent with the

estimates given in Refs. 27,28. A detailed analysis of the structure of the RPA
states within QPM for 142Nd can be found also in Ref. 28.

Table 3. Structure of some RPA phonons (only components exhausting more than 5%
are quoted) and values of B(Eλ) ↑ for 144Sm

λπi ωλπi [MeV] Structure B(E2) ↑ [W.u.]

2+
1 1.700 4%ν[1h11/22f7/2] + 34%π[2d5/2]2 71.6

+22%π[1h11/2]2 + 8%π[2d5/23s1/2]

+7%π[1g7/22d3/2] + 7%π[1g7/2]2

2+
2 2.678 62%π[2d5/2]2 + 13%π[1h11/2 ]2 5.5

+10%π[1g7/22d5/2]

2+
3 2.876 87%π[1g7/22d5/2] + 6%π[1h11/2]2 1.5

2+
4 3.146 87%π[1g7/2]2p + 10%π[1h11/2 ]2 0.02

3−1 1.900 74%π[2d5/21h11/2] 268.8

4+
1 2.425 94%π[2d5/2]2 53.2

The structure of some excited states in 144Sm is given in Table 4. The
ˇrst excited 2+ and 3− states described by (6) are composed mainly of the
corresponding collective RPA phonons (> 90 %, see Table 4). The comparison
between the calculated and experimental values for the B(E2) and B(E3) rates
from these states to the ground state can be found in Table 10.

Due to the magic number of neutrons, the low-lying excited states of N =82
nuclei are expected to be mainly of noncollective character. Nevertheless, the
reduced E2 and E3 transition probabilities from the ˇrst 2+ and 3− states,
respectively, are larger than 10 W.u., which indicates their collective nature
[29, 30]. It should be pointed out that the general trend of decrease of the
3−1 state energy [27, 28], going from 138Ba to 144Sm, is reproduced in our
calculations with only slight changes of the parameters. The better agreement
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of our results with experiment, concerning the 3−1 states, in comparison with the
agreement of the results from Ref. 27, is due to the large basis of single-particle
components taken into account.

Table 4. Energies and structure of the ˇrst 2+, 3− and 4+ states in 144Sm. Only the
main components are presented

State Exp. QPM with 3 ph. QPM without 3 ph.

E [MeV] E [MeV] Structure [%] E [MeV] Structure [%]

2+
1 1.660 1.628 96.9%[2+

1 ]RPA+ 1.628 96.9%[2+
1 ]RPA

+2.7%[3−1 ⊗ 3−1 ] +2.7%[3−1 ⊗ 3−1 ]
2+

2 2.423 2.560 78%[2+
2 ]RPA 2.560 78%[2+

2 ]RPA

+5.8%[2+
1 ⊗ 4+

1 ] +5.8%[2+
1 ⊗ 4+

1 ]

2+
3 2.799 2.808 78.6%[2+

3 ]RPA 2.808 78.6%[2+
3 ]RPA]

+1.7%[2+
1 ⊗ 4+

2 ] +1.7%[2+
1 ⊗ 4+

2 ]

2+
5 3.426 3.323 20.9%[2+

5 ]RPA 3.323 21.1%[2+
5 ]RPA

+51.9%[2+
1 ⊗ 2+

1 ] +51.9%[2+
1 ⊗ 2+

1 ]

3−1 1.810 1.809 93.7%[3−1 ]RPA 1.809 93.8%[3−1 ]RPA

+3.4%[2+
1 ⊗ 3−1 ] +3.4%[2+

1 ⊗ 3−1 ]

4+
1 2.191 2.136 94.2%[4+

1 ]RPA 2.136 94.3%[4+
1 ]RPA

+2%[4+
1 ⊗ 4+

1 ] +2%[4+
1 ⊗ 4+

1 ]

4+
2 2.588 2.637 94.9%[4+

2 ]RPA 2.638 95%[4+
2 ]RPA

Several E2 transitions in 144Sm are compared with the corresponding experi-
mental values in Table 5. The structure of the quadrupole-quadrupole two-phonon
state (denoted 2+

22 in Table 5) is given in Table 4 (the two-phonon state is in fact
the 2+

5 excited state). The states with an index (23) (see the caption of Table 5)
have a large two-phonon quadrupole-octupole component. The [2+

1 ⊗3−1 ]Jπ com-
ponent exhausts from 82% to 95% of the norm of the wave function of the states
members of the quadrupole-octupole multiplet. The calculated reduced transition
probabilities for 140Ce are compared with the measured ones in Table 11. The
data from the nanosecond lifetime measurements are taken from Ref. 15.

The calculations and comparison with the experimental data allow one to
conclude that the structure of the low-lying excited states in N =82 nuclei is
relatively simple in the sense that only a single component is dominant. This
is due to the relatively weaker quasiparticle-phonon interaction for semimagic
nuclei.
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Table 5. E2 transition properties of several states in 144Sm calculated in QPM. The
notations λ+

22 and λ−23 are used for the states belonging to the quadrupole-quadrupole
(22) and quadrupole-octupole (23) multiplets

Iπ Jπ B(E2; Iπ → Jπ)[W.u.]

Exp. QPM
2+

22 2+
1 - 11.4

4+
22 2+

1 - 8.1

1−23 3−1 16.6(40)(a) 13.7

2−23 3−1 7.8(+6.6
−5.1)(b) 10.7

3−23 3−1 5.5(+5.7
−5.5)(b) 10.8

4−23 3−1 4.8(+2.9
−2.6)(b) 11.6

5−23 3−1 8.6(+11.6
−4.8 )(b) 12.9

aTaken from Ref. 54
bTaken from Ref. 79.

Let us consider the structure of the low-lying states in 144Nd obtained in
RPA. The main characteristics of several of them are given in Table 6. For the
collective [2+

1 ]RPA state the largest neutron RPA forward amplitude comes from
the [2f7/2]

2 two-quasiparticle component. The structure of 144Nd was studied in
detail in the framework of the Cluster Vibrator Model (CVM) [31]. This [2f7/2]

2

component is important also in the structure of the neutron d-boson obtained by
means of a mapping procedure in the CVM [31]. The next large contribution in
the CVM comes from the [2f7/22p3/2] neutron conˇguration and has nearly the
same amplitude as the [2f7/2]

2 component. In our calculations, the [2f7/22p3/2]
two-quasiparticle component has at least a three times smaller contribution to
the [2+

1 ]RPA state than the corresponding contribution to the neutron d-boson
in the CVM. The smaller contribution of [2f7/22p3/2] in comparison with the
[2f7/2]

2 component seems to be in agreement with the experimental data given
in Ref. 32. This discrepancy between the two models comes mainly from the
different single-particle level spacing used in the calculations. For 144Nd, the
[2+

1 ]RPA state is very collective and has 55% and 45% contributions from neutron
and proton two-quasiparticle components, respectively. The contributions of the
neutrons and the protons in the structure of the [2+

2 ]RPA state in 144Nd state are
60% and 40%, respectively, and the smaller B(E2; g.s. → [2+

2 ]RPA) shows that
this state is considerably less collective than the [2+

1 ]RPA state (see Table 6). The
main neutron components of the [2+

2 ]RPA state have signs opposite to those of
the proton ones. This means that the [2+

2 ]RPA state exhibits an isovector origin in
contrast to the [2+

1 ]RPA state. This property will be discussed more quantitatively
in the next section.
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Table 6. Structure of the ˇrst RPA phonons (only the largest components are given) in
144Nd

λπi ωλπi [MeV] Structure B(Eλ) ↑ [e2b2]

2+
1 0.998 0.77ν[2f7/2 ]2 + 0.55π[2d5/2]2 0.48

0.22ν[2f7/23p3/2] + 0.45π[1h11/2 ]2

0.19ν[1h11/22f7/2] + 0.39π[1g7/2]2

2+
2 1.997 −1.09ν[2f7/2 ]2 + 0.65π[2d5/2 ]2 0.03

−0.12ν[1i13/2 ]2 + 0.35π[1g7/2]2

−0.06ν[2f7/23p3/2] + π[1h11/2]2

4+
1 1.780 1.1ν[2f7/2]2 + 0.48π[2d5/2 ]2 − 0.3π[1g7/22d5/2] 0.06

The parameters for the Jπ=4+ states in RPA are ˇxed so that the [4+
1 ]RPA

state is not a pure two-quasiparticle state, although the main component is the
neutron [2f7/2]

2 (75 %Ä85 %). Small admixtures of two-quasiparticle proton
conˇgurations (∼ 3Ä6 %) are also present. This structure is in agreement with
the experimental results from Ref. 26.

The wave function structure (6) of the ˇrst three quadrupole states in 144Nd
is given in Table 7. The corresponding calculated electromagnetic transitions for
144Nd are given in Table 8. The comparison with the experimental data shows
a satisfactory agreement. The obtained results are in average similar to those of
Refs. 31,33 for 144Nd.

The ˇrst 2+ state is predominantly a one-phonon collective state. The con-
tribution of the one-phonon component gives 88.7% in the norm of the wave
function. The second 2+ state has a large two-phonon component (61%). This
causes the strong E2 transition to the ˇrst 2+ state. The strength of the [2+

2 ]RPA

state, due to the quasiparticle-phonon interaction of QPM (see eq. (44)), is frag-
mented mainly over the 2+

2 and 2+
3 states (see Table 7).

The 4+
1 and 4+

2 states share the one-phonon [4+
1 ]RPA component and the two-

phonon quadrupole-quadrupole [2+
1 ⊗ 2+

1 ]4+ component. According to Ref. 26,
the 4+

1 state should have a collective one-phonon component, two-quasiparticle
components and a two-phonon component to explain the large B(E4) value
(12 W.u.). We can see from Table 7 that the 4+

1 state has a large one-phonon
component (∼ 66 %) and a considerable two-phonon component (∼ 24 %). In this
sense, our results are in agreement with the results of Ref. 26. The experimental
B(E2; 4+

1 → 2+
1 ) values are also well reproduced (see Table 8). To complete our

discussion on the 4+
1 state, we should say that the g-boson obtained by means

of a mapping procedure in the framework of CVM [31] is much more collective
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Table 7. Energies and structure of the ˇrst 2+ and 4+ states in 144Nd. Only the main
and larger than 0.1% components are presented

State Exp. QPM with 3 ph. QPM without 3 ph.

E [MeV] E [MeV] Structure [%] E [MeV] Structure [%]

2+
1 0.697 0.709 88.7%[2+

1 ]RPA 0.714 89.2 % [2+
1 ]RPA

+6%[2+
1 ⊗ 4+

1 ] +6 % [2+
1 ⊗ 4+

1 ]

+0.1%[[2+
1 ⊗ 2+

1 ]1 ⊗ 2+
1 ]

2+
2 1.561 1.731 30%[2+

2 ]RPA 1.772 43.7 % [2+
2 ]RPA

+61%[2+
1 ⊗ 2+

1 ] + 48.4 % [2+
1 ⊗ 2+

1 ]

+1.8%[[2+
1 ⊗ 2+

1 ]4 ⊗ 4+
1 ]

2+
3 2.066 1.999 58.9%[2+

2 ]RPA 2.039 47.6%[2+
2 ]RPA

+27%[2+
1 ⊗ 2+

1 ] +43.8%[2+
1 ⊗ 2+

1 ]

+1.4%[[2+
1 ⊗ 2+

1 ]4 ⊗ 4+
1 ]

4+
1 1.311 1.464 66.2%[4+

1 ]RPA 1.510 73.9%[4+
1 ]RPA+

+23.6%[2+
1 ⊗ 2+

1 ] +18%[2+
1 ⊗ 2+

1 ]

+0.4%[[2+
1 ⊗ 2+

1 ]1 ⊗ 2+
1 ]

4+
2 2.109 1.965 16.8%[4+

2 ]RPA 2.010 15.1%[4+
1 ]RPA

+60.6%[2+
1 ⊗ 2+

1 ] +66.6%[2+
1 ⊗ 2+

1 ]

+1.8%[[2+
1 ⊗ 2+

1 ]4 ⊗ 4+
1 ]

4+
3 2.295 2.219 57.6%[4+

2 ]RPA 2.250 66.5%[4+
2 ]RPA

+11.7%[2+
1 ⊗ 2+

1 ] +11.3%[2+
1 ⊗ 2+

1 ]

+4%[[2+
1 ⊗ 2+

1 ]1 ⊗ 2+
1 ]

than our [4+
1 ]RPA state. To determine unambiguously the structure of the 4+

1

state more precise experimental information is needed for more nuclei from this
region.

The 4+
3 state is a noncollective one. The structure of the lowest three 4+

states is similar for the other investigated nuclei. It was observed that the 4+
2

state (1.965 MeV) feeds the 2+
1 state appreciably while the 4+

3 state (2.219 MeV)
feeds very weakly the 2+

1 state.
The structure of the excited states in the N =84 nuclei is more complicated

than those of the semimagic ones. The reason is the larger quasiparticle-phonon
interaction and the smaller energy difference between the basic states. The in
u-
ence of the three-phonon components has been found to be signiˇcant.
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Table 8. Electromagnetic properties of several positive parity states in 144Nd calculated
in QPM

Iπ Energy [keV] λ Jπ B(Eλ; Iπ → Jπ)[e2fm2λ]

Exp. QPM Exp. QPM

2+
1 696.5(b) 709 E2 0+

1 1.08×103(a) 0.72×103

2+
2 1561(c) 1731 E2 0+

1 0.001(1)×104(e) 0.002

864.5 1022 E2 2+
1 0.95(21)×103(e) 1.2×103

2+
3 2073(c) 1999 E2 0+

1 0.45×102(a) 0.73×102

1376.5 1290 E2 2+
1 2(1)×102(e) 4×102

3−1 1510.7(b) 1527 E3 0+
1 2.86×104(a) 3.38×104

4+
1 1315(c) 1464 E4 0+

1 4.3×105(d) 4.1×105

618.5 755 E2 2+
1 8(1)×102(e) 7.6×102

Q2

[
2+

1

]
[eb]

Exp. QPM

-39(21)(e) -22
a Taken from Ref. 26.
b Taken from Ref. 80.
c Taken from Ref. 81.
d Taken from Ref. 82.
eTaken from Refs. 31,33.

4. THE LOW-LYING ISOVECTOR MODE

The low-lying quadrupole states in the N =84 isotones have been subjected
to several experimental and theoretical investigations in connection with the so-
called isovector or mixed-symmetry states [29-39]. The small mixing ratios
δ(E2/M1; 2+

3 → 2+
1 ) and relatively large value of B(M1; 2+

3 → 2+
1 ) correspond

to a classiˇcation of the ˇrst 2+ state as a symmetric state and of the third 2+ state
as a mixed-symmetry state in the U(5)-limit of IBM-2 [34, 35]. In the frame
of the extended vibrational model [36], the isospin dependence of the collective
coordinates is used and the 2+

1 state is regarded as an in-phase (isoscalar) vibration
and the 2+

3 as an out-of-phase (isovector) vibration of protons and neutrons. The
vibrational model described the characteristic features (energies and multipole
mixing ratios) of low-lying 2+ states observed experimentally, in nuclei near
the shell closures (124Te, 140Ba, 142Ce and 144Nd). Other theoretical efforts to
understand the origin of the low-lying quadrupole states in this region have been
undertaken in the framework of the shell model [37] as well as in the pairing-plus-
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quadrupole model [38]. The properties of the M1 transitions between low-lying
states and their theoretical interpretation are reviewed in Ref. 39.

In Ref. 33, a detailed calculation for the N = 84 isotones has been performed
using the two-Particle-core Coupling Model (PCM) and IBM-2 in order to study
the validity of the interacting boson model in these nuclei. A general mapping
procedure between the obtained wave functions in both models has been proposed
and applied for 144Nd. Although both models give a reasonable description
of the excited states' energies, differences occur in the electromagnetic decay
probabilities. For instance, the IBM-2 ˇt fails to reproduce both the B(E2; 2+

3 →
g.s.) and the B(M1; 2+

3 → 2+
1 ) values. It predicts as well, in contradiction

to the experiment, that the B(E2; 4+
1 → 2+

1 ) value should be a factor of 1.4
times larger than the B(E2; 2+

1 → g.s.) value. The PCM gives reasonable
agreement for all these quantities. Both models could not reproduce the signs of
the δ(E2/M1; 2+

3 → 2+
1 ) and δ(E2/M1; 2+

2 → 2+
1 ) mixing ratios.

The experimental data, obtained by direct lifetime measurements [40], show
that the B(M1; 2+

3 → 2+
1 ) value in 144Nd is close to the value of the single

particle estimation for this transition. This means that the low-lying states in
144Nd contain signiˇcant two-particle components. Considering the relative sign
of the main neutron and proton components, the [2+

1 ]RPA state is a symmetric and
the [2+

2 ]RPA state is an antisymmetric state (see Table 6). A relevant quantity [41]
to check the nature of a RPA phonon, taking into account its structure, is the
ratio:

B =
|〈2+

i ‖
∑p
k r2

k Y2µ(Ωk)−
∑n
k r2

k Y2µ(Ωk)‖g.s.〉|2

|〈2+
i ‖
∑p
k r2

k Y2µ(Ωk) +
∑n
k r2

k Y2µ(Ωk)‖g.s.〉|2
. (12)

As shown in Ref. 41, in the case of B > 1, the 2+ state under consideration
is an isovector state, otherwise an isoscalar one. As shown in Table 9, in our
results, the [2+

1 ]RPA state is an isoscalar state and the [2+
2 ]RPA state an isovector

one.

Table 9. Values of the quantity B (see eq.(12)) for 140Ba, 142Ce, 144Nd and 146Sm

B

Nucl. 140Ba 142Ce 144Nd 146Sm

State 2+
1 0.0003 6×10−5 10−5 2×10−5

2+
2 25.6 10.1 3.4 5.3
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Table 10. Some results in QPM compared with experimental data in different N = 82
nuclei

Nuclei Quantity Exp. QPM

138Ba B(E2; 2+
1 → 0+

1 )[e2b2] 0.0452±0.0018(a) 0.050

B(E3; 0+
1 → 3−1 )[e2b3] 0.133±0.013(b) 0.115

E
3−1

[MeV] 2.881(e) 2.907

140Ce B(E2; 2+
1 → 0+

1 )[e2b2] 0.061±0.020(c) 0.068

B(E3; 0+
1 → 3−1 )[e2b3] 0.21±0.03(b) 0.147

E
3−1

[MeV] 2.465(e) 2.345

142Nd B(E2; 2+
1 → 0+

1 )[e2b2] 0.0562±0.0002(d) 0.065

B(E3; 0+
1 → 3−1 )[e2b3] 0.2620±0.0015(d) 0.226

E
3
−
1

[MeV] 2.083(e) 1.973

144Sm B(E2; 2+
1 → 0+

1 )[e2b2] 0.0532±0.0016(a) 0.046

B(E3; 0+
1 → 3−1 )[e2b3] 0.27±0.05(b) 0.3

E
3−1

[MeV] 1.810(e) 1.718

aTaken from Ref.57.
bTaken from Ref.29.
cTaken from Ref.83.
dTaken from Ref.28.
eTaken from Ref.27.

As already mentioned, in 144Nd, there is a fragmentation of the [2+
2 ]RPA

isovector state over the 2+
2 and 2+

3 states (see Table 7). Because of this frag-
mentation the large M1 transition strength between the [2+

1 ]RPA and the [2+
2 ]RPA

states will be shared by the transitions from the 2+
2 and 2+

3 states to the 2+
1 state.

A similar behaviour of the M1 fragmentation is discussed in Ref. 39. According
to the QPM calculations, there are ˇve 2+ RPA states below 3 MeV. The value of
the quantity

∑
iB(M1; [2+

i ]RPA → [2+
1 ]RPA) is equal to 0.64 µ2

N . The main con-
tribution in this sum comes from the B(M1; [2+

2 ]RPA → [2+
1 ]RPA) value, which

is 50 times larger than the other terms. The proton orbital part of it is about 70%.
The latter is in qualitative agreement with shell model calculations for medium
mass spherical nuclei [42]. The quasiparticle-phonon interaction distributes about
90 % from the total RPA M1 strength over seven excited states under 3 MeV.
Because of the dominance of the B(M1; [2+

2 ]RPA → [2+
1 ]RPA), which is mainly

due to proton orbital contributions (see the discussion above), the main part in
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the distribution comes from the proton orbital M1 term. The latter feature of the
M1 transition between the low-lying states is discussed in detail in Ref. 43.

Table 11. Some reduced transitions probabilities rates in 140Ce

Exp. QPM

B(E2; 2+
1 → 0+

1 ) [e2b2] 0.061±0.020(d) 0.068

B(E2; 2+
2 → 0+

1 ) [e2b2] ≥ 6.8× 10−7(a) 0.001

B(E2; 2+
2 → 2+

1 ) [e2b2] ≥ 1.2× 10−4(a) 0.0056

B(M1; 2+
2 → 2+

1 ) [µ2
N ] ≥ 3.4× 10−4(a) 0.044

B(E2; 4+
1 → 2+

1 ) [e2b2] (6.2± 0.4) × 10−4(a) 12.3×10−4

B(E2; 2+
3 → 4+

1 ) [e2b2] (1.5± 0.7) × 10−4(b) 5.6×10−4

B(E2; 6+
1 → 4+

1 ) [e2b2] (1.1± 0.3) × 10−3(d) 1.5×10−3

B(E3; 3−1 → 0+
1 ) [e2b3] 0.0300 ± 0.0043(c) 0.021

δ(E2/M1; 2+
2 → 2+

1 ) 0.37±0.06(e) 0.2
aTaken from Ref.15.
bTaken from Ref.57.
cTaken from Ref.29.
dTaken from Ref.83.
eTaken from Ref.84.

Table 12. Comparison of QPM calculations with experimental M1 transitions and δ

ratios in 144Nd

Exp. QPM

B(M1; 2+
2 → 2+

1 )(µ2
N ) 0.11(a) 0.13

B(M1; 2+
3 → 2+

1 )(µ2
N ) 0.14(0.04)(a) 0.32

δ(E2/M1; 2+
2 → 2+

1 ) -1.13(22)(b) -1.02

δ(E2/M1; 2+
3 → 2+

1 ) 0.31(11)(b) 0.43
aTaken from Ref. 31,33.
bTaken from Ref. 40.

The calculated B(M1) values and the mixing ratios for 144Nd are given in
Table 12. The obtained results are in average similar to those of Refs. 31,33 for
144Nd. With respect to the structure of the 2+

2 and 2+
3 states, relevant quantities

are: the mixing ratios δ(E2/M1; 2+
2 → 2+

1 ) and δ(E2/M1; 2+
3 → 2+

1 ) and the
corresponding B(M1) transition values. The higher value of the B(M1; 2+

3 →
2+

1 ) compared to that of the B(M1; 2+
2 → 2+

1 ) is reproduced in our calculations.
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This means that the fragmentation of the [2+
2 ]RPA isovector state over the excited

states is realistic. Taking into account the structure of the [2+]RPA states and
the ˇnal distribution of these states we can conclude that the ˇrst 2+ state is
of isoscalar type and the third 2+ state of mixed (isoscalar and isovector) type,
although with a main isovector component (59 %). It should be noted that
the mixing ratio δ differs (sometimes by a factor of 2) in different experiments
[27,40,44].

5. COMPARISON OF THE QPM AND THE IBM APPROACHES

In this section, we shall consider the comparison between the description of
the structure of the low-lying states in 146Sm in IBM-2 [45] and in QPM. Several
IBM studies in the Sm isotopes' region have been published. The nucleus 146Sm
has been treated in Refs. 46,47. The IBM results used here are taken from
Ref. 13.

Fig. 4. Comparison of the 146Sm positive parity energy levels in IBM-2 and QPM
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The obtained results, in both models, for the energies and the structure of
the excited states with Jπ=2+ and 4+ in 146Sm are shown in Tables 13-17,
the calculated energy distribution of all positive parity states is plotted in Fig.4.
The QPM states with excitation energy below 2 MeV are mainly constituted
of collective components. For the ˇrst 2+ state, the main component arises
from the [2+

1 ]RPA phonon. In the structure of the 2+
2 and 4+

1 states, the two
phonon component [2+

1 ⊗2+
1 ]Jπ is the most important. The calculated energies

and B(E2) values, involving the states below 2 MeV, are in good agreement
with the experimental data.

Table 13. Energies and structure of the lowest three 2+ and 4+ excited states in 146Sm,
calculated in the framework of the QPM. Only the main components of the wave
function are given

Iπi Eexp.[MeV] Ecal.[MeV] Structure
2+

1 0.747 0.737 91%[2+
1 ]RPA

2+
2 1.647 1.672 75%

[
[2+

1 ]RPA ⊗ [2+
1 ]RPA

]
+ 14%[2+

2 ]RPA

2+
3 2.155 1.944 79%[2+

2 ]RPA+11%
[
[2+

1 ]RPA ⊗ [2+
1 ]RPA

]
4+

1 1.381 1.616 45%[4+
1 ]RPA+48%

[
[2+

1 ]RPA ⊗ [2+
1 ]RPA

]
4+

2 2.280 2.042 49%[4+
1 ]RPA+39%

[
[2+

1 ]RPA ⊗ [2+
1 ]RPA

]
4+

3 2.439 2.502 96%[4+
2 ]RPA

Table 14. Comparison of experimental, IBM and QPM results for some B(E2) values
among collective states in 146Sm

B(E2) [e2b2]

Ii → If Exp. [85] IBM QPM

2+
1 → 0+

1 > 0.033 0.069 0.069
4+

1 → 2+
1 > 0.06 0.108 0.093

6+
1 → 4+

1 0.043+0.054
−0.023 - 0.01

Most of the QPM states with excitation energy above 2 MeV are of noncollec-
tive nature. Some of them have large two-phonon and three-phonon components.
The structure of some states is quite complicated and is exhausted by several
components. It should be noted that the three-phonon components are distributed
over several levels. The number of levels below 3.5 MeV is well reproduced and
only for a few levels the discrepancy between the calculated and measured en-
ergies exceeds 150 keV. A satisfactory agreement with experimental data is also
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Table 15. Some reduced E2 transition probabilities in 146Sm, calculated in the QPM

B(E2)

Ii → If [e2b2]

2+
2 → 0+

1 0.0031
2+

3 → 0+
1 0.0093

2+
4 → 0+

1 0.0005
2+

2 → 2+
1 0.12

2+
3 → 2+

1 0.04
2+

4 → 2+
1 0.0001

4+
2 → 2+

1 0.07
4+

3 → 2+
1 0.001

Table 16. Comparison of experimental, IBM and QPM results for some E2 transition
ratios in 146Sm. The experimental data is taken from Ref. 13

Ii→If
Ii→If′

B(E2;Ii→If )

B(E2;Ii→If′ )

Exp. IBM QPM
2+
2 →2+

1

2+
2 →0+

1

74±30 84 40

2+
3 →2+

1

2+
3 →0+

1

9÷18 9.6 4.1

4+
2 →2+

1

4+
2 →4+

1

0.7÷2.0 1.4 1.8

2+
4 →2+

1

2+
4 →0+

1

< 1.5 0.30 0.2

achieved for the reduced E2 transition probabilities (see Tables 14 and 16). The
results obtained within the QPM and within the IBM display some differences
as well as some common features. This arises from the physical backgrounds
of both models. The IBM model, in the version including protons and neutrons
(IBM-2) in its model space, has combinations of bosons roughly corresponding
to the [2+

1 ]RPA isoscalar phonon and to the [2+
2 ]RPA isovector phonon in the lan-

guage of the QPM. The good agreement between the IBM and the QPM is thus
observed for QPM states involving collective components. On the other hand,
the lowest 6+ state of 146Sm in the IBM is to be expected at an excitation energy
E ≥ 3E(2+

1 ) (≈ 2.4 MeV). The energy of the 6+
1 state calculated in the QPM

is E=1.744 MeV. This state is of noncollective character, as is suggested also
from a smaller B(E2, 6+

1 → 4+
1 ) value in comparison with the B(E2; 4+

1 → 2+
1 )

value (see Table 14). The properties of the 6+
1 state in 146Sm, calculated within
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Table 17. Comparison of experimental, IBM and QPM results for some mixing ratios
(δ(E2/M1)) in 146Sm

δ(E2/M1)

Ii → If Exp. IBM QPM

2+
2 → 2+

1 −2.2(a) -2.13 -1.3
2+

3 → 2+
1 -3.2≤ δ ≤ −0.9(b) 0.059 0.4

aTaken from Ref.44.
bTaken from Ref.46.

the QPM, agree with the experimental data. The QPM predicts a collective three-
phonon 6+ state at excitation energy of 2.62 MeV, which is in agreement with
the IBM lowest 6+ state energy.

The energy of the 4+
1 level is lower than twice the energy of the 2+

1 state. This
fact is pointing out that components different from the two-phonon quadrupole
collective one are important in its structure. In the QPM calculations, the [2+

1 ⊗
2+

1 ]4+ two-phonon component is shared by the 4+
1 and 4+

2 states. The latter
contain an important [4+

1 ]RPA component as well. This is the reason for the
nearly equal QPM E2 transition probabilities between the ˇrst two 4+ states
and the 2+

1 state (Table 15). The importance of the [4+
1 ]RPA component in the

QPM 4+ states suggests that a better description within the IBM framework could
be achieved by enlarging the IBM model space so as to include also the L=4
g-boson.

In the IBM, the decay of the 4+
2 state to the 2+

1 state is suppressed. Such
suppression is observed for the third 4+ state (2.439 MeV) in the experimental
spectrum. In the QPM, the 4+

3 state in 146Sm is a noncollective state, which leads
to a very small B(E2, 4+

3 → 2+
1 ) value (see Table 15).

In Table 17, results are given for some mixing ratios δ in 146Sm. We must
note that the experimental information is quite indeterminate. The results of both
calculations, in the QPM and in the IBM, also differ appreciably. The noncollec-
tive components have an important in
uence on the QPM δ values. A qualitative
agreement of the two models occurs only in the cases when in the structure of
the initial and ˇnal states the contribution from the collective components (one-
and two-phonon ones) is large (2+

2 → 2+
1 ; 2+

3 → 2+
1 ). Further study along this

line would be fruitful only if more precise experimental information is available.
The 2+

3 state (E=2.156 MeV) in 146Sm is interpreted as an isovector state in
both models. The quite uncertain experimental information does not contradict
this interpretation.
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6. ELECTRIC DIPOLE TRANSITIONS IN THE N = 82 AND THE N = 84
ISOTONES

Recently, the interest in low-lying vibrations in nuclei has increased consider-
ably with the appearance of experimental evidences for two-phonon quadrupole-
octupole and octupole-octupole excitations in the semimagic N = 82 nuclei [46-
53]. In Ref. 49, the B(E1) value from the ˇrst 1− state to the ground state
has been measured in 144Sm, using the nuclear resonance 
uorescence method.
It is suggested in Ref. 49 that this 1− state might be a member of the two-
phonon quadrupole-octupole multiplet expected at this energy. Earlier measure-
ments of the E1 transition between the ˇrst 3− and 2+ states were reported
in Ref. 48, where an (αα′) Coulomb excitation study has been performed in
the same nuclei. The comparison of the obtained B(E1; 2+

1 → 3−1 ) with the
B(E1; 1−1 → g.s.) value also supports the two-phonon structure of the 1−1 state.
In Refs. 50,51, 144Sm has been investigated via the (n, n′γ) reaction and a large
number of fast (> 10−3W.u.) E1 transitions has been observed. The typical
rates for the E1 transitions, known from systematics, are of the order of 10−4Å
10−8 W.u. [56,57]. The larger values of the recently reported B(E1) transitions
reveal that the corresponding states have a different origin than those reported
in Refs. 56,57. However, as shown in Ref. 51, the enhanced E1 transitions are
typical for the N =82 nuclei [53].

A description of the properties of the quadrupole-octupole and octupole-
octupole multiplets has been proposed in Ref. 58. Later on, calculations have
been performed in the frame of the QPM, studying the ˇrst dipole states in
many spherical nuclei [59]. Within the same model, E1 transitions have been
calculated in deformed nuclei [60]. A description of some members of the
octupole two-phonon multiplets in the framework of the spdf IBM has been
given in Ref. 61. The interplay of different shells in the E1 transitions has
been discussed in Ref. 62. The ˇrst 1− state has been described as a 2+

1 ⊗ 3−1
two-boson state in the IBM [48]. The theoretical investigations show that the
ˇrst 1− state has an isoscalar character. The latter is a hint that the large B(E1)
values, obtained recently, may be the result of a the interplay between isoscalar
and isovector modes in the structure of the low-lying excited states. Theoretical
and experimental investigations for 144Sm have been performed in Ref. 63. In
this paper, high-resolution (p, p′) analysis has been used to derive information
about the character of the transitions involving the presumed members of the
two-phonon octupole multiplets. In the same paper, the available experimental
information concerning the E1 transitions in 144Sm has been compared to nuclear
ˇeld theory calculations. This investigation conˇrms the two-phonon character of
the states pointed out in Ref. 50, although some mixing with two-quasiparticle
components has been found. A direct experimental evidence for the two-phonon
nature of the ˇrst dipole state in 144Sm has been obtained in Ref. 54, where a
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good agreement with a previous prediction for the B(E2; 1−1 → 3−1 ) value, given
within the QPM [16], has been observed (see Table 5).

The E1 transitions at low energy in atomic nuclei are strongly hindered. The
reason for this hinderance is manifold: the isoscalar part of the E1 operator should
not contribute to the E1 transition; the isovector E1 interaction is repulsive and
shifts the E1 strength to higher excitation energies; the pairing factor involved in
the E1 transition operator, which does not change the number of quasiparticles
(see eq. (9)), should be much smaller than unity; the E1 matrix element between
the main components of the wave functions is often very small or vanishes at
low energy. The reduction due to the isovector channel of the interaction may be
expressed as an effective charge for the E1 transition [1]. The expression reads:

eeff = e(1 + χ).

Adding the correction for the center of mass motion the above equation becomes:

eeff = −1

2
e(τz −

N − Z
A

)(1 + χ). (13)

The parameter χ has been qualitatively estimated to be approximately equal to
-0.7 in Ref. 1. Determination of χ via comparison with experiment for some
nuclei has been done in Ref. 64.

The appropriate nuclear model to study the properties of the low-lying 1−

states must possess two main features. The ˇrst one is to incorporate the Giant
Dipole Resonance (GDR) which means to deal with a large single-particle space
and a sufˇciently complex interaction. The second is the detailed reproduction of
the two-phonon states' fragmentation, which requires that the collective basis of
the model should include at least up to three-phonon states.

In the case of the 1− states the matrix element mixing the GDR and the
low-lying [2+

1 ⊗ 3−1 ]1− state reads (see eq. (45)):

U
3−1
2+
1

(GDR) =
〈
Q1−GDR

∣∣∣Hint

∣∣∣[Q+

2+
1

Q+

3−1

]
1−

〉
. (14)

Because of the isovector origin of the GDR, the neutron and proton components
of the wave function (6) contribute with opposite signs in (14) and it becomes
small [3, 59]. A serious test for a model would be to predict not only the
magnitude of the matrix element (14) but also its sign. It must be stressed that
in the present case a very weak E1 transition (≈ 3mW.u.) has to be described,
taking into accout the in
uence of the GDR (≈ 10W.u.).

We have applied the model to study the properties of the low-lying 1− states
in N =82 and N =84 isotones. The results for 144Sm and 144Nd are compared
with the available experimental information in Table 18. It is seen from Table 18
that the calculated structure of the 1−1 state is mainly a two-phonon one for 144Sm
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Table 18. Energies and B(E1) values for the 1−1 state in 144Sm and 144Nd, compared
with experimental data

144Sm 144Nd
calc. exp. calc. exp.

E(1−1 )[MeV] 3.440 3.225 2.47 2.185

Structure 95%
[
2+
1 ⊗ 3−1

]
83%

[
2+
1 ⊗ 3−1

]
+9%

[[
2+
1 ⊗ 2+

1

]
2
⊗ 3−1

]
B(E1; g.s→ 1−1 )

[
e2fm2

]
18.1×10−3 18.9×10−3(a) 6.3×10−3 7.2×10−3(b)

B(E1; (g.s.→(2ph)
1−1

)
[
e2fm2

]
52.2×10−3 51.6×10−3

B(E1; g.s.→ (1ph)
1
−
1

)
[
e2fm2

]
8.8×10−3 21.8×10−3

aTaken from Ref. 50.
bTaken from Ref. 55.

(N=82), while for the N =84 nucleus 144Nd, there is a contribution from the
three-phonon component ([[2+

1 ⊗2+
1 ]2 ⊗ 3−1 ]1−). The isovector E1 strength is

concentrated predominantly in a single RPA state (the GDR). For 144Sm this
RPA state collects 60% of the EWSR, while for 144Nd it collects 56%. In the
same time, its contribution in the wave function (6) of the 1−1 state is less than
0.5%.

The reduced matrix element of the E1 operator (see eq. (9)) between the 1−1
and the ground state reads:

〈Ψ |M(E1)| 0〉 ∼

∼ RGDR 〈Q1−GDR |M(E1)| 0〉+ P
2+
1

3−1
(1−1 )

〈[
Q2+

1
Q3−1

]
1−
|M(E1)| 0

〉
. (15)

The RGDR and P
2+
1

3−1
are coefˇcients of the wave function (6). The contribu-

tion of the two-phonon part in (15) dominates, because of the large value of the

coefˇcient P
2+
1

3−1
. The very small value of the coefˇcient RGDR is multiplied by

the large matrix element connected with the GDR, but the product contributes in
(15) less than the two-phonon part. The corresponding reduced transition prob-
abilities are given in Table 18. The quantity B(E1)1ph is connected with the
GDR (ˇrst term in eq. (15)). The quantity B(E1)2ph is the part of the transi-
tion due to the two-phonon component of the wave function (6) (second term
in eq. (15)). Both ingredients of (15) have opposite signs and the B(E1)2ph is
largely reduced. The calculated B(E1; g.s. → 1−1 ) value is in good agreement
with the experimental data in both nuclei. The calculated energies and B(E1)
values are compared with the experimental results in Table 19 for the N = 82
isotones.
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Table 19. Comparison of experimental data and QPM results for the two-phonon 1−

states in the N = 82 isotones. The experimental results are taken from Ref. 53

138Ba 140Ce 142Nd 144Sm
E1−Exp.[keV] 4026 3643 3425 3225
E1−QPM[keV] 3582 3611 3590 3600
B(E1; 1−1 → g.s.)Exp. [m W.u.] 2.5(5) 3.2(2) 3.1(5) 3.6(5)
B(E1; 1−1 → g.s.)QPM [m W.u.] 2.8 3.2 3.03 3.4

The reasonable agreement between the QPM results and experiment, con-
cerning the so subtle properties of the dipole transitions, shows that the model
reproduces well the intricate interplay of isoscalar and isovector modes in the
structure of the low-lying states. The properties of all states members of the
quadrupole-octupole multiplet, other than the 1− state, are discussed in detail in
Ref. 16.

7. EVIDENCES FOR OCTUPOLEÄCOUPLED MULTIPHONON STATES
IN 124Te

In this section, we shall present results of the QPM compared to experimen-
tal results from various experiments investigating the nucleus 124Te following
Ref. 65. The structure of the even-even nucleus 124Te has been the subject of
considerable interest [64-70], since it is an ideal testing ground for different the-
oretical models. Up to now, however, no complete understanding of the nuclear
structure of this isotope has been achieved. Even many aspects of the low-lying
spectrum are still puzzling [71]. At lower excitation energies 124Te seems to be
an ideal collective nucleus. The energy ratio of the ˇrst 4+ level to the ˇrst 2+

level is nearly two. This supports a spherical picture, as for instance obtained in
SU(5) limit of the IBM. On the other hand, the level sequences show that only
the 2+ and the 4+ states of the two phonon triplet are in correct energy region,
whereas the corresponding ˇrst 0+ level is about 300 keV too high in excitation
energy. This implies a more complex structure of the nucleus 124Te which cannot
be fully described by current microscopic models. In order to achieve a better
understanding of these problems, one needs extensive and complete experimental
information. Here, we make use of the results of a variety of experimental data,
taken from Ref. 65, which were measured in different reactions, the aim being
to obtain the maximum of information in order to ˇnd the largest possible corre-
spondence with the theoretical interpretation of the structure of 124Te within the
QPM. A special attention is paid to the unusual de-excitation cascade in the level
scheme of 124Te which has been known for a long time, but never examined in
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detail [73]. The suggestion is made that this unusual cascade may be related to
the presence of multiphonon structures with negative parity.

The Eλ transitions have been calculated with epeff = 1.25e and eneff = 0.25e,
except for the E1 transitions. In the present case the effective charge is a
parameter ˇxed to reproduce the B(E2) transitions from the ground state to the
ˇrst 2+ state. The effective charges for the E1 transitions have to be reduced
according to Refs. 1, 64 (see also the discussion in Section 6 and eq. (13)). In
our calculations mixing with the GDR is taken explicitly into account and to
reproduce the B(E1) strength for its excitation we use the following effective
charges: eneff(E1) = −0.39e and epeff(E1) = 0.53e. They have been used to
calculate all other E1 transitions as well.

A comparison of the experimental level scheme with the one calculated in
the QPM is presented in Table 20 where additionally the largest multiphonon
amplitudes are listed for collective levels. The excitation energies of dominant
one- and two-phonon states are well reproduced, but generally too high for states
with a large three-phonon component. This can be traced back to the omission
of more complex conˇgurations. It has to be expected that due to the interaction
between phonons speciˇc for the QPM (coupling between components differing
by one phonon, see eq. (44) in the Appendix) the inclusion of four-phonon
components will improve the above-mentioned deˇciency.

The 0+ state cannot be well reproduced by the theory. One would have
to account for this by using strong anharmonicities [71]. The 6+

1 state is a
three-phonon quadrupole state in the calculations. However, the almost constant
excitation energy experimentally observed for this level in different Te isotopes
suggests a noncollective structure [74]. Thus, it would better correspond to the
6+

2 model state, but the energy difference of 540 keV to the experiment would
be rather large.

Electromagnetic transition probabilities, E2/M1 mixing ratios and branching
ratios between low-lying collective states are compared in Table 21 to QPM
results. The quadrupole moment of the 2+

1 level and the B(E2) values to the
lowest 2+ states agree well. Signs and magnitudes of E2/M1 mixing ratios for
transitions between the lowest 2+ states are reproduced. Also many branching
ratios are reasonably described.

In order to account for the large number of experimentally observed 2+

levels it was proposed that the fourth 2+ state at 2.092 MeV has an isovector
structure [70] (see also the discussion in Section 4). The third 2+ state in the
QPM calculation is proposed to correspond to this level. A small mixing ratio
δ(E2/M1; 2+

3 → 2+
1 ) and a large B(M1; 2+

3 → 2+
1 ) value would support such a

classiˇcation [34,35]. For 124Te the calculated δ(E2/M1; 2+
3 → 2+

1 ) = 0.07 has
to be compared with the experimental value of 0.13(12) [34, 70]. Moreover, the
2+

3 level has a dominant [2+
2 ]RPA phonon contribution (81%). The comparison of

the structure of this phonon in terms of two-quasiparticle components compared
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Table 20. Level scheme of 124Te calculated in the QPM. For the collective states the
main component of the QPM wave function is given. For comparison the experimentally
measured level energies are included where possible

Jπ Root number Eth [MeV] QPM wave function [%] E(a)
exp [MeV]

0+ 1 1.080 2+
1 ⊗2+

1 83 1.657
0+ 2 2.085 2+

1 ⊗2+
1 ⊗2+

1 50 1.883
0+ 3 2.383 2.308
1+ 1 2.749
1+ 2 3.098
1+ 3 3.185
1− 1 2.985 2+

1 ⊗ 3−1 91 2.747
1− 2 3.796 2+

1 ⊗2+
1 ⊗ 3−1 70 3.092

1− 3 4.063
2+ 1 0.599 2+

1 92 0.603
2+ 2 1.408 2+

1 ⊗2+
1 87 1.325

2+ 3 1.986 [2+
2 ]RPA 81 2.091

2+ 4 2.100 2+
1 ⊗2+

1 ⊗2+
1 70 2.039

2+ 5 2.246
2+ 6 2.386
2+ 7 2.398
2+ 8 2.610
2+ 9 2.741
2− 1 3.057 2+

1 ⊗ 3−1 92
2− 2 3.302
2− 3 3.770 2+

1 ⊗2+
1 ⊗ 3−1 42 3.101

3+ 2+
1 ⊗2+

1 ⊗2+
1 90

3+

3− 1 2.277 3−1 79 2.294
3− 2 2.781 2+

1 ⊗3−1 41 2.336
3− 3 3.063 2.694
3− 4 3.151 2.701
3− 5 3.276
4+ 1 1.360 2+

1 ⊗2+
1 88 1.249

4+ 2 2.191 1.958
4+ 3 2.335
4+ 4 2.367
4+ 5 2.524
5− 1 2.300
6+ 2.139 2+

1 ⊗2+
1 ⊗2+

1 88 1.747
6+ 2 2.291
7− 1 2.289
8+ 1 2.345
8+ 2 3.083
aTaken from Ref. 65.
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to the structure of the lowest [2+
1 ]RPA state displays similar characteristics to the

ones discussed in Section 4 and shown in Table 6 for 144Nd. Considering the
relative sign of the main neutron and proton components, the [2+

1 ]RPA state is
isoscalar and the [2+

2 ]RPA state is isovector. As discussed earlier (see Section 4
and eq. (12)), the quantity B is small for isoscalar states and large for isovector
states. In our case, the magnitude of the quantity B and the structure of the
[2+

2 ]RPA state support the interpretation of the third calculated 2+ level as an
isovector state.

Table 21. Quadrupole moment of the 2+
1 state, strengths, mixing ratios and branching

ratios of transitions in 124Te calculated with the QPM in comparison with experimental
data

Quantity Theory Experiment

B(E1; 0+
1 → 1−2 )[W.u.] 5.6·10−4 4.7(4)·10−4(a)

B(E1; 0+
1 → 1−2 )[W.u.] 4.5·10−4 6.5(9)·10−4(a)

B(E2; 2−3 → 1−1 )[e2fm4] 288 -
B(E2; 2+

1 → 0+
1 )[e2fm4] 922 1136(10)(b)

B(E2; 2+
2 → 0+

1 )[e2fm4] 78 38(1)(b)

B(E2; 4+
1 → 2+

1 )[e2fm4] 290 200(b)

δ(E2/M1; 2+
2 → 2+

1 ) -2.1 -3.3(1)(b)

δ(E2/M1; 2+
3 → 2+

1 ) 0.07 0.13(12)(c)

δ(E2/M1; 2+
4 → 2+

1 ) 0.26 1.5(8)(b)

B(E1; 1−1 → 2+
1 )/B(E1; 1−1 → 0+

1 ) 0.61 0.18(5)(a)

B(E1; 1−2 → 2+
1 )/B(E1; 1−2 → 0+

1 ) 0.01 0.31(22)(a)

B(E2; 2+
2 → 2+

1 )/B(E2; 2+
2 → g.s.) 31.2 55.6(1)(c)

B(E2; 2+
4 → 2+

2 )/B(E2; 2+
4 → 4+

1 ) 0.85 1.00(33)(c)

B(E2; 4+
2 → 2+

1 )/B(E2; 4+
2 → 4+

1 ) 0.02 0.0062(16)(c)

B(E2; 2+
4 → 2+

1 )/B(E2; 2+
4 → 4+

1 ) 0.04 0.09(6)(c)

B(E2; 4+
2 → 2+

2 )/B(E2; 4+
2 → 2+

1 ) 90.16 4.8(3)(b)

B(E2; 4+
2 → 2+

2 )/B(E2; 4+
2 → 4+

1 ) 1.42 0.14(1)(b)

B(E2; 3+
1 → 2+

2 )/B(E2; 3+
1 → 4+

1 ) 2.55 5.3(3)(b)

B(E2; 3+
1 → 2+

2 )/B(E2; 3+
1 → 2+

1 ) 33.52 61(4)(b)

Q2(2+
1 ) -40 efm2 -45(4) efm2(b)

aTaken from Ref. 65.
bTaken from Ref. 71.
cTaken from Ref. 70.

Another interesting phenomenon, observed in this nuclei, is the unusual γ-
decay cascade after thermal neutron capture in 123Te [65]. The analysis of the
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experimental data [65, 73, 75], gives a clear evidence for a cascade, where the
3.101 MeV level decays via a very strong 353 keV transitions to the 1− level
at 2.747 MeV which itself populates the ˇrst excited state and the ground state.
Whereas the decay of the 3.101 MeV level to the ground state is clearly suppressed
because it requires a M2 transition, the surprising absence of other spin-allowed
transitions to low-lying states has to be explained by the nuclear structure of the
intermediate state.

A solution is suggested by the (γ, γ′) results [65]. Here a ground-state E1
transition to the 2.747 MeV level with B(E1) ↑= 0.47× 10−3 W.u. is observed
which is unusually large for this mass region [57]. However, enhanced E1
transitions have recently been observed in the neighbouring 116,124Sn isotopes as
well [76]. It seems to be a typical phenomenon in nuclei near closed shells. The
fast E1 transitions, as we have seen in Section 6, are considered to be a signature
for quadrupole-octupole coupled states. For such a coupling a quintet of negative
parity levels from 1− to 5− is predicted near to the sum energy of the 2+

1 and 3−1
phonon states [58]. The level in 124Te lies at 2.747 MeV. This is nearly the sum
energy of the ˇrst 2+ state at 0.603 MeV and the ˇrst 3− level at 2.294 MeV.

The two-phonon nature of the 1− state at 2.747 MeV is strongly supported
by the QPM results which can reproduce the transition strength and the branching
ratios to the ground state and to the ˇrst 2+ level. A sizeable direct two-phonon
decay is possible within the QPM because of the RPA correlated ground state
(see eq. (9)). In fact, one ˇnds in general too large B(E1) values, although, as
discussed at length in Section 6, the mixing with the GDR is taken into account
to a large extent in QPM. For the intermediate γ−cascade level at 3.101 MeV
a dominant three-phonon structure is suggested. Such a 2− state is predicted
by the calculations at 3.770 MeV. In such a picture the experimentally observed
decoupling from the low-lying dominant one-phonon states is naturally explained.

In a way similar to the decay of the 1−1 level at 2.747 MeV, the second
fast E1 transition in the (γ, γ′) data from the 3.91 MeV state can be interpreted
as the ground state decay of a multiphonon coupled state. Within the QPM the
state would constitute the 1− member of the 2+

1 ⊗2+
1 ⊗ 3−1 multiplet. Again, the

experimental strength of B(E1) ↑= 6.5(9)× 10−4W.u. can be well reproduced
by such an assumption (see Table 20). However, sizeable decays to the 2+

1 and
2+

2 states not predicted by the QPM and the relatively large difference of about
600 keV compared to the 2+

2 + 3−1 sum energy point towards a more complex
structure of this level. A possible explanation of both problems might be a
signiˇcant anharmonicity as already suggested in Ref. 71 for the interpretation
of the low-energy spectrum. However, the presence of a large three-phonon
component is likely considering the successful explanation of the ground state
coupling.

These results demonstrate that a microscopically based vibrational model is
quite successful to explain many aspects of the structure of 124Te. For the lowest
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2+ and 4+ states this is not surprising in view of their pure phonon structure
which was shown [77] to be a general phenomenon in virtually all even-even
nuclei with Z ≥30. However, the prevalence of multiphonon structures built on
the octupole vibrations seems crucial for the explanation of the observed data.

On the other hand, open questions remain. As mentioned before neither
the lowest 0+ states nor the 6+ states can be fully interpreted. Clearly, further
experimental studies to establish complete experimental information, not only on
the level scheme, but also on spectroscopic properties are required for a full
understanding of the 124Te structure. Additionally, the study of the evolution of
prominent features like multiphonon structures in the chain of even-even tellurium
isotopes will provide important insight.

8. CONCLUSION

There exists a wide-spread conviction that the low-lying excited states in
atomic nuclei are well studied. Of course, this is true as far as our knowledge
about the large components in the structure of the wave function is concerned.
It is seen from this work that recent experimental results reveal very interesting
properties of the excited states connected with the medium and even the small
components in the structure of the wave function. The resulting picture turns
out to be a very complicated one. The latter requires a substantial reˇnement
of the theoretical models in order to get a deeper insight and understanding
of the experimental data. Far from being sufˇcient, the contemporary nuclear
models, including the QPM, allow for the investigation of these more complex
phenomena. In particular, the delicate interaction between isovector and isoscalar
degrees of freedom and between collective and noncollective modes, as well as
the fast E1 transitions and other footprints of multiphonon states in even-even
spherical nuclei, ˇnd a reasonably fair description within QPM in terms of the
interaction between quasiparticles and phonons.
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APPENDIX: QPM BACKGROUND

Following Refs. 2,3,17,18, we shall introduce some basic notations. The
most general form of the model Hamiltonian is:

H = Hsp +Hpair +Hph
M +Hph

SM +Hpp
M , (16)

where the term Hsp describes the motion of the independent nucleons in a self-
consistent mean ˇeld; Hpair represents the monopole pairing interaction in the

particle-particle channel; Hph
M is a sum of isoscalar and isovector separable

multipole interactions in the particle-hole channel; Hph
SM is the same for the

spin-multiple interaction and Hpp
M is the sum of the multipole interaction in the

particle-particle channel (multipole pairing).
In the second quantized representation these terms can be written as:

Hsp = Hn
sp +Hp

sp =
∑
jm

nEja
+
jmajm +

∑
jm

pEja
+
jmajm, (17)

Hph
M = −1

2

∑
λµ

∑
τ,ρ=±1

(κ
(λ)
0 + ρκ

(λ)
1 )M+

λµ(τ)Mλµ(ρτ), (18)

M+
λµ(τ) =

∑
jj′

mm′

〈
jm
∣∣iλRλ(r)Yλµ(Ω)

∣∣ j′m′〉 a+
jmaj′m′ , (19)

Hph
SM = −1

2

∑
LM

∑
λ=L,L±1

∑
τ,ρ=±1

(κ
(λL)
0 + ρκ

(λL)
1 )

[
SλLM (τ)

]+ [
SλLM(ρτ)

]
, (20)

[
SλLM (τ)

]+
=
∑
jj′

mm′

〈
jm
∣∣iλRλ(r)[σ.Yλ(Ω)]LM

∣∣ j′m′〉 a+
jmaj′m′

[σ.Yλ(Ω)]LM =
∑
υµ

〈1υλµ | LM〉σνYλµ,

Hpp
M = −1

2

∑
λµ

[G(λ)
n P+

λµ(n)Pλµ(n) +G(λ)
p P+

λµ(p)Pλµ(p) (21)

+G(λ)
n,p(P

+
λµ(n)Pλµ(p) + P+

λµ(p)Pλµ(n))],

P+
λµ(n) =

∑
jj′

mm′

n
〈
jm
∣∣iλRλ(r)Yλµ(Ω)

∣∣ j′m′〉 (−)
j′−m′

a+
jmaj′−m′ , (22)
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where ĵ =
√

2j + 1 and the operators a+
jm and ajm are respectively the creation

and annihilation operators of nucleons with j = {nlj}; m, the magnetic quan-
tum number; Ej , the energy of the corresponding single-particle state. The index
τ is an isotopic index and takes two values τ = n, p. Changing the sign of τ
means changing the type of particles: n → p and p → n. The quantities Gn
and Gp are the neutron-neutron and proton-proton pairing interaction constants.
The constants of the isoscalar and isovector terms of the multipole-multipole

(spin-multipole) interaction are denoted by κ(λ)
0 (κ

(λL)
0 ) and κ(λ)

1 (κ
(λL)
1 ), respec-

tively. These constants are related to the neutron-neutron κ(λ)
nn , proton-proton κ(λ)

pp

and neutron-proton κ(λ)
pp multipole and spin-multipole interaction constants in the

following manner:

κ(λ)
nn = κ(λ)

pp = κ
(λ)
0 + κ

(λ)
1 ,

κ(λ)
np = κ

(λ)
0 − κ(λ)

1 .

The quantities G(λ)
n , G

(λ)
p and G

(λ)
np are the constants of the multipole pairing.

In the present implementation of the model, the particle-particle channel can
be switched on in addition to the multipole-multipole interaction in the cases
where it is estimated to be important (usually for the quadrupole-quadrupole and
octupole-octupole channels). It should be noted here that the monopole pairing
interaction is also realized by using this channel and not the formulas that can
be derived speciˇcally for the pairing case [3]. The radial dependence of the
interaction Rλ(r) can be either Rλ(r) ∼ rλ or Rλ(r) ∼ dV (r)/dr, where V (r)
is the central part of the single-particle potential.

The Bogoliubov canonical transformation from nucleon creation and annihi-
lation operators a+

jm and ajm to quasiparticle creation and annihilation operators

α+
jm and αjm is taken in the standard form:

ajm = ujαjm + (−)j−mvjα
+
j−m. (23)

Using the transformation (23), we can re-express the model Hamiltonian in
terms of quasiparticles. For example, the term Hsp takes the form :

Hsp =
∑
jm

nεjα
+
jmαjm +

∑
jm

pεjα
+
jmαjm, (24)

where the quasiparticle energy is given by:

εj = [(Ej − λτ )2 + C2
τ ]

1/2.

The chemical potential λτ and correlation function (energy gap) Cτ are calculat-
ed according to the well-known BCS equations [2]. The particle-hole operator
M+
λµ(τ) (eq. (19)) can be written in the form:
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M+
λµ(τ) =

1

λ̂

∑
jj′

τf
(λ)
jj′ {

1

2
u

(+)
jj′ [A

+(jj′λµ)+

+(−1)λ−µA(jj′λ− µ)] + v
(−)
jj′ B(jj′λµ)}, (25)

and the particle-particle operator P+
λµ(τ) (eq. (22)) becomes:

P+
λµ(τ) =

1

λ̂

∑
jj′

τf
(λ)
j1j2

[ujuj′A
+(jj′λµ)−

−(−1)λ−µvjvj′A(jj′λ− µ)− 2ujvj′B(jj′λµ)], (26)

where
A+(jj′λµ) =

∑
mm′

< jmj′m′ | λµ > α+
jmα

+
j′m′ , (27)

A(jj′λµ) =
[
A+(jj′λµ)

]+
(28)

B+(jj′λµ) =
∑
mm′

(−1)j
′+m′ < jmj′m′ | λµ > α+

jmαj′−m′ , (29)

and the quantities f (λ)
jj′ are the reduced single-particle matrix elements of the

operator iλRλ(r)Yλµ(Ω).
The RPA phonon creation operator is taken as a superposition of the operators

(27) and (28):

Q+
λµi =

1

2

∑
τ

n,p
∑
jj′

{ψλijj′A+(jj′λµ)− (−1)λ−µϕλijj′A(jj′λ− µ)}, (30)

where ψλijj′ and ϕλijj′ are the forward and backward RPA amplitudes, respectively.

The energy of the phonons ωλi and the amplitudes ψλijj′ and ϕλijj′ are obtained
by solving the RPA equations. The general form of the equations in the case of
separable interaction is given in Refs. 2,3.

The operator P+
λµ(τ) (see eqs. (22) and (26)), can be rewritten in terms of

the phonon operators (30) and the operators (29) as follows:

P+
λµ(τ) = λ̂{1

2

∑
i

[(L(λi) +M (λi))Q+
λµi − (31)

−(L(λi) −M (λi))(−1)λ−µQλ−µi −
−2(−1)λ−µ

∑
j1j2

Θ
(λ)
j1j2

B+(j1j2λ− µ)},
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where

L(λi) =
∑
τ

L(λi)
τ =

∑
τ

∑
j1j2

τf
(λ)
j1j2

v
(−)
j1j2

g
(λi)
j1j2

, (32)

M (λi) =
∑
τ

M (λi)
τ =

∑
τ

∑
j1j2

τf
(λ)
j1j2

v
(+)
j1j2

w
(λi)
j1j2

, (33)

Θ
(λ)
j1j2

= f
(λ)
j1j2

uj2vj1 (34)

and

g
(λi)
j1j2

= ψλij1j2 + ϕλij1j2 , (35)

w
(λi)
j1j2

= ψλij1j2 − ϕ
λi
j1j2

.

A similar form could be found for the operators M+
λµ(τ) and S+

LM(τ) [2,18].
For the multipole-multipole operators one gets:

M+
λµ(τ) =

1

λ̂
{1
2

∑
i

R(λi)(Q+
λµi+(−1)λ−µQλ−µi)+

∑
j1j2

ξ
(λ)
j1j2

B(j1j2λµ)}, (36)

where

R(λi) =
∑
τ

R(λi)
τ =

∑
j1j2

τf
(λ)
j1j2

v
(−)
j1j2

(37)

and
ξ

(λ)
j1j2

= f
(λ)
j1j2

v
(−)
j1j2

. (38)

Taking into account the above equations, the terms in the general model
Hamiltonian (16) responsible for the interaction of quasiparticles and phonons,
acquire the following form:

Hqp−ph =
∑
λµi

(−1)λ−µ
1√
2Yλi

∑
τ

{[(L(λi)
τ +M(λi)

τ )Q+
λµi + (39)

+ (−1)λ−µ(L(λi)
τ −M(λi)

τ )Qλ−µi]
∑
j1j2

τΘ
(λ)
j1j2

B(j1j2λ− µ)−

− 1

2
R

(λi)
τ (Q+

λµi + (−1)λ−µQλ−µi)
∑
j1j2

τξ
(λ)
j1j2

B(j1j2λ− µ) + h.c.},

where
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√
2

Yλi
L(λi)
τ = G(λ)

n L(λi)
τ +G(λ)

np L
(λi)
−τ ,

√
2

Yλi
M(λi)
τ = G(λ)

n M (λi)
τ +G(λ)

npM
(λi)
−τ , (40)

√
2

Yλi
R(λi)
τ = (κ

(λ)
0 + κ

(λ)
1 )R(λi)

τ + (κ
(λ)
0 − κ(λ)

1 )R
(λi)
−τ .

The quantities Yλi [3] are calculated at the RPA level, using the normalization
condition for the forward and backward amplitudes:

1

2

∑
j1j2

[(ψλijj′ )
2 − (ϕλijj′ )

2] = 1. (41)

Introducing the notation:

K(±)
τ (j1j2λi) =

f
(λ)
j1j2√
Yλi

[v
(−)
j1j2
R(λi)
τ − (u

(+)
j2j1

+ u
(−)
j2j1

)(L(λi)
τ ±M(λi)

τ )], (42)

eq. (39) ˇnally takes the form:

Hqp−ph = − 1

2
√

2

∑
λµi

{(−1)λ−µ
∑
τ

∑
j1j2

[K(+)
τ (j1j2λi)Q

+
λµi

+(−1)λ−µK(−)
τ (j1j2λi)Qλ−µi]B(j1j2λ− µ) + h.c.}. (43)

The in
uence of the particle-particle channel is switched off if the terms L(λi)
τ

and M(λi)
τ are equal to zero. In that case, the interaction between quasiparticles

and phonons of eq. (43) takes the well-known form for the particle-hole channel
taken alone [3,18].

The matrix element Hqp−ph (see eq. (43)), between a one- and a two-phonon
state has the form:

Sλ1i1
λ2i2

(Ji) ≡
〈
QJMi |Hqp−ph|Q+

λ1µ1i1
Q+
λ2µ2i2

〉
= (44)

− 1√
2
λ̂1λ̂2

∑
τ
∑
j1j2j3

τ{(−1)j1+j2+J

{
J λ1 λ2

j3 j2 j1

}
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×[ϕλ1i1
j1j3

ψλ2i2
j3j2
K(+)
τ (j1j2Ji) + ψλ1i1

j1j3
ϕλ2i2
j3j2
K(−)
τ (j1j2Ji)]

+(−1)j1+j2+λ1

{
λ1 J λ2

j3 j2 j1

}
×[ψJij1j3ψ

λ2i2
j3j2
K(−)
τ (j1j2λ1i1) + ϕJkj1j3ϕ

λ2i2
j3j2
K(+)
τ (j1j2λ1i1)]

+(−1)j1+j2+λ2

{
λ2 λ1 J
j3 j2 j1

}
×[ϕλ1i1

j1j3
ϕJij3j2K

(−)
τ (j1j2λ2i2) + ψλ1i1

j1j3
ψJkj3j2K

(+)
τ (j1j2λ2i2)]},

where the quantities in curly brackets are the 6j symbols [20].

If L(λi)
τ = 0 and M(λi)

τ = 0 (i.e., the particle-particle channel is turned off),

the quantity K(±)
τ reduces to the following expression:

K(+)
τ (j1j2λi) = K(−)

τ (j1j2λi) = f
(λ)
j1j2

v
(−)
j1j2
Y−

1
2

λi

and Sλ1i1
λ2i2

(Ji) becomes [3]:

Sλ1i1
λ2i2

(Ji) = Uλ1i1
λ2i2

(Ji) =

(−)λ1+λ2−λ 1√
2

(2λ1 + 1)1/2(2λ2 + 1)1/2
∑
τ

∑
j1j2j3

τ v(∓) ×

fλ2

j1j2√
yλ2i2

{
λ1 λ2 λ
j1 j3 j2

}(
ψλij3j1ψ

λ1i1
j2j3

+ φλij3j1φ
λ1i1
j2j3

)
+

fλ1

j1j2√
yλ1i1

{
λ1 λ2 λ
j3 j2 j1

}(
φλij2j3φ

λ2i2
j3j1

+ ψλij2j3ψ
λ2i2
j3j1

)
+

fλj1j2√
yλi

{
λ1 λ2 λ
j2 j1 j3

}(
ψλ1i1
j3j1

φλ2i2
j2j3

+ φλ1i1
j3j1

ψλ2i2
j2j3

)
, (45)

which is the matrix coupling states differing by one phonon in the case when
only the particle-hole channel is switched on.
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