«ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА» 1999, ТОМ 30, ВЫП.2

УДК 539.165; 539.14

ПРОЯВЛЕНИЕ НЕСТАТИСТИЧЕСКИХ ЭФФЕКТОВ В АТОМНЫХ ЯДРАХ

И.Н.Изосимов

Радиевый институт им. В.Г.Хлопина, Санкт-Петербург

ВВЕДЕНИЕ	321
ПРОЯВЛЕНИЕ НЕСТАТИСТИЧЕСКИХ ЭФФЕКТОВ	
ПРИ β-РАСПАДЕ	323
Силовые функции eta -переходов	323
Статистический и нестатистический подходы	
к анализу силовых функций eta -переходов	324
Расчет силовых функций eta -переходов	328
Функция Ферми	332
Экспериментальные исследования структуры	
силовых функций eta -переходов и сравнение	
с теоретическими расчетами	335
Нестатистические эффекты при eta -распаде	
экзотических ядер	345
НЕСТАТИСТИЧЕСКИЕ ЭФФЕКТЫ И β-ЗАПАЗДЫВАЮЩЕЕ	
ДЕЛЕНИЕ ЯДЕР	347
eta-запаздывающее деление ядер	347
Силовые функции $eta^+(EC)$ - и eta^- -распадов	
и запаздывающее деление актинидных ядер	348
Силовые функции eta^+ (EC)- и eta^- -распадов	
и запаздывающее деление доактинидных ядер	354
Запаздывающее деление, структура	
силовых функций eta -распада и образование ядер	
в астрофизических процессах	357
НЕСТАТИСТИЧЕСКИЕ ЭФФЕКТЫ В (р, ү) И (р, р', ү) ЯДЕРНЫХ	
РЕАКЦИЯХ ПРИ ВОЗБУЖДЕНИИ И РАСПАДЕ НЕАНАЛОГОВЫХ	
PE3OHAHCOB	362

Исследования структуры резонансов в реакциях	
с протонами низких энергий	362
Методика экспериментов	326
Нестатистические эффекты в угловых распределениях	
в реакциях (р, ү)	366
Корреляция величин <i>B</i> (<i>E</i> 2) и <i>B</i> (<i>M</i> 1) в реакциях	
$58,60,62$ Ni (p,γ) $59,61,63$ Cu	369
Нестатистические эффекты в в реакциях (p, p', γ)	372
ЗАКЛЮЧЕНИЕ	374
СПИСОК ЛИТЕРАТУРЫ	375

«ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА» 1999, ТОМ 30, ВЫП.2

УДК 539.165; 539.14

ПРОЯВЛЕНИЕ НЕСТАТИСТИЧЕСКИХ ЭФФЕКТОВ В АТОМНЫХ ЯДРАХ

И.Н.Изосимов

Радиевый институт им. В.Г.Хлопина, Санкт-Петербург

Приведены экспериментальные и теоретические данные, свидетельствующие о проявлении нестатистических эффектов при возбуждении и распаде высоковозбужденных ядерных состояний и резонансов составного ядра. Проанализированы нестатистические эффекты, проявляющиеся при распаде, запаздывающих процессах, ядерных реакциях с протонами низких энергий. Обсуждаются причины проявления нестатистических эффектов.

A review is given of the experimental and theoretical studies evidencing the non-statistical character for excitation and decay of high-exciting nuclear states and compound nuclear resonances. It was analyzed non-statistical effects in decays, delay processes, nuclear reactions with low-energy protons. The causes of non-statistical effects are discussed.

введение

Исследования распадов и структуры средних и тяжелых ядер при энергиях возбуждения свыше 2-3 МэВ играют важную роль в развитии наших представлений об атомном ядре. При увеличении энергии возбуждения плотность уровней в ядре быстро нарастает, и волновая функция ядерных состояний может иметь достаточно сложную структуру, поскольку даже небольшое остаточное взаимодействие может вызвать смешивание близлежащих состояний. Поэтому, как правило, предполагают, что структура рассматриваемых состояний очень сложна, и коэффициенты разложения волновой функции по простейшим конфигурациям подчиняются статистическим закономерностям. В такой статистической модели довольно просто проводятся вычисления характеристик различных ядерных процессов. В частности, распределение ширин переходов описывается формулой Портера — Томаса [1], силовая функция β-переходов S_b(E) плавно зависит от энергии [2], корреляции между различными парциальными ширинами отсутствуют [3], отношения амплитуд распада по различным спиновым каналам подчиняются распределению Коши [4].

Нестатистические эффекты тесно связаны с симметрией ядерного взаимодействия [5]. Одни из первых и особенно ярких нестатистических эффектов при распадах высоковозбужденных уровней ядер наблюдались для изобар-аналоговых резонансов, что связано с изоспиновой симметрией ядерных сил [6]. Действительно, изоспин изобар-аналогового резонанса (аналога) на единицу больше, чем изоспин близлежащих уровней, что препятствует смешиванию аналога с уровнями сложной структуры. При энергиях возбуждения ядер свыше 2–3 МэВ наблюдается большое число других состояний и резонансов — неаналоговых. Возможны два варианта их интерпретации: статистический и нестатистический. В первом случае считается, что это статистические состояния, во втором — что это структуры типа гигантского резонанса, связанные с распределением возбуждений простого типа (например, протон (π) — частица (ρ) – ($\pi \rho$) — нейтронная (n) дырка (h) – (nh), связанные в момент 1⁺ по уровням составного ядра. Во втором случае физическая интерпретация экспериментов должна отличаться от статистического подхода.

Так, например, если бы ядерные силы были спиново- и изоспиново-инвариантны (т.е. спин-изоспиновая группа SU(4) была бы группой симметрии), то для ряда неаналоговых резонансов и состояний мы должны наблюдать нестатистические эффекты. Однако поскольку ядерное взаимодействие обнаруживает довольно сильную зависимость от спина, то SU(4) [7,8] может быть лишь группой приближенной симметрии, и нестатистические эффекты, связанные со спин-изоспиновой SU(4)-симметрией, будут менее ярко выражены по сравнению с изобар-аналоговыми резонансами (изоспиновая SU(2)-симметрия сильного взаимодействия). Поэтому встает вопрос о выделении и наблюдении нестатистических эффектов при возбуждении и распаде ядерных состояний и резонансов, определении степени смешивания простой компоненты с уровнями составного ядра, интерпретации структуры состояний на микроскопическом уровне.

В статистической модели волновая функция записывается в виде

$$\Psi_{\rm st} = \sum_{k}^{n} C_k \varphi_k, \quad \sum_{k}^{n} \left| C_k \right|^2 = 1 \tag{1}$$

где φ_k — волновые функции «простых» конфигураций, C_k — случайные числа n >> 1Для нестатистического подхода характерно выделение определенной конфигурации φ_0 в волновой функции Ψ_{nst} [9]:

$$\Psi_{\text{nst}} = C_0 \phi_0 + \sum_{k}^{n} C_k \phi_k, \qquad |C_0| >> |C_k|, |C_0|^2 + \sum_{k}^{n} |C_k|^2 = 1$$
(2)

В работах [4,5,9—15] обнаружены отклонения от статистической теории, проявляющиеся в реакциях ($\rho, \rho' \gamma$), (ρ, γ), β^- - и β^+ (*EC*)-распадах, запаздывающих процессах, не связанные с возбуждением или распадом изобар-аналоговых состояний.

В обзоре рассмотрены исследованные в последнее время проявления нестатистических эффектов при β^- и β^+ (*EC*)-распадах, запаздывающих процессах, ядерных реакциях. Экспериментально обнаруженные новые нестатистические эффекты связываются с элементарными модами ядерных возбуждений типа $[\pi p \otimes nh]_+$ и $[np \otimes \pi h]_+$.

1. ПРОЯВЛЕНИЕ НЕСТАТИСТИЧЕСКИХ ЭФФЕКТОВ ПРИ β-РАСПАДЕ

1.1. Силовые функции β -переходов. Силовая функция переходов $S_{\beta}(E)$ является одной из важнейших характеристик атомного ядра [5,14] и представляет собой распределение квадратов модулей матричных элементов β -распадного типа по энергиям возбуждения ядра E. При энергиях возбуждения E до величины Q_{β} (полной энергии распада) $S_{\beta}(E)$ определяет характер β -распада и период полураспада $T_{1/2}$ радиоактивного ядра по ветке β -распада. При больших энергиях возбуждения, не достижимых при β -распаде, $S_{\beta}(E)$ определяет сечения различных ядерных реакций, зависящих от матричных элементов β -распадного типа.

Силовая функция $S_{\beta}(E)$ определяет распределение по энергии ядра E элементарных возбуждений и их комбинаций типа протон-частица (πp) — нейтронная дырка (νh), связанных в момент $J^{\pi} : [\pi p \otimes \nu h]_{J^{\pi}}$ и нейтрон-частица (νp) — протонная дырка, связанных в момент $J^{\pi} : [\nu p \otimes \pi h]_{J^{\pi}}$. Силовая функция β -переходов Гамова — Теллера описывает возбуждения [$\pi p \otimes \nu h$]_{τ} или [$\nu p \otimes \pi h$]_{τ}.

При β -распаде $S_{\beta}(E)$ связана с плотностью вероятности заселения уровней дочернего ядра I(E):

$$S_{\beta}(E) = \frac{I(E)}{T_{1/2}f(Q_{\beta} - E)},$$
 (3)

где $f(Q_{\beta} - E)$ — функция Ферми [16], $(Q_{\beta} - E)$ — энергия β -перехода.

Для процессов, зависящих от матричных элементов типа Гамова — Теллера (GT):

$$S_{\beta}(E) = \frac{1}{D(g_{v}^{2} / g_{a}^{2})} B'(GT, E), \qquad (4)$$

где $D = \frac{2\pi^{3} \, ^{7} \ln 2}{g_{v}^{2} m_{e}^{5} c^{4}}$, $D = (6260 \pm 60)c$, g_{v} и g_{a} — векторная и аксиально-векторная

константы β-распада [1,6]:

$$B'_{\mp}(\mathrm{GT},E) = \frac{1}{2I_{i}+1} \left| \left\langle I_{f} \right| \left| \sum_{k} t_{\mp}(k) \sigma_{\mu}(k) \right| \left| I_{i} \right\rangle \right|^{2}, \qquad (5)$$

$$B'_{\mp}(\text{GT}, E) = \frac{4\pi}{g_a^2} B_{\mp}(\text{GT}, E), \qquad (6)$$

где I_i и I_f — спины начального и конечного состояний, t_{\pm} и σ_{μ} — изоспиновый и спиновый операторы [5]. Вычисленное по какой-либо модели распределение B'(GT, E) позволяет найти $S_{\beta}(E)$ и $T_{1/2}$:

$$\frac{1}{T_{1/2}} = \int_{0}^{Q} S_{\beta}(E) f(Q_{\beta} - E) dE.$$
(7)

1.2. Статистический и нестатистический подходы к анализу силовых функций β -переходов. До недавнего времени господствовала статистическая точка зрения на силовые функции β -переходов [2]. При β -распаде заселяются довольно простые конфигурации в дочернем ядре. При энергии возбуждения в дочернем ядре в несколько МэВ простые состояния могут сильно смешиваться с состояниями более сложной структуры. Если такое смешивание велико, то S_{β} (*E*) может описываться статистической моделью. Согласно предста-

влениям статистической модели силовая функция β-распада является плавной функцией от энергии возбуждения. Как правило, в статистических расчетах используют $S_{\beta}(E)$ =const или $S_{\beta}(E) \sim \rho(E)$, где $\rho(E)$ — плотность уровней до-

чернего ядра.

Затем появились экспериментальные данные, указывающие на сильную энергетическую зависимость $S_{\beta}(E)$ разрешенных β -переходов. Сильное торможение β -переходов Гамова — Теллера на низковозбужденные состояния ядер привело к представлениям о существовании гигантского резонанса Гамова — Теллера [17,18], расположенного вблизи соответствующего аналогового резонанса. В области энергий ниже этого гигантского резонанса тянется «шлейф», энергетическая структура которого привлекает особое внимание (рис.1). Установлено, что для ядер *s*, *d*-оболочек основную роль в формировании резонансной структуры «шлейфа» резонанса Гамова — Теллера играют антианалоговые состояния [19]. Для ядер $f_{7/2}$ -оболочки на первый план выступают состояния типа поляризации остова [20] (рис.1). Экспериментальная

Рис. 1. Схема силовых функций β-переходов Ферми (заштрихованная область) и β-переходов Гамова — Теллера. Силовая функция β-переходов Ферми сконцентрирована в изобар- аналоговом резонансе (IAR). Указаны компоненты резонанса Гамова — Теллера с различным значением изоспина (GT($T_{,}$), GT($T_{,}$)) и конфигурации, формирующие силовую функцию β-переходов Гамова — Теллера. BSF — конфигурации типа «обратный спин–флип», СР — конфигурации типа «поляризация остова», SF — конфигурации типа «алемира спин–флип». (•) обозначает частицу, (•) — дырку. Изовекторные возбуждения характеризуются изоспином τ и проекцией изоспина μ_{τ}

информация об этих состояниях получена при исследовании $M1\gamma$ -распада аналоговых резонансов [21]. При изучении $S_{\beta}(E)$ в ядрах ^{236,238} Рабыло установлено, что для ряда тяжелых ядер при описании β-распада важную роль

новлено, что для ряда тяжелых ядер при описании β-распада важную роль играют состояния типа «обратный спин-флип» [5,14] (рис.1).

Данные о резонансе Гамова — Теллера получены при изучении прямых (*p*,*n*)-реакций [22,23]. Интерпретация пиков в спектрах нейтронов из прямых (*p*,*n*)-реакций, основанная на нестатистическом подходе к описанию зарядово-обменных возбуждений, позволила правильно описать экспериментальные данные по положениям и интенсивностям пиков в спектрах нейтронов [5,24,25].

Исследование спектров запаздывающих нейтронов с высоким разрешением [26] показало, что при β -распаде избирательно заселяется небольшое число уровней дочернего ядра, т.е. $S_{\beta}(E)$ имеет резонансный, нестатистический характер.

Прямые измерения вероятностей заселения уровней при β -распаде методом полного поглощения γ -лучей [27,28] показали наличие энергетической структуры S_в (*E*).

Приведенные выше данные свидетельствуют о немонотонной (нестатистической) зависимости $S_{B}(E)$ от энергии возбуждения ядра E.

С точки зрения нестатистического подхода структура $S_{\beta}(E)$ определяется изовекторными частями эффективного нуклон-нуклонного взаимодействия, а также смешиванием «простых» возбуждений с состояниями более сложной структуры.

Для анализа резонансной структуры $S_{\beta}(E)$ полезно иметь представление об элементарных модах ядерных возбуждений [29]. Зарядово-обменные элементарные возбуждения, формирующие структуру $S_{\beta}(E)$, составляют особый класс элементарных мод (рис.1). Они характеризуются изоспином τ =1и проекцией изоспина $\mu_{\tau} = \pm 1$ Иными словами, эти элементарные возбуждения находятся не в тех ядрах, где расположено основное (материнское) состояние, а в соседних (дочерних). Обычные элементарные возбуждения ($\mu_{\tau} = 0$), например, низколежащие фононные состояния или мультипольные гигантские резонансы, находятся в том же ядре, где и основное состояние.

С точки зрения микроскопического подхода к образованию коллективных состояний зарядово-обменные резонансы представляют собой суперпозицию частично-дырочных возбуждений различных сортов, например, протон-частица и нейтронная дырка. Резонанс Гамова — Теллера представляет собой когерентную суперпозицию конфигураций типа протон-частица — нейтронная дырка, связанных в момент 1⁺.

Схема состояний, существенных при анализе силовых функций переходов Гамова — Теллера, представлена на рис.1. Материнское состояние (для простоты это четно-четное ядро с N>Z) имеет изоспин T_0 и проекцию изоспина $T_Z = T_0$. Семейство частично-дырочных зарядово-обменных возбуждений типа $[\pi p \otimes vh]_J$ расположено в соседнем ядре, основное состояние которого имеет изоспин $T=T_0-1$ и проекцию изоспина $T_Z = T_0-1$ Это возбуждения с $\tau = 1$ $\mu_{\tau} = -1$ В другом соседнем ядре расположены состояния со структурой $[vp \otimes \pi h]_J$. Это ядро имеет изоспин основного состояния $T = T_0 + 1$ и $T_Z = T_0 + 1$ а характеристика элементарного возбуждения $\tau = 1$ $\mu_{\tau} = +1$ Возбуждения с $\tau = 0,1$ и $\mu_{\tau} = 0$ находятся в материнском ядре.

Для β -переходов типа Ферми в простой модели [6] существует только одно состояние, вбирающее всю силу перехода. Это аналоговое состояние IAS со спином 0⁺, изоспином $T = T_0$ и $T_Z = T_0 - 1$, образующееся как когерентная суперпозиция конфигураций $[\pi p \otimes vh]_{0^+}$. Типичная силовая функция для β -переходов Ферми также изображена на рис.1.

Для β⁻-переходов Гамова — Теллера ситуация более сложная. Основную силу β -переходов несет резонанс Гамова — Теллера $J^{\pi} = 1^{+}$, $T = T_0 - 1$, $T_{Z} = T_{0} - 1(\tau = 1, \mu_{\tau} = -1)$. Это состояние образуется как когерентная суперпозиция всевозможных конфигураций $[\pi p \otimes vh]_{\star}$, имеет значительный вклад от кофигураций типа «спин-флип», т.е. $[\pi p \otimes \nu h]_{\pm}$, $j_p = \ell - 1/2$, $j_n = \ell + 1/2$ и расположено вблизи аналогового резонанса. При меньших энергиях расположены состояния типа поляризации остова: $[\pi p \otimes vh]_{*}$, $j_p = j_n$. При еще более низких энергиях расположены состояния типа «обратный спин-флип»: $[\pi p \otimes vh]_{+}$, $j_{p} = \ell + 1/2$, $j_{n} = \ell - 1/2$. Изоспин состояний типа поляризация остова и обратный спин-флип имеет нормальное значение, т.е. $T = T_0 - 1$ и $T_{Z} = T_{0} - 1$ Поскольку конфигурация типа спин-флип не обладает определенным изоспином, имеется $T_{>}$ ($T = T_0, T_Z = T_0 - 1$)-компонента резонанса Гамова — Теллера, расположенная выше основного (Т) резонанса [5,24]. При β⁺ (EC)-распаде имеется [5] только одно значение изоспина для конфигураций $[v p \otimes \pi h]_{+}$. Наиболее коллективное состояние $J = 1^+$, образующееся из возбуждений типа $[vp \otimes \pi h]_{\tau}$, имеет $T = T_0 + 1$, $T_Z = T_0 + 1$ ($\tau = 1, \mu_{\tau} = 1$) и также называется резонансом Гамова — Теллера с μ_{τ} =+1 Его энергия может сильно меняться от ядра к ядру.

С точки зрения феноменологического подхода резонанс Гамова — Теллера ($\tau = 1$ $\mu_{\tau} = -1$), $M1(\tau = 1$ $\mu_{\tau} = 0$) гигантский резонанс и резонанс Гамова — Теллера ($\tau = 1$ $\mu_{\tau} = +1$) представляют собой изобарический триплет 1⁺ -состояний. Однако с микроскопической точки зрения эти состояния нельзя назвать изобарическим триплетом, так как конфигурации, образующие эти состояния, не всегда переходят одна в другую, из-за принципа Паули, под действие \overline{m} of T_{+} и T_{-} [5,24,25].

Представления о нестатистической структуре силовых функций $S_{\beta}(E)$ оказались существенными для самых различных областей ядерной физики [5].

1.3. Расчет силовых функций β -переходов. Проблема микроскопического описания силовых функций β -переходов тесно связана с задачами анализа астрофизических и термоядерных процессов, с анализом величин log *ft* для β -переходов между низколежащими состояниями, описанием запаздывающих процессов, анализом *M* γ -распада аналоговых резонансов и изучением свойств резонанса Гамова — Теллера.

Подавление β -переходов Ферми $0^+ \Rightarrow 0^+$ связано с существованием коллективного состояния — изотопического аналога основного состояния материнского ядра, вбирающего в себя основную силу β -переходов Ферми и расположенного выше основного состояния материнского ядра [30] (рис.1). С микроскопической точки зрения коллективизация аналога связана с существованием остаточного взаимодействия

$$V_{\tau\tau} = \frac{1}{2} G_{\tau} (\tau_1 \tau_2). \tag{8}$$

Аналогично тому, как подавление β -переходов Ферми (оператор $\beta_F^{\pm} = \sum_{k} \tau_{\pm}(k)$) можно объяснить, учитывая остаточное взаимодействие $V_{\tau\tau}$, для

объяснения подавления переходов Гамова — Теллера (оператор $\beta_{GT}^{\pm} = \sum_{k} \tau_{\pm}(k) \sigma(k) [14,31,32]$ было введено остаточное взаимодействие

$$V_{\tau\tau\sigma\sigma} = \frac{1}{2} G_{\tau\sigma} (\tau_1 \tau_2) (\sigma_1 \sigma_2).$$
⁽⁹⁾

Используемые в настоящее время модели расчета $S_{\beta}(E)$ можно разделить

на два класса [33,34]. К первому относятся модели, в которых игнорируется конкретная оболочечная структура ядра, но приближенно учитывается затухание гигантских резонансов, связанное с конфигурациями $[\pi p \otimes vh]_{+}$ и

 $[vp \otimes \pi h]_{+}$. Наиболее используемые модели следующие.

1. Гросс-теория [35,36], в которой все формирующие $S_{\beta}(E)$ частично-ды-

рочные конфигурации считаются вырожденными по энергии.

 Схематическая модель [37,38], в которой все частично-дырочные переходы разбиты на группы по энергии в зависимости от переворота спина, и основные соотношения получены методом квазиклассического суммирования в теории конечных ферми-систем (ТКФС).

Такие модели обладают важным преимуществом: они позволяют аналитически описать характеристики резонансов в зависимости от параметров, но не могут претендовать на детальное описание явлений. Вторая группа включает модели, использующие реалистический базис оболочечных конфигураций и параметризованное в том или ином виде эффективное взаимодействие квазичастиц. Наиболее часто используются следующие модели.

Модели [5,14,39,40], в которых в рамках приближения Тамма — Данкова или приближения случайных фаз проводится диагонализация гамильтониана модели оболочек на частично-дырочном базисе без учета одночастичного континуума и связи простых конфигураций со сложными, что приводит к появлению δ-пиков в S_β (*E*). Данный тип моделей с успехом был применен для

расчета $S_{\beta}(E)$ в области средних и тяжелых ядер [14,31]. Остаточное спин-

изоспиновое взаимодействие приводит к тому, что появляется состояние, в волновую функцию которого базисные частично-дырочные конфигурации входят когерентно (т.е. с одинаковым знаком), и данное состояние отождествляется с резонансом Гамова — Теллера. Учет релаксации резонансов производится путем уширения δ-пиков с помощью распределений Гаусса или Брейта — Вигнера [5,41,42].

2) Модели [43,44], в которых описание $S_{\beta}(E)$ ведется в рамках оболочеч-

ной модели с учетом частично-дырочного континуума и эффективных нуклон-нуклонных взаимодействий в каналах частиц-частица и частица-дырка. Значения ширин максимумов, обусловленные только наличием вероятности вылета нуклона в континуум (Г \cong 100 кэВ [34,45]), оказываются намного меньше наблюдаемых (1 МэВ [5,28]), что приводит к необходимости включения в частично-дырочный пропагатор комплексной добавки к энергии, чтобы удовлетворительно описать энергетические ширины пиков в зарядово-обменных процессах.

3) Квазичастично-фононная модель [28,46], основанная на диагонализации гамильтониана на базисе, включающем как частично-дырочные (1p, h), так и (2p, 2h)-конфигурации, что позволяет эффективно учесть релаксацию пиков в $S_{\beta}(E)$, т.е. оценить их ширину [47]. Пренебрежение одночастичным континуумом в данной модели несколько сужает сферу ее применимости и затрудняет исследование ряда ядерных реакций.

4) Оптико-оболочечная модель [34,48] учитывает оболочечную структуру ядра, эффекты одночастичного континуума, связь частично-дырочных конфигураций, формирующих резонансы в $S_{\beta}(E)$, с многочастичными конфигурациями. Связь частично-дырочных конфигураций с многочастичными описывается в рамках определенным образом параметризованной оптической модели. Затухание квазичастиц анализируется в терминах мнимой части оптического потенциала.

Следует отметить, что существующие модели расчета $S_{\beta}(E)$ не претендуют на полное и исчерпывающее описание β -распада. Однако с их помощью можно довольно хорошо описывать положения и относительные интенсивности пиков в $S_{\beta}(E)$, что, например, вполне достаточно для описания запаздывающих процессов. Несомненно, что новые экспериментальные данные по $S_{\beta}(E)$ стимулируют дальнейшее развитие микроскопических подходов к расчетам силовых функций. Пути совершенствования расчетов могут состоять в

использовании тех или иных вариантов базиса (1р,1/н) и последовательном учете связи этих конфигураций с многочастичными, а также в использовании тех или иных вариантов эффективного взаимодействия.

Одни из первых микроскопических расчетов $S_{\beta}(E)$ для β -переходов Гамова — Теллера в ряде ядер, с учетом оболочечных эффектов, были сделаны с использованием метода Тамма — Данкова (TDA-модель) [5,14]. Остановимся несколько подробнее на TDA-модели, поскольку как сама модель, так и основные принципы, заложенные в нее, используются во многих современных исследованиях [49,50]. Гамильтониан системы представлялся в виде суммы одночастичной части (H_{sp}) модели оболочек и зарядово-обменных остаточных взаимодействий:

$$H = H_{sp} + V, \tag{10}$$

где остаточные взаимодействия имеют вид (см.(8),(9)):

$$V = V_{\tau\tau} + V_{\tau\tau\sigma\sigma},$$

$$G_{\tau\tau} = (10 \div 15)G_{\tau\sigma}.$$
(11)

В качестве базисных функций выбирают состояния, получающиеся из материнского состояния $|\Psi_0\rangle$ под действием оператора β -распада. Тогда матричные элементы взаимодействия *V* представляются в факторизованном виде:

$$\langle f | V | f' \rangle = \frac{G}{2} V_f V_{f'}$$
 (12)

где V_f пропорциональны [5] амплитудам β -переходов на базисные состояния $|f\rangle$, имеющие энергию возбуждения E_f .

Так, для β-распада Гамова — Теллера *N*-нечетного ядра базисные состояния включают одночастичные протонные $|j_{p1}\rangle$ состояния и трехквазичастичные состояния $[j_{n1} \otimes (j_p \otimes j_{n^-})]_J\rangle$ со спином $J = j_{n1}, j_{n1} \pm 1$ Для β-распада Z-нечетного ядра с нечетным протоном в состоянии $|j_{p1}\rangle$ базисные состояния включают одночастичные нейтронные $|j_{n1}\rangle$ и трехквазичастичные $|[j_{p1} \otimes (j_n \otimes j_{p^-})]_+\rangle$, $J=j_{p1}, j_{p1}\pm 1$

Диагонализация матрицы:

$$H_{ff} = E_f \delta_{ff} + G_{\tau\sigma} V_f V_f, \qquad (13)$$

дает энергии и волновые функции состояний дочернего ядра, заселяемых при β -переходах Гамова — Теллера, и позволяет определить $S_{\rm g}(E)$ и $T_{1/2}$ [5,14].

В характере силовых функций β^+ - и β^- -распадов имеется принципиальное отличие. В силовых функциях β^- -распада основной максимум расположен вблизи аналога. В силовых функциях β^+ -распада положение максимума нельзя связывать с положением аналога, т.к. в ядрах с $T_Z > 0$ (N > Z) нет аналогового состояния по отношению к β^+ -распаду. Главное отличие состоит в том, что энергии возбуждения базисных состояний отсчитываются от основного состояния дочернего ядра, и результаты расчетов для β^+ -распада более чувствительны к выбору среднего поля и учету различных корреляций [5].

В последние годы широкое распространение для расчета $S_{\beta}(E)$ получили модели с использованием QRPA-приближения [51,52]. В подходах, использующих приближение QRPA, волновые функции строятся на основе той или иной одночастичной модели со спариванием и остаточным взаимодействием зарядово-обменного типа, которое трактуется в приближении случайных фаз [39,40,51].

Типичное значение константы остаточного взаимодействия Гамова — Теллера составляет [5,14,39,51]: $G_{\tau\sigma} = (40 \div 50) / \text{A} \cdot \text{M} \Rightarrow \text{B}.$

Положению резонанса Гамова — Теллера для ядер в области ²⁰⁸Pb в QRPA-модели соответствует константа остаточного взаимодействия [5] $G_{\tau\sigma} = 46/A \cdot M$ эB. Изменение расчетного значения положения резонанса Гамова — Теллера составляет 12% при изменении $G_{\tau\sigma}$ на 40% [52].Положение остальных резонансов в $S_{\rm R}(E)$ менее чувствительно к выбору константы $G_{\tau\sigma}$.

Сделаем несколько комментариев о силовых функциях β^- - и β^+ -переходов. Силовые функции S_β для и β^- - для β^+ -переходов качественно различны, что проявляется прежде всего в полной сумме β^+ - и β^- -переходов. Для β^- -переходов Гамова — Теллера существует правило сумм [18,29]:

$$S_{-} - S_{+} = 3(N - Z),$$
 (14)

где

$$S_{\pm} = \sum_{i} B_{\pm} (\text{GT}, \boldsymbol{E}_{i}), \qquad (15)$$

а величина B_{\pm} связана с S_{β} соотношениями (4) — (6).

Величины S_{\pm} называют интегральной силой возбуждений Гамова — Теллера в каналах β^- или β^+ -распадов. Правило сумм (14) модельно-независимо в пространстве нуклонных степеней свободы, т.е. оно должно выполняться в присутствии различных нуклонных корреляций, но может модифицироваться при учете ненуклонных степеней свободы (кварков, барионных резонансов и т.д.). Из (14) следует, что в ядрах с N > Z полная сумма β^- -переходов существенно больше, чем β^+ -переходов. Однако это не означает, что logft β^- и β^+ -переходов должны сильно различаться, поскольку в энергетически разрешенное окно ($E < Q_{\beta}$) попадают далеко не все состояния, дающие вклад в S_{\pm} (рис.1). Так, более 90% полной силы β^- -переходов Гамова — Теллера сосредоточено в резонансе Гамова — Теллера, который по энергии возбуждения находится выше Q_{β} , а значит, силы S_+ и S_- в области низких энергий возбуждения ния могут быть сравнимы [5].

В $S_{\beta}(E)$ для β^- -переходов основной максимум расположен в области аналогового состояния (рис.1). Основной максимум в $S_{\beta}(E)$ для $\beta^+(EC)$ -распада может довольно сильно изменять свое положение при переходе от ядра к ядру. Однако, если основной максимум в S_{β^-} ($\mu_{\tau} = -1$) в принципе недостижим при β^- -распаде ядер с N > Z, то резонанс Гамова — Теллера с $\mu_{\tau} = +1$ в определенных ядрах может опускаться ниже Q_{β} [50] и проявляться при $\beta^+(EC)$ -распадах. В ядрах с Z > N ситуация с β^+ - и β^- -распадами меняется местами.

Различия в S_{β^+} и S_{β^-} мало сказываются на вероятностях β^+ - и β^- -переходов в ядрах вблизи полосы стабильности. Эти различия проявляются более сильно при удалении от полосы β -стабильности и возрастании полной энергии β -распада Q_{α} .

1.4. Функция Ферми. Кратко остановимся на расчетах функций Ферми, которые необходимы при анализе экспериментальных данных и проведении сравнения теории с экспериментом (3).

Вероятность β-распада в единицу времени записывается как [16]:

$$W_{fi} = \frac{2\pi}{|H_{fi}|^2} \frac{dk_e dk_v}{(2\pi)^6} \delta(E_0 - \varepsilon_e - E_v), \qquad (16)$$

где E_0 — полная энергия β -распада, H_{fi} — матричный элемент β -перехода из начального состояния (*i*) в конечное состояние (*f*), k_e , E_e — волновой вектор и энергия электрона, k_v , E_v — волновой вектор и энергия антинейтрино. Матричный элемент $|H_{fi}|$ содержит произведение ядерного матричного элемента $|M_{fi}|$ и плотности состояний для электрона и антинейтрино. В результате имеем распределение электронов по энергии [16,53]:

$$\frac{dW_{fi}}{d\varepsilon} = \frac{m_e c^2}{\pi^3} \frac{\Gamma^2}{\pi^3} \rho(\varepsilon, Z, R) \left| M_{fi} \right|^2 (\varepsilon_0 - \varepsilon)^2 \varepsilon (\varepsilon^2 - 1)^{1/2},$$
(17)

где $\varepsilon = \frac{E_e}{m_e c^2}$, $\varepsilon_0 = \frac{E_0}{m_e c^2}$, $B = \frac{2\pi^3 \ln 2}{\Gamma^2} = 4131c$, функция $\rho(Z,R,\varepsilon)$ описыва-

ет влияние электрического поля атома на распределение β -частиц по энергиям. В случае разрешенных β -переходов влияние поля атома на распределение β -частиц по энергиям описывается функцией Ферми, на которую должен быть умножен β -спектр, вычисленный при Z=0. Полная вероятность β -распада [5,52]:

$$W_{ff} = \frac{m_e c^2}{2\pi^3} \frac{\Gamma^2}{2\pi^3} |M_{ff}|^2 f(Z, R, \varepsilon_0), \qquad (18)$$

где

$$f(Z,R,\varepsilon_0) = \int_{1}^{0} \rho(Z,\varepsilon,R)(\varepsilon_0 - \varepsilon)^2 \varepsilon(\varepsilon^2 - 1)^{1/2} d\varepsilon$$
(19)

 интегральная функция Ферми. Для функций Ферми составлены обширные таблицы [16,54].

ε

Период полураспада

$$T_{1/2} = \frac{\ln 2}{\sum W_{fi}} = \frac{2\pi^{3} \ln 2}{m_{0} c^{2}} \left\{ \sum |M_{fi}|^{2} f(Z, R, \varepsilon_{0}) \right\}^{-1} = \left\{ \sum S_{\beta} (E_{f}) f(Z, R, \varepsilon_{0}) \right\}^{-1},$$
(20)

$$\Gamma \det S_{\beta} (E) = \frac{|M_{fi}|^{2}}{B}, B = 4213 \text{ c} \equiv D \frac{g_{v}^{2}}{g_{a}^{2}} = \frac{2\pi^{3} \ln 2}{m_{0} c^{2} \Gamma^{2}}, D = \frac{2\pi^{3}^{-7} \ln 2}{g_{v}^{2} m_{0}^{2} c^{4}} [5, 52],$$

см. также формулу (4).

Вышеприведенные формулы применимы как для β⁻ -, так и для β⁺ -распадов. Для электронного захвата формулы несколько модифицируются [16,53]:

$$E_0^{EC} = E_0^{\beta^+} + 2m_0 C^2 - B_e, \qquad (21)$$

где E_0^{EC} — полная энергия электронного захвата, B_e — энергия связи электрона, т.е. электронный захват может иметь место, когда β^+ -распад энергетически запрещен. Соотношение между β^+ -распадом и электронным захватом зависит от энергии перехода.

Вероятность электронного захвата с К-оболочки:

$$dW_{fi}^{(k)} = \frac{2\pi}{|H_{fi}^{(k)}|^2} \frac{dk_v}{(2\pi)^3} \delta(E_0 - E_v), \qquad (22)$$

$$W_{fi}^{(k)} = \frac{m_e C^2}{\pi} \frac{\Gamma^2}{\pi} \left(\frac{m_e C}{m_e C} \right)^2 \rho_k (Z, \varepsilon, \mathbf{P}) \left| M_{fi} \right|^2 \varepsilon_v^2, \tag{23}$$

$$T_{1/2} = \frac{\ln 2}{\sum (W_{fi}^{\beta} + W_{fi}^{(k)})}.$$
 (24)

Для более точного описания ряда процессов (например, запаздывающего деления) часто важно учитывать электронный захват с *L*-оболочки:

$$W_{fi}^{k+L_{i}} = \frac{m_{e}C^{2}\Gamma^{2}}{\pi} |M_{fi}|^{2} \frac{1}{4\pi} (g_{-1,k}^{2}q_{k}^{2} - g_{-1,L_{1}}^{2}q_{L_{1}}^{2}), \qquad (25)$$

$$W_{f}^{k+L_{i}} = \frac{m_{e}C^{2}\Gamma^{2}}{2\pi^{3}} |M_{fi}|^{2} f_{fi}^{k+L_{i}} (Z, R, \varepsilon),$$
(26)

$$f_{f_{l}}^{k+l}(Z,R\varepsilon) = \frac{\pi}{2} (g_{-1,k}^{2} q_{k}^{2} - g_{-1,L_{1}}^{2} q_{L_{1}}^{2}), \qquad (27)$$

где q_x — энергия, уносимая нейтрино. Для функций f и g составлены разнообразные таблицы [16,54].

При расчетах функций g и f используется самосогласованный потенциал Хартри — Фока — Слэтера для поля, создаваемого атомными электронами, учитываются эффекты экранирования и конечных размеров ядра. Различные варианты расчета интегральной функции Ферми $f(\varepsilon, Z, R)$ отличаются, как правило, на несколько процентов и лишь в экзотических случаях (большие $Q_{\rm g} > 10$ МэВ и большие Z > 80) различия могут доходить до 20%.

Для разрешенных переходов интегральную функцию Ферми для β^- - и β^+ -переходов удобно разбить на два множителя:

$$f(E, Z, R) = \Phi(E)F_0(E, Z, R),$$
 (28)

где

 $\Phi(E) = (E^2 - 1)^{1/2} (2E^4 + 9E^2 - 8)/60 + E \ln[E + (E^2 - 1)^{1/2}], \quad (29)$

E — полная энергия β -частицы, включая массу покоя в единицах $m_e C^2$.

Функция $\Phi(E)$ довольно резко зависит от энергии и вычисляется аналитически, а функция $F_0(E, Z, R)$ рассчитывается численно, но слабо зависит от энергии и удобна для интерполяции. В таблицах часто приводят именно функцию $F_0(E, Z, R)$.

1.5. Экспериментальные исследования структуры силовых функций β -переходов и сравнение с теоретическими расчетами. Информацию о структуре силовых функций β -переходов можно получать из спектров полного поглощения γ -лучей, сопровождающих β -распад [5,55], из исследований испускания запаздывающих нейтронов, протонов, α -частиц [5,56-59] и изучения M γ -распадов аналоговых резонансов [21].

Одни из первых экспериментальных проявлений резонансной структуры $S_{\beta}(E)$ были получены при исследовании $M^{1}\gamma$ -распада аналоговых резонансов [21]. Используется соотношение между величиной $B(M^{1}\sigma)$ для γ -переходов с аналогового состояния и величиной ft соответствующего β -перехода (рис.2). Изовекторная часть оператора $M^{1}\gamma$ -перехода:

$$M(M1) = (3/4\pi)^{1/2} \frac{e}{2MC} (-4,7\sigma_{\mu} + \ell_{\mu}) t_z.$$
(30)

В случае, когда вклад орбитальной части в M γ -переход мал и им можно пренебречь, приведенную вероятность M γ -перехода обозначают как $B(M1\sigma)$. Аналоговое состояние не содержит значительных примесей состояний с другими значениями изоспина, и γ -переход чистый изовекторный, тогда можно написать [6]:

$$ft = \frac{11000}{(T_0 + 1/2)B(M1\sigma)'}$$

$$B(M1\sigma) \approx B(M1).$$
(31)

Типичные распределения величины B(M1) для $M1\gamma$ -распада аналогов в области $A \cong 50$ приведены на рис.2 [6,60]. Распределения (BM1) носят явно нестатистический (резонансный) характер, что согласно (3),(31) указывает на нестатистический характер $S_{\beta}(E)$. Модельные расчеты γ -распада аналоговых резонансов правильно описывают основные качественные характеристики γ -распада и положения максимумов в $S_{\beta}(E)$. Однако для абсолютных значений интенсивностей переходов могут наблюдаться расхождения между расчетом и экспериментом в несколько раз [60].

Если энергия уровня *i*, заселяемого β -переходом, превышает энергию отделения протона или α -частицы, при распаде данного уровня могут испускаться запаздывающие протоны или α -частицы [58]. Энергия запаздывающих частиц определяется соотношением (рис.3):

Рис. 2. Соотношения между приведенными вероятностями для $M1\gamma$ -переходов с аналогового состояния B(M1), величинами ft и $S_{\beta}(E)$ для β^- -распада Гамова — Теллера. $B(M1,\sigma)$ обозначает приведенную вероятность $M1\gamma$ -перехода в случае, когда можно пренебречь вкладом « ℓ -части» в операторе $M1\gamma$ -перехода. Показано типичное экспериментальное распределение для $M1\gamma$ -распада аналогов в области A=51

$$E_{j} = B_{x} + E_{f} + \frac{A}{A - M_{x}} E_{x}, \quad x = \begin{cases} p \\ \alpha \end{cases}, \quad M_{p} = 1, \quad M_{\alpha} = 4, \quad (32)$$

где B_x — энергия связи частицы x в дочернем ядре, E_x — энергия частицы, E_i, E_f — энергии начального и конечного состояний после испускания частицы. К настоящему времени обнаружено несколько сотен излучателей запаздывающих протонов и α -частиц [61,62]. Испускание запаздывающих протонов может происходить после β^+ (*EC*)-распада нейтронодефицитных ядер. Испускание же α -частиц возможно как после β^+ (*EC*)-распада нейтронодефицитных ядер. Испускание же α -частиц возможно как после β^- распада нейтроноизбыточных ядер (¹¹⁴ Cs — ¹²⁰Cs), так и после β^- распада нейтроноизбыточных ядер (²¹² Bi, ²¹⁴ Bi, ¹⁶ N) [62]. Рассмотрим связь формы спектра запаздывающих протонов с S_{β} [58]:

Рис.3. Энергетические соотношения при испускании запаздывающих частиц

$$I_{\rho}(\boldsymbol{E}_{\rho}) = \sum I_{\beta}(\boldsymbol{E}_{i}) \Gamma_{\rho}^{if} / \Gamma^{i}, \qquad (33)$$

где I_x — интенсивность испускания соответствующей частицы, Γ_p — протонная ширина, Γ — полная ширина, причем

$$S_{\beta} = \operatorname{const} S_{\beta} (E_{i}) f(Q_{\beta} - E_{i}).$$
(34)

Если считать, что ширины $\Gamma_{\rho} / \Gamma^{i}$ некоррелированы с вероятностями β -переходов и ширины Γ_{ρ} и Γ^{i} можно рассчитывать по статистической модели [63], то

$$I_{p}(E_{p}) = \operatorname{const} S_{\beta}(E_{i})f(Q_{\beta} - E_{i})G(E_{p}), \qquad (35)$$

где $G(E_i) = \langle \Gamma_p(E_p) / \Gamma(E_i) \rangle$ — среднестатистическое значение отношения $\Gamma_p(E_p) / \Gamma(E_i)$. Функция *f* в (31) убывает по степенному закону при $E_p \rightarrow Q_\beta$, а функция $G(E_p)$ убывает экспоненциально при $E_i \rightarrow B_p$, и спектр запаздывающих протонов имеет характерную форму колокола с шириной 2—3 МэВ [58]. Поэтому по спектрам запаздывающих протонов можно судить о довольно узком интервале S_β (*E*). Аналогичный вид имеет спектр запаздывающих α-частиц, но его максимум сдвинут в сторону меньших энергий из-за различий в энергиях отделения и кулоновских барьерах.

Таким образом,

$$S_{\beta}(E_{i}) = \operatorname{const} I_{X}(E_{i}) / R(E_{i}).$$
(36)

Функция R(E) сильно зависит от параметров модели расчета $\langle \Gamma_x(E)/\Gamma(E) \rangle$, но это выражение можно использовать как качественную оценку $S_{\beta}(E)$. Если резонанс в $S_{\beta}(E)$ попадает в интервал от B_x до Q_{β} , то это должно существенным образом отразиться на форме спектра запаздывающих частиц. Первые проявления резонансной структуры $S_{\beta}(E)$ в спектрах запаздывающих протонов были обнаружены в работах [58,64]. Как правило, чувствительность спектров запаздывающих протонов или α -частиц к выбору

Рис. 4. Спектр запаздывающих протонов ¹¹⁹Ва и ¹⁰⁹Те. Сплошная линия — расчет спектра по статистической модели при различных квантовых числах основного состояния ¹¹⁹Ва. На нижних рисунках приведены силовые функции β^- -переходов, соответствующие спектрам запаздывающих протонов

 $S_{\beta}(E)$ не очень велика, и соответствующим выбором параметров модели для расчета $\langle \Gamma_{\chi} / \Gamma \rangle$ можно добиться неплохого согласия с экспериментом [58], то есть чувствительность эксперимента к форме $S_{\beta}(E)$ и модели расчета $\langle \Gamma_{\chi} / \Gamma \rangle$ примерно одинакова. Однако для ряда ядер никакими изменениями параметров модели расчета Γ_{χ} и Γ описать экспериментальные данные без учета ре-

тров модели расчета Γ_x и Γ описать экспериментальные данные без учета резонансной структуры $S_\beta(E)$ не удается [5,58]. На рис.4 приведен спектр запаздывающих протонов для ¹⁰⁹ Те и расчеты с различными формами $S_\beta(E)$. Из

рис.4 следует, что только с учетом резонансной структуры $S_{\beta}(E)$ можно описать спектры запаздывающих протонов ¹⁰⁹ Те. С аналогичной ситуацией мы сталкиваемся для ¹²¹Ва и ¹¹⁴ Сs [5,58].

Исследования спектров запаздывающих нейтронов позволяют получить более детальную информацию о стуктуре $S_{\beta}(E)$, чем исследования запаздывающих протонов или α -частиц, вследствие отсутствия кулоновского барьера. Вероятности испускания запаздывающих нейтронов при β^- -распаде нейтроноизбыточных ядер оказываются значительно выше, чем вероятности испускания протонов и α -частиц после $\beta^+(EC)$ -распада нейтронодефицитных ядер при тех же значениях величины ($E_i - B_x$) (рис.3). Отсутствие кулоновского барьера позволяет получать информацию о $S_{\beta}(E)$ в более широком энергетическом интервале, а именно практически от значений энергии связи нейтрона в дочернем ядре B_n до Q_8 .

Проявления резонансной структуры силовых функций $S_{\beta}(E)$ в спектрах запаздывающих нейтронов наблюдались для многих ядер [26,65].

Для ядер с достаточно большим нейтронным избытком при β^- -распаде заселяются состояния типа «обратный спин-флип» и «поляризации остова», которые, как отмечается в [5], и могут проявляться в спектрах запаздывающих нейтронов. К настоящему времени идентифицировано несколько сотен излучателей запаздывающих нейтронов [99]. Вероятность заселения уровня *i* при β^- -распаде I_{β}^i и испускания запаздывающего нейтрона $I_n(E)$ с энергией $E = E_i - B_n - E_f$ связаны соотношением [5,58]:

$$I_{\beta}^{i} = \sum \frac{\Gamma^{i}}{\Gamma_{n}^{i}} I_{n} (\boldsymbol{E}_{i} - \boldsymbol{B}_{n} - \boldsymbol{E}_{f}), \qquad (37)$$

где Γ^{i} — полная ширина уровня $\Gamma^{i} \approx \Gamma_{\gamma}^{i} + \Gamma_{n}^{i}$, Γ_{n}^{i} — нейтронная ширина уровня. Уравнение (37) можно обратить:

$$I_{n}^{f}(E) = \sum I_{\beta}^{i}(E_{i}) \frac{\Gamma_{n}^{\prime}}{\Gamma^{i}}.$$
(38)

Ширины Γ^{i} и Γ^{i}_{n} рассчитываются с использованием статистической модели [58,66], а интенсивность $I^{i}_{\beta}(E_{i})$ связана с силовой функцией β-распада соотношением (3).

Пример силовой функции для β^- -распада ⁹⁵Rb, полученной из анализа спектра запаздывающих нейтронов, приведен на рис.5 [67,68], там же даны результаты расчетов $S_{\beta}(E)$ в различных моделях. Из сравнения экспериментальных [67] и теоретических [5,68] данных видно, что только с учетом нестатистических эффектов в $S_{\beta}(E)$ можно корректно описывать спектр запаздывающих нейтронов. Аналогичная ситуация наблюдается и для многих других излучателей запаздывающих нейтронов [26,65,69].

Характерной особенностью силовых функций β^- -распадов многих ядер, полученных из анализа спектров запаздывающих нейтронов, является их резонансный характер. Природа этих резонансов объяснена в работах [5,65]. Максимумы вблизи Q_{β} связаны с переходами на состояния типа «поляризация остова», а более низколежащие пики — с переходами типа «обратный спин-флип», введенными в TDA-расчеты в работах [5,14].

Отметим, что в чисто статистических расчетах, с моделированием различного рода флуктуаций, в принципе можно получить «пики» в спектрах запаздывающих нейтронов [70], но невозможно описать закономерности в интенсивностях и положениях пиков при рассмотрении различных ядер [5]. Закономерности в резонансной структуре $S_{\beta}(E)$ можно объяснить, используя лишь нестатистические свойства $S_{\beta}(E)$.

В ряде работ приводятся данные лишь о вероятности испускания запаздывающих нейтронов, т.е. вероятности испускания запаздывающего нейтрона на один акт β⁻-распада:

Рис.5. Силовая функция для β^- -распада ⁹⁵Rb $\xrightarrow{\beta^-}$ ⁹⁵Sr: теоретические расчеты в различных моделях и экспериментальные данные из анализа спектров запаздывающих нейтронов. Гистограмма — эксперимент: (—) расчет по статистической модели ($S_{\beta}(E) \cong \rho(E)$) и (- - -) расчет по гросс-теории: (—) расчет $S_{\beta}(E)$ по микроскопической модели с учетом остаточного взаимодействия Гамова — Теллера

$$P_{n} = \frac{\int_{B_{n}}^{Q} S_{\beta}(E) f(Q_{\beta} - E) \frac{\Gamma_{n}}{\Gamma_{\text{tot}}} dE}{\int_{B_{n}}^{Q} S_{\beta}(E) f(Q_{\beta} - E) dE}.$$
(39)

Величина *P_n* колеблется от долей процента до десятков процентов [65] и чувствительна к форме силовой функции β-распада [15,65].

Прежде чем проводить сравнение экспериментальных и теоретических значений P_n , сделаем одно замечание, общее для вычисления вероятностей запаздывающих процессов, а именно: расчеты вероятностей запаздывающих процессов имеют довольно низкую надежность, если плохо известны параметры, определяющие энергетику процесса (B_x , Q_β и т.д.). Особенно резко это может сказываться на расчетах P_n при наличии пиков в S_β (E) вблизи Q_β или B_n . Так, например, при расчете P_n для ³¹Na [52] разумные изменения параметров среднего поля приводят к изменению положения пика в S_β (E) с 1,94 до 2,06 МэВ, т.е. приподнимают его чуть выше B_n ($B_n \cong 2$ МэВ). Это приводит к росту P_n на 75%, в то время как период полураспада меняется всего лишь на 2%. Аналогичная ситуация характерна для всех запаздывающих процессов, особенно для запаздывающего деления в области ядер, удаленных от полосы стабильности. Поэтому для этих ядер следует с осторожностью относиться к теоретическим расчетам вероятностей запаздывающих процессов [71].

Таким образом, можно утверждать, что только с учетом структуры в $S_{\beta}(E)$ можно описать вероятности испускания запаздывающих нейтронов. Однако детальное совпадение теоретических и экспериментальных значений P_n не всегда удается получить [5,52]. На взгляд авторов [5], это связано с двумя факторами. Первый состоит в необходимости использовать $S_{\beta}(E)$ с реальными ширинами пиков, причем надежный расчет ширин пиков довольно проблематичен. Второй, возможно, более существенный фактор связан с тем, что ширины Γ_n и Γ_{tot} рассчитываются с использованием статистической модели, что, вообще говоря, может быть лишь неким приближением. Поэтому данные о $S_{\beta}(E)$, полученные из спектров запаздывающих частиц и вероятностей испускания запаздывающих частиц, можно рассматривать как оценочные. Более строгие и детальные выводы можно сделать, исследуя непосредственно β -распад или ядерные реакции.

Заключение о нестатистическом характере $S_{\beta}(E)$ можно сделать из измерения $S_{\beta}(E)$ методом полного поглощения γ -лучей [5,27,28,72]. Метод полного поглощения γ -лучей привлекателен тем, что он позволяет получать информацию о структуре $S_{\beta}(E)$ в прямых экспериментах. Принцип действия спектрометра полного поглощения основан на суммировании энергий каскадных γ -квантов, образующихся после β -распада на возбужденные уровни дочернего ядра в 4π -геометрии. Первые успешные эксперименты, проведенные в [5,27,55] с использованием спектрометра полного поглощения, показали, что резонансная структура является характерной особенностью β -распада ядер. В настоящее время спектрометры полного поглощения γ -лучей используются во многих экспериментах по изучению характеристик $S_{\beta}(E)$ [28,72—74].

Рассмотрим анализ спектров полного поглощения γ -лучей на примере β^+ (*EC*)-распада ¹⁴⁷⁹ Tb($T_{1/2} = 16 \,$ ч) [28]. Источники ¹⁴⁷⁹ Tb получались при облучении танталовой мишени пучком протонов с энергией 660 МэВ. Спустя 30 мин после облучения мишень растворялась, и фракция Tb извлекалась методом хроматографии. Ядра ¹⁴⁷ Tb выделялись из Tb-фракции при масс-сепарации на комплексе ЯСНАПП-2 [75], высаживались на алюминиевую фольгу и исследовались с помощью спектрометра полного поглощения γ -лучей (рис.6). Эффективность регистрации γ -лучей ε_{tot} в диапазоне энергий Q6÷4,2 МэВ по пику полного поглощения экспоненциально зависит от суммарной энергии γ -переходов E_{γ} [28]:

$$\varepsilon_{\text{tot}} = \exp(-0.78E_{\gamma}), \qquad (40)$$

где E_{γ} выражено в МэВ. Как известно [5], в этом случае интенсивность пика полного поглощения γ -излучения пропорциональна вероятности заселения уровня при β -распаде и не зависит от схемы распада. Анализ спектров сводится к выявлению пиков полного поглощения и определению их интенсивностей. Силовая функция β -распада строится на основании данных об интенсивностях

Рис.6. Схема эксперимента по измерению γ -спектров полного поглощения. Исследуемые ядра после масс-сепарации транспортируются в колодец кристалла NaI(Tl), где расположен детектор β -частиц. Спектры полного поглощения измеряются в 4 π -геометрии как в совпадении, так и без совпадений с β -частицами

пиков полного поглощения с использованием соотношения (3). Спектры у-излучения, измеренные с помощью спектрометра полного поглощения в совпадениях с В⁺-частицами при β^+ (*EC*)-распаде ¹⁴⁷ Tb и без совпадений, приведены на рис.7 и 8. Граничная энергия спектров полного поглощения определяется полной энергией электронного захвата Q_{EC}. Пик с энергией $E_{\gamma} \approx 4$ МэВ на рис.8 и пик $E_{\gamma} \approx 3$ МэВ на рис.7 имеют максимальные энергии и идентифицируются как пики полного поглощения. Пику с $E'_{\gamma} \approx 3$ МэВ на рис.7 соответствует пик с $E_{\gamma} = E'_{\gamma} - 2m_e c^2 \approx 2 \text{ MэB}$ на рис.8, где $2m_ec^2$ — энергия двух аннигиляционных квантов. Пик с энергией $E_{\gamma} \approx 2$ МэВ на рис.8 также является пиком полного поглощения. Таким образом, в силовой функции

β⁺ (*EC*)-распада ^{147g}Tb можно надежно идентифицировать два пика при энергиях 4 и 3 МэВ (рис.9), причем для получения значений интенсивностей и энергий этих двух пиков при анализе γ-спектров полного поглощения не требуется информации о схеме распада. В $S_{\beta(EC)}(E)$ для ^{147g}Tb наблюдается третий пик при энергии $E \approx 1,4$ МэВ, однако из-за трудности идентификации пика полного поглощения в этой области энергий для получения надежной информации об интенсивности этого пика требуется информация о схеме распада ¹⁴⁷Gd.

На рис.9 интенсивность пика с энергией $E \approx 1,4$ МэВ в $S_{\beta}(E)$ получена из анализа спектров полного поглощения γ -лучей (рис.7 и 8) в предположении, что разрядка уровней в области энергий возбуждения $E \approx 1,4$ МэВ происходит двумя γ -квантами с равной энергией. Таким образом, в силовой функции $\beta^+(EC)$ -распада ^{147g} Tb (рис.9,*a*) удается надежно определить энергии и интенсивности двух пиков с энергиями $E \approx 4$ и 2 МэВ и установить наличие третьего пика с энергией $E \approx 1,4$ МэВ [28].

Распад ^{147g}Tb является тем редким случаем, когда $S_{\beta^+(EC)}(E)$ удается построить из данных о схеме распада. Функция $S_{\beta^+(EC)}(E)$, полученная в [28] из анализа схемы распада ^{147g}Tb [76], приведена на рис.9,*б*. Как видно из

рис.9,*а* и *б*, функции S_{β⁺ (ЕС)}(*E*), полученные двумя разными методами, хорошо согласуются друг с другом, что позволяет сделать вывод о надежности определения $S_{\beta^+(EC)}(E)$ из спектров полного поглощения в тех случаях, когда в $S_{B^+(EC)}(E)$ содержится небольшое число пиков. Расчеты [28] с использованием ORPA-приближения (рис.9, в) предсказывают наличие наиболее интенсивного пика в S_в (*E*) (резонанса Гамова — Теллера с $\mu_{\tau} = +1$) в области энергии возбуждения Е ≅4 МэВ, что согласуется с экспериментом. Экспериментальные данные (рис.9,б) позволяют выявить тонкую структуру данного резонанса [77].

Рис.7. Спектр γ -излучения от распада 147g Tb, измеренный с помощью спектрометра полного поглощения в совпадении с β^+ -частицами. Стрелкой указана полная энергия электронного захвата для 147g Tb

С характером структуры $S_{\beta}(E)$ тесно связана величина периода полурас-

пада (3). Хотя данные о $T_{1/2}$ и не дают детальной информации о $S_{\beta}(E)$, тем не

менее периоды полураспада могут быть достаточно надежно определены экспериментально, а теоретические значения $T_{1/2}$ зависят от модели расчета $S_{\beta}(E)$ [5,39].

Первые качественные объяснения систематического торможения β -переходов Гамова — Теллера были даны в рамках гросс-теории [40], в которой основная сила возбуждений типа Гамова — Теллера концентрировалась в районе резонанса Гамова — Теллера, а остальная часть $S_{\beta}(E)$ аппроксимировалась гладкой функцией.

Одни из первых расчетов величин $T_{1/2}$, с учетом оболочечной структуры ядер и остаточного взаи-

Рис.8. Спектр γ -излучения от распада ¹⁴⁷gTb, измеренный с помощью спектрометра полного поглощения без совпадения с β^+ -частицами. Стрелкой указана полная энергия электронного захвата для ^{147g}Tb

Рис.9. Силовая функция $\beta^+(EC)$ -распада^{147g}Tb, полученная из анализа *a*) γ -спектров полного поглощения; δ) схемы распада^{147g}Tb, а также *в*) рассчитанная в рамках МQPM-модели

модействия Гамова — Теллера, были проведены в рамках TDA-модели [5,78]. Расчеты в приближении TDA позволяют получить более корректные значения $S_{\beta}(E)$ и $T_{1/2}$, чем гросс-теория, и более правильно описывают эксперимент.

В работе [39] были проведены расчеты $T_{1/2}$ с использованием QRPA-модели для большой группы ядер. Хотя для отдельных ядер расчеты по методу случайной фазы с учетом спаривания (QRPA-модель) дают значения $T_{1/2}$, более близкие к эксперименту, и в целом более правильно описывают величины $T_{1/2}$, чем TDA-модель, но и для нее расхождения с экспериментом могут достигать 10–50 раз (рис.10). Модели же, не учитывающие детали оболочечной структуры $S_{\beta}(E)$ (гросс-теория), могут давать непредсказуемые расхождения с экспериментом от нескольких десятков до нескольких тысяч раз, причем в

Рис. 10. Сравнение экспериментальных значений периодов $\beta^+(EC)$ -полураспада с расчетами при учете зарядово-обменных взаимодействий и спаривания в рамках QRPA-приближения: (•) — четно-четные ядра; (•) — нечетные ядра; (+) — нечетно-нечетные ядра

подавляющем большинстве случаев гросс-теория дает завышенные значения периодов полураспада.

Таким образом, модели, учитывающие структуру силовой функции β-переходов, позволяют оценивать периоды полураспада для β-переходов Гамова — Теллера, однако детального совпадения теории и эксперимента в настоящее время не наблюдается.

1.6. Нестатистические эффекты при β -распаде экзотических ядер. Особенно интересную информацию о свойствах ядер можно получить при исследовании структуры $S_{\beta}(E)$ для ядер, сильно удаленных от полосы β -ста-

бильности. Это связано со следующими обстоятельствами.

1) Нестатистические эффекты могут значительно усиливаться в ядрах с большим избытком нейтронов. Это связано с возможностью восстановления спин-изоспиновой SU(4)-симметрии с ростом (N-Z) [38,79] и уменьшением степени смешивания близлежащих уровней с разными квантовыми числами группы SU(4). Одним из следствий спин-изоспиновой SU(4)-симметрии в атомных ядрах является равенство энергий изобар-аналогового резонанса E(IAR) и резонанса Гамова — Теллера E(GT). Расчет [24] значений разностей энергий данных резонансов $\Delta E = E(GT) - E(IAR)$ как функции нейтронного избытка и сравнение с экспериментом [23] проведены в [5] (рис.11). Прямая

$$E(GT) - E(IAR) = [-50, 2(N-Z)/A + 110] M_{2}B$$
(41)

Рис. 11. Результаты расчетов положения резонанса Гамова — Теллера E(GT) относительно изобар-аналогового резонанса E(IAR) в зависимости от отношения разности числа нейтронов и протонов к атомному номеру

проведена по всем рассчитанным точкам. Из рис.11 видно, что разность ΔE существенно зависит от оболочечной структуры и только в среднем описывается прямой линией. Очевидно, что ΔE в среднем убывает с ростом (N-Z), т.е. SU(4)-спин-изоспиновая симметрия

и связанные с ней нестатистические эффекты могут быть более ярко выражены в экзотических ядрах с большим избытком нейтронов. Экспериментально восстановление SU(4)-симметрии будет проявляться в уменьшении ширин распределений резонанса Гамова — Теллера и его сателлитов и специфике их γ -распада. В частности, с учетом квантовых чисел, соответствующих SU(4)-симметрии, можно будет строить соотношения типа (31), связывающие γ -распад резонанса Гамова — Теллера и его сателлитов с β -распадом соседних ядер и исследовать проявления нестатистических эффектов в β -переходах различной степени запрета.

2) Для ядер с большим дефицитом нейтронов можно будет достаточно надежно определять полную силу S_+ для $\beta^+(EC)$ -распадов и проводить анализ правила сумм (14). Действительно, с ростом нейтронного дефицита увеличивается полная энергия электронного захвата Q_{EC} , а это, в свою очередь, может привести к тому, что все пики силовой функции $S_{\beta^+(EC)}(E)$ для переходов Гамова — Теллера попадут в доступную для $\beta^+(EC)$ -распада область [28,50]. На рис.12 приведены рассчитанные [50] в рамках TDA-приближения значения $S_{\beta^+(EC)}(E)$ для $\beta^+(EC)$ -распадов типа Гамова — Теллера ¹²⁸Sm и ¹³⁰Sm. Из рис.12 следует, что измерения $S_{\beta^+(EC)}(E)$ для ядер с сильным дефицитом нейтронов в ряде случаев могут дать информацию о полной силе $\beta^+(EC)$ -распадов типа Гамова — Теллера S₊. Надежное экспериментальное определение значений S_+ и S_- представляется в настоящее время весьма интересной задачей. Дело в том, что существующие экспериментальные оценки величин S_+ и S_- примерно на 40% меньше теоретических значений [5,33,34,50] и не соответствуют правилу сумм (14). Однако надежность экспериментальное экспериментальные все соответствуют правилу сумм (14). Однако надежность экспериментальное экспериментальные расситериментальные соответствуют правилу сумм (14). Однако надежность экспериментальное экспериментальное экспериментальное экспериментальные оценки величин S_+ и S_- примерно на 40% меньше теоретических значений [5,33,34,50] и не соответствуют правилу сумм (14). Однако надежность экспериментальное экспериментальное экспериментальное экспериментальное экспериментальное экспериментальное экспериментальное экспериментальное определение значений S_+ и S_- примерно на 40% меньше теоретических значений [5,33,34,50] и не соответствуют правилу сумм (14).

риментального определения абсолютных значений S_+ и S_- в большинстве случаев невелика, что позволяет говорить лишь об оценках величин S_+ и S_- [5,28].

Таким образом, можно ожидать, что исследование характеристик β -распада в области ядер, сильно удаленных от полосы стабильности, позволит выяснить ряд интересных вопросов, связанных со структурой и свойствами атомных ядер.

Совокупность экспериментальных и теоретических данных, рассмотренных в данном разделе, приводит к однозначному выводу о необходимости описания силовых функций β-распада с использованием нестатистического подхода и учетом структуры ядра. Однако детального описания экспериментальных данных для β-распада широкого круга ядер развитые в настоящее время теоретические модели дать не могут. Статистический подход, пренебрегающий структурой ядра, в принципе не может дать адекватного описания экспериментальных данных.

Рис.12. Силовые функции для $\beta^+(EC)$ -распадов Гамова — Теллера ^{128,130}Sm, рассчитанные в рамках TDA-модели

2. НЕСТАТИСТИЧЕСКИЕ ЭФФЕКТЫ И β-ЗАПАЗДЫВАЮЩЕЕ ДЕЛЕНИЕ ЯДЕР

2.1. β -запаздывающее деление ядер. Деление ядер из возбужденных состояний, заселяемых при β -распаде материнского ядра, получило название β -запаздывающего деления [80]. Это явление было открыто в Лаборатории ядерных реакций им. Г.Н.Флерова ОИЯИ [81,82] в области актинидов и в настоящее время исследовано для довольно значительного круга тяжелых ядер [83—91,104]. В настоящее время обнаружено β -запаздывающее деление для гораздо более легких ядер, в частности, в [92,93] сообщается о наблюдении β -запаздывающего деления в области ¹⁸⁰ TI–¹⁸⁸Bi. Исследование запаздывающего деления в области и в расчете образования элементов в астрофизических процессах.

Рис.13. Схема β -запаздывающего деления (βdf) ядер. Указаны высоты внутреннего (A) и внешнего (B) барьеров деления дочернего ядра

Вероятность β-запаздывающего деления определяется следующим образом [14]:

$$P_{\beta df} = \frac{\sum_{i} f(E_{i}) S_{\beta}(E_{i}) \frac{\Gamma_{f}(E_{i})}{\Gamma_{\text{tot}}(E_{i})}}{\sum_{j} f(E_{j}) S_{\beta}(E_{j})}, \qquad (42)$$

где $f(E)S_{\beta}(E)$ — вероятность β -распада на уровень с энергией возбуждения E, f(E) — функция Ферми, $\Gamma_f(E)$ — делительная ширина, $\Gamma_{tot}(E)$ — полная ширина. Энергетические соотношения показаны на рис.13. Из выражения (42) видно, что для расчета вероятности запаздывающего деления необходимо иметь информацию о силовой функции β -переходов $S_{\beta}(E)$.

2.2. Силовые функции β^+ (*EC*)- и β^- -распадов и запаздывающее деление актинидных ядер. В работах [84—86] сообщалось о наблюдении запаздывающего деления ядер ²³⁶U и ²³⁸U после β^- -распада ²³⁶Pa и ²³⁸Pa. Параметры барьеров деления ядер ²³⁶U и ²³⁸U хорошо известны [94] и приведены в табл.1. Расчет запаздывающего деления ²³⁶U и ²³⁸U с учетом нестатистических эффектов в $S_{\beta}(E)$, приводящих к появлению структуры, сделан в [14]. Расчет делительных ширин проводился в рамках модели двугорбого барьера деления [31,95]. Основным конкурирующим каналом распада, дающим вклад в Γ_{tot} , является испускание γ -квантов. Расчет γ -ширин проводился согласно [96]. Делительная ширина рассчитывалась согласно [97].

Таблица 1. Параметры барьеров деления ядер ²³⁶ Ц, ²³⁸ U и полные энергии β⁻-распада Q_β для ²³⁶ Pa и ²³⁸ Pa

Дочернее ядро	<i>Е_А</i> , МэВ	<i>Е_В</i> , МэВ	Е ₂ , МэВ	ω _д , МэВ	ω _В , МэВ	Q _β , МэВ
²³⁶ U	6,1	5,9	2,6	0,9	0,7	3,1
²³⁸ U	6,2	5,9	2,5	1,0	0,72	3,9

Рис.14. Силовая функция $S_{\beta}(E)$ для β^{-} -распада ²³⁶Ра (*a*), ²³⁸Ра (*б*) и барьеры деления ^{236,238}U. $B(M1,\sigma) = \frac{11000}{(T+3/2)ft} = \text{const} \cdot S_{\beta}(E)$, где T— изоспин основного состояния дочернего ядра, $B(M1,\sigma)$ в единицах $\mu_{0}^{2}(\mu_{0}$ — ядерный магнетон), *ft* в секундах

Силовые функции для β^- -распада ²³⁶Ра и ²³⁸Ра приведены и на рис.14. Расчет $S_{\beta}(E)$ для ^{236,238}Ра проведен [14] в рамках оболочечной модели с учетом остаточного взаимодействия Гамова — Теллера в приближении Тамма — Данкова. Основная сила β^- -переходов сосредоточена в гигантском резонансе Гамова — Теллера, расположенном вблизи аналогового состояния. При энергиях на 7÷8 МэВ ниже аналога в ядрах ²³⁶U и ²³⁸U наблюдается второй максимум, обусловленный переходами типа спин-флип, и поляризация остова. При энергиях примерно на 18 МэВ ниже аналога появляется максимум, обусловленный переходами типа «обратный спин-флип» (рис.1, 14), они и вносят основной вклад в вероятность запаздывающего деления ²³⁶U и ²³⁸U.

Для ²³⁸U рассчитанное [14] значение $P_{\beta df}$ составляет около 10⁻⁸. При варьировании параметров, определяющих силовую функцию в разумных пределах, максимальное значение $P_{\beta df} = 6 \cdot 10^{-8}$. Для ²³⁸U экспериментальное значение $P_{\beta df} = 10^{-8}$ определено в [85]. В случае ²³⁶U рассчитанное [14] значение $P_{\beta df} = 4 \cdot 10^{-12}$. Максимальное рассчитанное значение при варьировании параметров, определяющих силовую функцию, составило $P_{\beta df} = 5 \cdot 10^{-11}$. Экспериментальные значения $P_{\beta df}$ получены в работах [85,86]. Согласно [85] $P_{\beta df} = 3 \cdot 10^{-10} \div 10^{-9}$. По данным [86] $P_{\beta df} = 10^{-9}$.

В табл.2 приведены рассчитанные [14] значения $P_{\beta df}$ при различных предположениях о $S_{\beta}(E)$. Расчет $P_{\beta df}$ при использовании статистических моделей для силовой функции β -распада: S_{β} = const приводит к значениям $P_{\beta df}$, на 2—3 порядка превышающим экспериментальные величины, а в случае пропорциональности силовой функции плотности уровней ядра $S_{\beta} \approx \rho(E)$, превышение составляет 5—6 порядков для ²³⁶U и ²³⁸U.

Таблица 2. Вероятности запаздывающего деления P_{Roff} для ²³⁶U, ²³⁸U:

экспериментальные значения и рассчитанные при различных предположениях о силовых функциях β-распада

	Р _{рdf} п	D		
Ядро	$S_{\beta} = \text{const}$	$S_{\beta} \sim \rho(E)$	TDA-модель	Эксперимент
²³⁶ U	6 · 10 ⁻⁷	6·10 ⁻⁴	10 ⁻¹²	10 ⁻⁹
²³⁸ U	2 ⋅ 10 ⁻⁵	10 ⁻²	10 ⁻⁸	10 ⁻⁸

Таким образом, для запаздывающего деления ²³⁶U и ²³⁸U предположения, используемые в статистических моделях: $S_{\beta}(E) \approx \rho(E)$ и $S_{\beta}(E) = \text{const}$, дают значения $P_{\beta df}$, значительно превышающие экспериментальные данные, в то время как при использовании нестатистической $S_{\beta}(E)$, в которой должным образом отражены эффекты структуры атомного ядра, наблюдается хорошее согласие экспериментальных и вычисленных значений $P_{\beta df}$ для ²³⁸U. Расчет предсказывает уменьшение $P_{\beta df}$ при переходе от ²³⁸U к ²³⁶U, что также соответствует экспериментальным данным.

В работе [90] исследовано запаздывающее деление $^{256}\text{Es}^{m} \xrightarrow{\beta^{-}} ^{256}\text{Fm} \rightarrow \beta df$. Определена величина вероятности запаздывающего деления $P_{\beta df} \cong 2 \cdot 10^{-5}$ и изучена схема распада ^{256}Fm . Экспериментально установлено, что запаздывающее деление главным образом происходит после β^{-} -распада на уровень с энергией возбуждения $E \cong 1425$ кэВ, то есть экспериментально обнаружено проявление резонансной структуры $S_{\beta}(E)$ в запаздывающем делении. Расчеты также предсказывают наличие резонанса $S_{\beta}(E)$ в области энергий возбуждения $E \cong 15$ МэВ.

Для β^+ (*EC*)-распада ²³²Pu (²³²Am $\xrightarrow{\beta^+$ (*EC*)} \xrightarrow{232}Pu $\xrightarrow{\text{fission}} \beta df$) наблюдается довольно значительная доля запаздывающего деления [87,88]: $P_{\beta df} = 13^{+4}_{-0,8} \cdot 10^{-2}$. Данные по запаздывающему делению после β^+ (*EC*)-распада ²³²Am были использованы в работе [88] для определения параметров внутреннего барьера (барьера *A* на рис.13) деления ядра ²³²Pu. Результаты работы [88], полученные в предположении $S_{\beta} = \text{const}$, дают значение $P_{\beta df} = 13 \cdot 10^{-2}$

при высоте внутреннего барьера деления $E_A = 5,3$ МэВ, что на 1÷2 МэВ выше, чем предсказывают расчеты по методу Струтинского ($E^{\text{th}} = 3,5 \div 4,3$ МэВ [98,99]). На основании этого в работе [88] делается вывод о несоответствии «экспериментального» и теоретического значений барьеров деления для ²³² Ри. Однако, как было показано в [5,32], выбор S_β = const не обоснован, и

он не отражает специфику β^+ (*EC*)-распада в конкретном случае ядра ²³² Am.

Расчет структуры силовой функции β^+ (*EC*)-распада ²³² Am, основанный на представлениях о зарядово-обменных возбуждениях типа Гамова — Теллера, проведен в [32]. Одночастичные состояния рассчитывались согласно [100], функция S_{β} вычислена в приближении Тамма — Данкова и приведена на рис.15. Нестатистические эффекты, приводящие к наличию резонансной структуры в S_{β} (*E*), вносят существенные изменения в анализ величин $P_{\beta df}$. Значения полной энергии β^+ (*EC*)-распада $Q_{\beta} = 52$ МэВ отмечены стрелкой на

Рис.15. Структура силовых функций β^+ (*EC*)-распада ²⁴⁰Am, ²⁴⁰Bk, ^{244,248}Es, ²⁴⁸Nd и барьеры деления ²³²Pu, ²⁴⁰Cm, ^{244,248}Cf, ²⁴⁸Fm. Значения полных энергий *EC*-распада вычислены с использованием массовых формул Гарви — Кельсона [101] и указаны стрелкой

рис.15 и получены с использованием массовой формулы Гарви — Кельсона [101]. На рис.15 показан также барьер деления ядра ²³²Pu, рассчитанный с использованием метода оболочечной поправки Струтинского. При расчетах $P_{\beta df}$ использовались для ²³²Pu следующие параметры барьера деления: $E_B = 4,21$ MэB, $\omega_A = 0,9$ MэB, $\omega_B = 0,6$ MэB, и варьировалась высота внутреннего барьера деления E_A . В предположении $S_{\beta} = \text{const}$ и $P_{\beta df} = 13 \cdot 10^{-2}$ было получено $E_A = 5,3$ МэB (т.е. повторен результат [88]), что на 1—2 МэB выше, чем дают расчеты по методу Струтинского ($E^{\text{th}} = 3,5 \div 4,3$ МэB). Однако, если использовать рассчитанную в [32] $S_{\beta}(E)$ и ввести реалистическую ширину (FWHM = 1 МэВ), то без какой-либо подгонки получим, что $E_A = 4,0$ МэB соответствует $P_{\beta df} = 5,0 \cdot 10^{-2}$, что соответствует эксперименту [87,88], а также расчету барьера деления по методу Струтинского. Таким образом, на основании сделанного в [32] анализа можно сделать выводы.

 Если надлежащим образом учесть структуру силовой функции β-переходов, то можно объяснить экспериментальные данные по запаздывающему делению ²³²Pu.

 Нет оснований утверждать, что барьеры деления, рассчитанные по методу Струтинского, не позволяют описывать эксперименты по запаздывающему делению, как это делается в [88]. В области актинидов процесс β^+ (*EC*)-запаздывающего деления (βdf) исследован также для:

$${}^{240}\text{Bk} \xrightarrow{\beta^+ (EC)} {}^{240}\text{Cm} \rightarrow \beta df,$$

$${}^{244,248}\text{Es} \xrightarrow{\beta^+ (EC)} {}^{244,248}\text{Cf} \rightarrow \beta df,$$

$${}^{248}\text{Md} \xrightarrow{\beta^+ (EC)} {}^{248}\text{Fm} \rightarrow \beta df,$$

$${}^{234}\text{Am} \xrightarrow{\beta^+ (EC)} {}^{234}\text{Pu} \rightarrow \beta df.$$

Величины $P_{\beta df}^{exp}$ были измерены в [88—91]. На рис.15 и в табл.3 приведены результаты расчетов [5,32] величин S_{β} , $P_{\beta df}^{th}$ и экспериментальные значения $P_{\beta df}^{exp}$ для ряда ядер. При расчете $P_{\beta df}$ пики в S_{β} (*E*) аппроксимировались гауссианами с шириной на половине высоты FWHM = 1 МэВ. Отношение площади «пика» к «фону» под пиками выбиралось равным 100. Указанные параметры ширины и «фона» соответствуют систематике [102,103]. Учет «фона» в данном случае моделирует β-переходы различного рода запрета и не столь существен. Как видно из табл.3, данные расчета S_{β} (*E*) и $P_{\beta df}$ вместе с рассчитанными по методу Струтинского барьерами деления наблюдаются там, где экспериментальные значения $P_{\beta df}$ малы и позволяют неплохо описывать эксперимент. Небольшие отклонения наблюдаются там, где экспериментальные значения малы (²⁴⁰Cm и ²⁴⁸Cf), однако, изменяя в допустимых значениях высоту барьера деления (не более чем на 0,5 МэВ), можно получить согласие с экспериментом.

Таблица 3. Экспериментальные и теоретические значения вероятностей запаздывающего деления $P_{\beta df}$ для ядер ²³²Pu, ^{244,248}Cf, ²⁴⁸Fm, ²⁴⁰Cm

Ядро	<i>Е_А(S)</i> ,МэВ	<i>Е_В</i> (S),МэВ	ω _А МэВ	ω _В , МэВ	Q _β , МэВ	$P_{\beta df}^{\exp}$	$P_{\beta df}^{\text{theor}}$
²³² Pu	4,0	4,2	0,9	0,6	5,2	$13^{+4}_{-0,8} \cdot 10^{-2}$	5·10 ⁻²
²⁴⁴ Cf	5,3	2,8	0,9	0,6	4,5	5·10 ⁻⁴	4·10 ⁻⁴
²⁴⁸ Fm	5,7	1,8	0,9	0,6	5,2	3·10 ⁻³	2 ⋅ 10 ⁻³
²⁴⁸ Cf	5,7	3,3	0,9	0,6	2,9	< 10 ⁻⁷	2·10 ⁻⁷
²⁴⁰ Cm	5,2	3,7	0,9	0,6	3,9	10 ⁻⁵	9 · 10 ^{−7}

Барьеры деления рассчитаны по методу Струтинского (S). При вычислении $P_{\beta df}$ использовались нестатистические силовые функции $\beta^+(EC)$ -распада, рассчитанные в TDA-модели

В работе [91] исследовано запаздывающее деление ²³⁴ Am. Установлено, что $P_{\beta df} = (6,6\pm18) \cdot 10^{-5}$. Расчеты [5,32] предсказывают наличие резонанса в $S_{\beta}(E)$ в области энергии возбуждения $E \cong 2,5$ МэВ, определяющего вероятность запаздывающего деления ²³⁴ Am. В этом случае экспериментальному значению $P_{\beta df}$ соответствует барьер деления ²³⁴ Pu с параметрами: $E_A = 4,7$ МэВ, $\omega_A = 0,9$ МэВ, $E_B = 4,2$ МэВ, $\omega_B = 0,6$ МэВ, что соответствует величинам, рассчитанным по методу Струтинского [98,99].

Таким образом, из проделанного анализа экспериментальных данных по запаздывающему делению в области актинидов можно сделать вывод, что только используя нестатистическую силовую функцию β-переходов, в которой отражены эффекты структуры ядра, можно корректно описывать процесс запаздывающего деления [5,32].

2.3. Силовые функции β^+ (*EC*)- и β^- -распадов и запаздывающее деление доактинидных ядер. Большие возможности β -запаздывающего деления связаны с областью доактинидных ядер, где экспериментальные данные о вероятности и механизме деления холодных ядер очень малы и не могут быть получены ни одним из традиционных методов [104]. В настоящее время экспериментально обнаружено β^+ (*EC*)-запаздывающее деление в области нейтронодефицитных изотопов Hg÷Pb. Так, в работах [92,93,105] сообщается о наблюдении β^+ (*EC*)-запаздывающего деления в области ¹⁸⁰Hg. Проводятся исследования β^- -запаздывающего деления нейтроноизбыточных изотопов Ra [106].

В [49,107] проведен расчет процесса запаздывающего деления в случае

180
 TI $\xrightarrow{\beta^+(EC)}$ 180 Hg $\xrightarrow{\text{fission}}$ βdf

Интегральная функция Ферми f(E, Z) для β^+ (*EC*)-распада ¹⁸⁰ TI выбиралась в виде

$$f(E,Z) = f_{a+}(E) + f_{k}(E) + f_{L_{i}}(E) + \dots$$
(43)

Слагаемые соответствуют вкладам от β^+ -распада, *K*-захвата, *L*₁-захвата.

Для β^+ (*EC*)-распада ¹⁸⁰ TI на уровень с энергией возбуждения *E* в ¹⁸⁰ Hg вклад от β^+ -перехода составляет около 10% при $Q_{EC} - E = 3$ МэВ, становится сравнимым с вкладом от *K*-захвата при $Q_{EC} - E = 5$ МэВ и в два раза превышает долю *K*-захвата при $Q_{EC} - E = 65$ МэВ. Учет L_I -захвата может быть существен при энергиях возбуждения вблизи Q_{EC} , где вероятности деления особенно велики. Пределы суммирования (интегрирования) в (42) различны для

разных членов. Для β^+ -распада верхний предел равен $Q_{EC} - 2m_e C^2$, для *k*, L_l -захвата $Q_{EC} - \varepsilon_{kl}$.

Перед расчетом $S_{\beta}(E)$ оценивалась равновесная деформация ядра ¹⁸⁰ Hg. Расчет равновесной деформации проводился в [49,107] с использованием метода оболочечной поправки Струтинского [98]. Оказалось, что параметр равновесной деформации в основном состоянии $|\varepsilon| \le 0,1$ т.е. расчет $S_{\beta}(E)$ можно

проводить в предположении о сферичности ядра ¹⁸⁰ Hg.

Расчет одночастичных энергий проводился для потенциала Саксона — Вудса с параметрами, выбранными согласно [100]. Величина Q_{EC} для ¹⁸⁰ TI по оценкам [108] составляет 10,5÷11МэВ.

Расчеты [49,107], выполненные с учетом остаточного взаимодействия Гамова — Теллера в приближении Тамма — Данкова показывают, что $S_{\beta}(E)$ в данном случае может быть представлена в виде двух гауссианов с ширинами FWHM ~1MэB и сравнимыми интенсивностями (1 : 1,9). Период полураспада по $\beta^+(EC)$ -каналу в TDA-приближении составляет $T_{1/2} \approx 18$ с, а в QRPA-методе [95] $T_{1/2} \approx 0.74$ с (при $Q_{EC} = 10.9$ МэВ). Экспериментальная оценка составляет $T_{1/2}^{exp} \approx 0.70^{+0.12}_{-0.90}$ с [92], т.е. в 2,5 раза меньше, чем период $\beta^+(EC)$ -распада в TDA-приближении, и совпадает с периодом $\beta^+(EC)$ -распада, рассчитанным в QRPA-приближении [95]. Однако следует учесть, что в полный период $T_{1/2}^{exp}$ полураспада дает вклад еще и α -распад. Экспериментальных данных о соотношении α и $\beta^+(EC)$ в настоящее время не существует, а теоретические оценки [95] предсказывают примерно равные доли α - и $\beta^+(EC)$ -распада для ¹⁸⁰ Tl. В целом согласие теоретических и экспериментальных значений периодов полураспада для такого рода расчетов можно считать вполне удовлетворительным.

Запаздывающее деление ¹⁸⁰Hg определяется, в основном, пиком в $S_{\beta}(E)$ при энергии возбуждения $E^* \cong 6,8$ МэВ. Результаты вычисления $P_{\beta df}$ [49,107] для ¹⁸⁰Hg приведены в табл.4. Из сравнения рассчитанных и измеренных значений $P_{\beta df}$ можно оценить барьер деления ядра ¹⁸⁰Hg. Если принять параметр $\omega = 1$ МэВ, то высота барьера деления ¹⁸⁰Hg, соответствующая экспериментальной оценке [92] $P_{\beta df} = 3 \cdot 10^{-(7\pm 1)}$, будет $B_f \cong 11$ МэВ ($P_{\beta df} = 3 \cdot 10^{-7}$), что совпадает с качественной оценкой, сделанной в [93].

Расчеты $S_{\beta}(E)$, выполненные в QRPA [95] и TDA-моделях, дают качественно согласующуюся $S_{\beta}(E)$ для $\beta^+(EC)$ -распада ¹⁸⁰ TI (интенсивные пики в области 2÷4 МэВ и 6÷8 МэВ). Различия в функциях $S_{\beta}(E)$, полученные в двух моделях, несущественны при расчете $P_{\beta df}$ (так как в этом случае $P_{\beta df}$ определяется пиками $S_{\beta}(E)$ в области 6÷8 МэВ, и нужно знать $S_{\beta}(E)$ с точностью до константы), но существенны при расчете периодов полураспада [5,107,109]. Расчеты величины $P_{\beta df}$ с $S_{\beta}(E)$, полученной в QRPA-приближении, дают значение высоты барьера деления для ¹⁸⁰Hg, равное $B_f \cong 11$ МэВ, при котором $P_{\beta df} = 8 \cdot 10^{-7}$, т.е. соответствуют эксперименту и расчетам в TDA-модели.

Запаздывающее деление ряда доактинидных ядер можно использовать как тест для проверки различных моделей расчета $S_{\beta}(E)$ или барьеров деления ядер. Для этого случая весьма показательны исследования β^- -запаздывающего деления [110]:

232
Fr $\xrightarrow{\beta}^{232}$ Ra $\xrightarrow{\text{fission}}\beta df$.

Экспериментальная оценка $P_{\beta df}^{\exp} < 2 \cdot 10^{-6}$ для ²³²Ra была получена в [106]. Она резко противоречит теоретическому значению [111]: $P_{\beta df}^{\operatorname{th}} \cong 0,3$.

Расчеты величины $P_{\beta df}$ очень чувствительны к таким параметрам, как Q_{β} — полная энергия β -распада, B_f — высота барьера деления и его кривизна ω_f , структура силовой функции β -распада. Особенно резко, в ряде случаев, $P_{\beta df}$ зависит от высоты барьера деления и его кривизны ω_f .

Таблица 4. Результаты расчета [49,107] вероятности β^+ (*EC*) запаздывающего деления $P_{\beta df}$ для ¹⁸⁰Нg при различных значениях высоты барьера деления и кривизны барьера ω

		1			
B_f , МэВ	а, МэВ	Δ, МэВ	$P_{\beta df}, \Gamma C$	$\Gamma_{\rm {f {\it B}B}},$ МэВ	$P_{\beta df},$ БВ
10	1,0	1	1,4·10 ⁻⁵	1	1,7·10 ⁻³
		2	9,3·10 ⁻⁵	2	3,7·10 ⁻³
11	1,0	1	3,2·10 ⁻⁸	1	1,1·10 ⁻⁵
		2	2,4·10 ⁻⁷	2	2,3·10 ⁻⁵
12	1,0	1	5·10 ⁻¹¹	1	2·10 ⁻⁸
		2	4·10 ⁻¹⁰	2	4,1 10 ⁻⁸

ГС-пики в силовой функции $\beta^+(EC)$ -распада $S_{\beta}(E)$ представлялись в виде гауссианов с шириной на половине высоты (FWHM) Δ . БВ-пики в S_{β^-} представлялись в виде распределений Брейта — Вигнера с шириной $\Gamma_{\text{БВ}}$. $S_{\beta}(E)$ рассчитывалась в рамках TDA-модели. Эксперимент [92]: $P_{\beta,cff} = 3 \cdot 10^{-(7\pm 1)}$. Первая качественная оценка [93]: $B_f \cong 11$ МэВ Расчеты, проведенные в [110], показали, что для β^- -распада ²³² Fr силовая функция $S_{\beta}(E)$ имеет максимум при энергии возбуждения $E^* \cong 5,5$ МэВ и может быть аппроксимирована гауссианом с шириной FWHM \cong 1 МэВ. Если выбрать параметр эффективно-одногорбого барьера деления ²³² Ra $\omega = 1$ МэВ, то экспериментальной оценке $P_{\beta df} < 2 \cdot 10^{-6}$ соответствует высота барьера $B_f > 7,7$ МэВ в ²³² Ra. Величина Q_{β} была выбрана согласно [108] (систематика): $Q_{\beta} = (5,7\pm0,7)$ МэВ.

Теоретические расчеты [112] показывают, что барьеры деления для ²²⁸Ra и ²³²Ra примерно одинаковы. Экспериментальные данные по эффективно-одногорбому барьеру деления ²²⁸Ra приведены в [113,114] и составляют $B_f \cong$ \cong 7,8 MэB, $\omega = 0,9$ MэB; и $B_f = (8,7\pm0,4)$ МэB. Таким образом, оценка $B_f >$ >7,7 МэB [110] барьера в ²³²Ra согласуется с рядом экспериментальных и теоретических результатов. Слишком высокое значение $P_{\beta df}$, полученное в [111], может быть связано с некорректным выбором параметров барьера деления.

Таким образом, для ядер, удаленных от полосы β -стабильности, расчеты $P_{\beta df}$ могут давать сильно расходящиеся результаты, если энергетические параметры ($Q_{\beta}, B_f, S_{\beta}(E)$) известны недостаточно хорошо. В то же время решение обратной задачи, то есть оценка параметров барьера деления ядер из данных по запаздывающему делению, может дать ценную информацию. Однако в этом случае необходимо иметь сведения о структуре силовой функции β -переходов.

2.4. Запаздывающее деление, структура силовых функций β-распада и образование ядер в астрофизических процессах. Относительная распространенность ядер различных элементов, встречающихся в нашей части Вселенной, обнаруживает ряд закономерностей, которые можно связать со свойствами астрофизических процессов, в которых синтезировались данные элементы [111,115-119].

Тяжелые ядра, т.е. ядра тяжелее железа, по-видимому, образовались в результате захвата нейтронов и последующего β^- -распада [1]. Если захват нейтронов происходит быстрее, чем β -распад, то происходит образование нейтроноизбыточных ядер, заметная распространенность которых в Солнечной системе указывает на важную роль процесса быстрого захвата нейтронов (*r*-процесса) в эволюции материи во Вселенной [1]. После *r*-процесса, который может происходить, например, во время взрыва сверхновой [120,121], синтезированные ядра распадаются к дорожке β -стабильности. Количество

ядер того или иного элемента вблизи дорожки стабильности зависит от конкуренции ряда процессов: β⁻ -распада, запаздывающего деления, испускания запаздывающих нейтронов и γ-квантов [121,122]

Для проверки различных космологических моделей важно оценить временные масштабы эволюции Вселенной. При оценке времен такого типа можно использовать отношения концентраций определенных изотопов — хронометрических пар [123]: ²³⁸U/²³²Th, ²³⁵U/²³⁸U, ²⁴⁴Pu/²³²Th, ²⁴⁷Cm/²³²Th Эффект запаздывающего деления может быть весьма существенным при образовании хронометрических пар, он оценен в [124]. Однако в перечисленных выше работах не учитывалось влияние структуры силовой функции β-переходов на образование ядер в астрофизических процессах. В [5,14,31] отмечается необходимость учета структуры S_β (*E*) при анализе *r*-процесса и образовании хронометрических пар. Для ряда ядер, участвующих в *r*-процессе, анализ структуры S_β (*E*) был сделан в [5,125] в рамках оболочечной модели с учетом остаточного взаимодействия Гамова — Теллера. Карта *r*-процесса показана на рис.16 [126]. Оказалось, что для ядер с $A=250\div266$ и $N=165\div175$ (материнские ядра) [5,125], для β⁻-переходов Гамова — Теллера энергию возбуждения пика *E*_{*i*} в S_β (*E*), определяющего запаздывающее деление, можно представить в виде

$$E_i(M \ni B) \cong -0,15(N-160) + 0,46(Z-8) - B,$$
 (44)

где $B = (0,3 \div 3)$ МэВ. Данную зависимость можно экстраполировать вплоть до $N \cong 200$. Такое поведение $S_{\beta}(E)$ довольно хорошо совпадает с более поздними расчетами [68]. Заметим, что при вычислении $S_{\beta}(E)$ для ядер, участвующих в

Рис.16. Фрагмент карты *r*-процесса. Заштрихована область ядер, где энергетически возможно запаздывающее деление

Рис.17. Схема экспоненциальной модели нуклеосинтеза и временная шкала, Δ — продолжительность нуклеосинтеза, δ — продолжительность образования и затвердевания метеоритов {2}, t_0 — настоящий момент времени, S — вклад всплеска нуклеосинтеза {1} перед образованием Солнечной системы, θ_G — возраст Галактики, θ_S — возраст Солнечной системы, θ_M — возраст метеоритов

r-процессе, необходимо сделать ряд экстраполяций в сторону ядер, значительно удаленных от полосы стабильности. Хотя результаты оценок $S_{\beta}(E)$ довольно чувствительны к выбору экстраполяций, все же такие расчеты позволяют сделать вывод о наличии структуры $S_{\beta}(E)$ и необходимости ее учета при анализе образования ядер в астрофизических процессах [5,68,125].

Обсудим качественно влияние структуры $S_{\beta}(E)$ на образование космохронометрических пар: ²³⁸U/²³²Th, ²³⁵U/²³⁸U, ²⁴⁴PU/²³²Th, ²⁴⁷Cm/²³²Th. Схема экспоненциальной модели нуклеосинтеза и ее временная шкала приведены на рис.17 [119]. Временная эволюция при нуклеосинтезе определяется следующими параметрами: Δ — продолжительность нуклеосинтеза, S — вклад всплеска нуклеосинтеза в образование ядер перед формированием Солнечной системы, T^* — параметр экспоненты нуклеосинтеза, δ — продолжительность образования метеоритов, t_0 — настоящий момент времени. Возраст метеоритов определяется в независимых экспериментах и равен $\theta_M = (4,6\pm0,1)\cdot10^9$ лет [119]. Информация о возрасте хронометрической пары содержится в параметре $R(i, j) = (P_i / P_j) / (N_i / N_j)$ и периодах полураспада ядер, образующих пару. Здесь P_i / P_j — отношение количества ядер после серии β-распадов, следующих за *r*-процессом в момент времени $t = \Delta + \delta$ (рис.17), N_i / N_j — их отношение в настоящий момент. Измерив N_i / N_j , периоды полураспада и возраст метеоритов, рассчитав P_i / P_j и R_i / R_j , можно оценивать временные параметры астрофизических процессов, используя различные модели *r*-процесса.

Выход нуклида *i* в момент затвердевания метеоритного вещества определяется выражением [119]:

$$P_{i}(\Delta+\delta) \cong a_{i}(0) \exp(-\lambda_{i}\delta) \left[\frac{1-S}{1-\lambda_{i}T^{*}} \frac{\exp(-\lambda_{i}\Delta) - \exp(-\Delta/T^{*})}{1-\exp(\Delta/T^{*})} + S \right] =$$

$$= a_{i}(0) \varphi_{i}(\Delta, S, T^{*}, \delta, \lambda_{i}), \qquad (45)$$

где $a_i(0)$ — скорость образования нуклида *i* в момент начала нуклеосинтеза, λ_i — постоянная распада *i* нуклида. Для оценки четырех неизвестных (Δ , *S*, T^* , δ) необходимо иметь по крайней мере четыре независимые величины отношений выходов:

$$\frac{P_i(\Delta+\delta)}{P_j(\Delta+\delta)} = \frac{a_i(0)}{a_j(0)} \cdot \frac{\varphi_i(\Delta, S, T^*, \delta, \lambda_i)}{\varphi_i(\Delta, S, T^*, \delta, \lambda_j)}$$
(46)

и четыре рассчитанных с помощью различных моделей нуклеосинтеза отношения скоростей образования нуклидов $a_i(0)/a_j(0)$. Учет структуры $S_\beta(E)$ важен именно при расчете отношений $a_i(0)/a_i(0)$.

В табл.5 приведены значения $a_i(0)/a_j(0)$ для ряда космохронометров, полученные без учета запаздывающего деления (*) [127], с учетом запаздывающего деления, но с $S_{\beta}(E) \cong \rho(E)(**)$ [126], и с учетом запаздывающего деления и структуры $S_{\beta}(E)(***)$ [111]. Из данных табл.5 очевидна заметная роль запаздывающего деления и структуры $S_{\beta}(E)$. Однако следует иметь в виду, что расчеты вероятности запаздывающего деления для многих ядер, образующихся в *r*-процессе, имеют довольно низкую надежность [71], и ряд выводов носит качественный характер. Параметр R(i,j) не является модельно-независимым, т.к. отношение P_i/P_j зависит от динамики *r*-процесса, а также от последующего облучения нейтронами [122], и, используя космохронометрические пары, можно получать лишь модельные оценки временных параметров нуклеосинтеза. Таблица 5. Отношения скоростей образования космохронометров в *r*-процессе: (*) — без учета запаздывающего деления; (**) — с учетом запаздывающего деления, но S_β (E)≅ ρ(E); (***) — с учетом запаздывающего деления

Изотопы	$a_i(0)/a_j(0)$ (*)	a _i (0)/a _j (0) (**)	a _i (0)/a _j (0) (***)
²⁴⁴ Pu/ ²³² Th	0,47±0,1	0,331	0,12
²³⁵ U/ ²³⁸ U	1,5± 0,5	0,89	1,24
²³² Th/ ²³⁸ U	1,9 ^{+0,2} -0,3	1,7	1,4
²⁴⁷ Cm/ ²³² Th	0,34	0,15	0,21

и структуры S_β (E) силовой функции β-распада

Первые расчеты отношений $a_i(0)/a_i(0)$ с учетом запаздывающего деления сделаны в [122]. Показано, что в районе А≅145 вероятность β-запаздывающего деления значительна: Р ≅ 0,5, что влечет за собой уменьшение образования ядер ²³⁵U и ²⁴⁴Pu, и поэтому с учетом запаздывающего деления $a_i(0)/a_i(0)$ для ²⁴⁴ PU/²³² Th и ²³⁵U/²³⁸U заметно уменьшается. В то же время $a_i(0)/a_i(0)$ для ²³²Th/²³⁸U изменяется значительно меньше по сравнению с данными работы [127]. Однако в [122] использовалась $S_{\beta}(E) \cong \rho(E)$, а в этом случае доля запаздывающего деления в области А ≅ 244 определяется долей β⁻-переходов, идущих в энергетический интервал шириной ~1 МэВ ниже основного состояния материнского ядра [5]. Если взять $S_{\beta}(E)$, рассчитанную в [5,125], с шириной пиков FWHM=1МэВ, то в указанный интервал попадает значительно меньшая, чем для $S_{\beta}(E) \cong \rho(E)$, доля β^- -переходов. В этом случае отношения $a_i(0)/a_i(0)$ для космохронометров должны увеличиться, по сравнению с данными [122], но оставаться меньшими, чем в [127]. Данный вывод подтвердился в работе [111], где были получены оценки временных параметров нуклеосинтеза $\Delta \cong 16 \cdot 10^9$ лет и возраста Галактики $\theta_G =$ =(Δ + δ +4,6·10⁹ лет)=20,8·10⁹ лет. Эти значения Δ и θ_{G} превышают полученные ранее значения указанных параметров [128], что ведет к довольно интересным заключениям, однако их обсуждение выходит далеко за рамки обзора.

Таким образом, вся совокупность рассмотренных выше данных однозначно свидетельствует о том, что, только используя нестатистическую силовую функцию β^- и β^+ (*EC*)-распадов, в которой учтены эффекты структуры ядра, можно корректно проводить анализ запаздывающего деления ядер и связанных с ним процессов.

3. НЕСТАТИСТИЧЕСКИЕ ЭФФЕКТЫ В (р, ү) И (р, р'ү) Ядерных реакциях при возбуждении и распаде неаналоговых резонансов

3.1. Исследования структуры резонансов в реакциях с протонами низких энергий. Исследования структуры ядер в реакциях с протонами играют важную роль в развитии наших представлений о свойствах ядер. Особое место в таких исследованиях занимает изучение свойств и структуры различных резонансов. Область энергий возбуждений, где можно наблюдать хорошо выраженные резонансы в реакциях под действием протонов, доходит до 10—12 МэВ в ядрах с А≅60, до 15—17 МэВ в легких ядрах, где меньшая плотность уровней. В ядрах с A > 70 в сечениях реакций с протонами наблюдаются, как правило, только аналоговые резонансы. Аналоговые резонансы возбуждаются в реакциях упругого и неупругого рассеяния протонов в ядрах вплоть до висмута, их ширины составляют от долей кэВ до нескольких кэВ [6]. Аналоговый резонанс — это структура типа гигантского резонанса, образовавшаяся из-за распределения силы «простого» возбуждения по уровням составного ядра, причем изоспин аналога на единицу больше, чем изоспин состояний составного ядра. Выделенность аналогового резонанса и связанные с ним нестатистические эффекты хорошо известны [6,129] и обусловлены изоспиновой симметрией ядерных сил. В функциях возбуждения реакций ($p, p'\gamma$) и (р, ү) наблюдается большое число других резонансов — неаналоговых [4,11,13]. Есть две возможности для интерпретации неаналоговых резонансов: считать, что наблюдаемые резонансы это 1) статистические резонансы составного ядра, 2) структуры типа гигантского резонанса, связанные с распределением возбуждения простого типа (например, типа GT-резонанса или его сателлитов) по уровням составного ядра. Во втором случае физическая интерпретация экспериментов должна отличаться от статистической. В данном разделе анализируются проявления нестатистических эффектов в (p, γ) и (р, р'ү) ядерных реакциях при возбуждении и распаде неаналоговых резонансов составного ядра.

3.2. Методика экспериментов. Значительный экспериментальный материал по исследованию реакций (p,γ) получен в [11,13,15] при облучении мишеней из Ni протонами низких энергий. Эксперименты проводились на электростатическом генераторе ЭГ-5. Мишени из изотопов ^{58,60,62}Ni (95% обогащения) имели толщину 20÷40 мкг/см². Энергия ускоряемых протонов могла варьироваться при поиске резонансов, и ее максимальная величина могла составлять 5 МэВ. Токи были до 10 мкА. Методика экспериментов подробно описана в [11,13,30], она использовалась для обнаружения нестатистических корреляций приведенных ширин (B(E2) и B(M1)) γ -распада неаналоговых резонансов [12,130], выявления и исследования нестатистических эффектов в угловых распределениях γ -излучения в [15,131], оценки доли нестатистически

ской компоненты в волновых функциях неаналоговых резонансов в [132]. Схемы экспериментальной установки и реакции (p, γ) приведены на рис. 18. Поиск резонансов в функции возбуждения осуществлялся с помощью ү-спектрометра с детектором на основе кристалла NaI(Tl) размером 100x100 мм. Спектрометр работал в режиме интегрального счета. Порог дискриминации выбирался так, чтобы энергии регистрируемого ү-излучения составляли половину энергии возбуждения Е'/2 в данном ядре. При указанном пороге дискриминации исключалась регистрация ряда фоновых у-линий с энергией меньше Е / 2 и регистрировалась существенная часть у-излучения от распада резонанса. Если ү-распад резонанса происходил на уровни ядра с энергией возбуждения меньшей, чем Е */ 2, то спектрометр регистрировал эти переходы ($E_{\gamma} > E^*/2$). При распаде резонанса на уровни с энергией большей, чем $E^*/2$, регистрировались γ-пе- реходы с этих уровней на основной и ряд низколежащих состояний ($E_{\gamma} > E^{*}/2$).

Рис.18. Схема экспериментальной установки для исследования возбуждения и распада резонансов в реакции (p,γ): p — пучок протонов, M — мишень, ЦФ — цилиндр Фарадея, Ge(Li) — германий–литиевый детектор, установленный под углом θ к пучку протонов, NaI(Tl) — сцинтилляционный детектор, WW — система накопления и анализа данных

Толщина мишени выбиралась такой, чтобы энергетические потери в ней были бы порядка разрешающей способности ускорителя и меньшими, чем расстояние между резонансами. Для ядер с $A \cong 60$ и $E_p < 5$ МэВ при разрешении $\Delta E_p \cong 1 \div 2$ кэВ удобно использовать мишени толщиной $10 \div 20$ мкг/см². После обнаружения резонанса γ -спектры его распада измерялись с помощью Ge(Li)-детектора объемом 40 см³ и энергетическим разрешением $7 \div 8$ кэВ для γ -энергии 7 МэВ.

Для каждого исследуемого резонанса измерялись γ -спектры под углами 0°, 30°, 60° и 90° к направлению падающего пучка. При измерении угловых распределений определялись интенсивность пучка протонов, интегральная интенсивность γ -лучей, зарегистрированных кристаллом NaI(Tl), а также интенсивность γ -линий, зарегистрированных вторым Ge(Li)-детектором под углом 135°, что позволяло надежно проводить нормировку γ -спектров, снятых под разными углами.

Градуировка по энергиям *γ*-излучения в области до 2,6 МэВ производилась по многочисленным внутренним реперам. В области больших энергий возбуждения удобными реперами служили фотопик и пики одиночного и

двойного вылета γ -перехода с энергией 6,129 МэВ, возникающего в реакции ¹⁹F(p, α)¹⁶O.

Угловые распределения γ-излучения представляются в виде разложения по полиномам Лежандра:

$$W(\theta) = \sum_{k} A_{k} P_{k}(\cos \theta), \qquad (47)$$

где *θ* — угол между направлением пучка и детектором *γ*-излучения.

Для реакций (p, γ) и мишеней с нулевым спином ядра, при возбуждении изолированного резонанса с определенным значением спина, коэффициенты разложения (47) зависят только от спина резонанса (I_{res}), спина конечного состояния (I_f) и от смеси мультипольностей

$$\delta = \frac{\langle I_f \| E2 \| I_{\text{res}} \rangle}{\langle I_f \| M1 \| I_{\text{res}} \rangle},\tag{48}$$

где $\langle I_f \| Q_\gamma \| I_\gamma \rangle$ — приведенный матричный элемент *E*2 или γ -перехода [132]. Выражения, связывающие A_k с I_{res} , I_f и δ , даны в [15].

Сравниваются экспериментальные угловые распределения для γ -переходов с исследуемого резонанса, спин которого неизвестен, с теоретическими распределениями при различных значениях δ и I_{res} . Спины конечных состояний (I_f) (низколежащих уровней) известны из других экспериментов. Далее строится функция [11,21]:

$$\chi^{2}(\delta) = \sum_{i=1}^{N} \frac{(Y_{i} - W_{i})^{2}}{\sigma_{i}^{2}}$$
(49)

при различных значениях I_{res} , где Y_i — экспериментальное значение интенсивности γ -перехода под углом θ_i , W_i — теоретическое значение интенсивности, σ_i — дисперсия Y_i . По минимуму χ^2 определяются I_{res} и δ . Пример такого анализа, проделанного в [13], приведен на рис.19. Минимальное значение χ^2 (рис.19, δ) для углового распределения γ -перехода (рис.19,a) соответствует наилучшему выбору спина резонанса I_{res} и смеси мультипольностей δ .

Угловое распределение для одного γ -перехода иногда не позволяет однозначно определить спин резонанса. Совместный анализ угловых распределений нескольких переходов с данного резонанса может существенно облегчить определение спина резонанса. Величина δ связана с коэффициентом A_2 квадратным уравнением, поэтому при его решении получаются два значения δ . Минимум χ^2 также достигается при двух значениях δ . Из двух значений δ одно, как правило, мало и соответствует основному вкладу M1-мультипольности в интенсивность перехода. Второе значение велико и соответствует основному вкладу E2-перехода. Согласно систематике [30,133] для γ -переходов в ядрах *fp*-оболочки характерны сильные M1переходы с примесью E2-переходов, лишь в редких случаях превышающей 10%. Поэтому, как правило, большие значения δ можно отбросить, т.к. они приводят к неоправданно большим значениям B(E2). Однако в общем случае нельзя дать каких-либо рекомендаций, какое значение δ нужно выбрать в такого рода экспериментах. Поэтому нестатистические эффекты в общем случае удобнее анализировать [15], используя непосредственно коэффициенты A_2 .

Рассмотрим определение спинов и смесей мультипольностей для реакции 60 Ni(p, γ) 61 Cu. В работе [13] изучены свойства резонансов в реакции 60 Ni(p, γ) 61 Cu при энергии протонов $E_p = 1920 \div 2460$ кэВ. На рис.19 приведено угловое распределение (рис.19,*a*) и χ^2 -анализ (рис.19,*б*) для γ -перехода с резонанса $E_p = 2442$ кэВ на уровень 475 кэВ. Спин конечного состояния $E^* = 475$ кэВ известен: $I_f = 1/2^-$ [62]. Из χ^2 -анализа резонансу с $E_p = 2442$ кэВ и энергией возбуждения $E^* = 7193$ кэВ можно однозначно приписать спин $I_{res} = 3/2$, т.к. минимальные значения χ^2 для $I_{res} = 1/2$ или 5/2 (показаны символом (*) на рис.19,*б*) значительно превышают минимум χ^2 для $I_{res} = 3/2$. Указанным резонансам приписывалась отрицательная четность. Определение четности основывалось на том, что в данной области должны распола-

Рис.19. Анализ реакции ⁶⁰Ni(p, γ)⁶¹Cu для резонанса E_p =2442 кэВ (E_p — энергия налетающих протонов, E^* — энергия возбуждения ядра ⁶¹Cu). Приведены угловое распределение (*a*) и χ^2 -анализ (*б*) для γ -перехода с резонанса E^* =7193 кэВ (E_p =2442 кэВ) на уровень 475 кэВ в ⁶¹Cu. Показана зависимость χ^2 от значения арктангенса смеси мультипольности δ для γ -перехода 3/2 \rightarrow 1/2 и минимумы χ^2 для γ -переходов 5/2 \rightarrow 1/2 и 1/2 \rightarrow 1/2

гаться резонансы с сильной одночастичной $P_{3/2}$ компонентой (ℓ =1), резонансы с положительной четностью (ℓ =2) должны иметь меньшее сечение возбуждения из-за более сильного центробежного барьера, и, кроме того, в рассмотренной области энергий возбуждения для изучаемых ядер не обнаружено смешанных переходов типа E1+M2[1,29], поэтому отличные от нуля δ свидетельствуют о наличии смеси типа M1+E2, что в данном случае характерно для резонансов с отрицательной четностью.

3.3.Нестатистические эффекты в угловых распределениях в реакциях (р, γ). Для мишени из четно-четных ядер угловое распределение γ -излучения в (p, γ)-реакции для *i* резонанса и перехода $I_{res} = 3/2 \xrightarrow{\gamma} I_f = 3/2$ записывается в виде [15]:

$$W_{i}(\theta) = \sum_{k} A_{k}(i) P_{k}(\cos \theta),$$

$$A_{2}(i) = \frac{0.4 - 155\delta_{i}}{1 + \delta^{2}}, \quad A_{4} = 0.$$
(50)

В различных моделях вычисляются распределения матричных элементов или величин смесей мультипольностей δ . Экспериментально измеряются коэффициенты $A_2(i)$, и извлечение значений δ , как правило, производится с использованием ряда предположений. Поэтому представляет интерес получить выражения непосредственно для распределений коэффициентов A_2 и провести сравнение с экспериментом. Это сделано в работах [9,15,131].

В статистической модели матричные элементы γ -переходов распределены по нормальному закону со средним значением, равным нулю, и дисперсией σ . В этом случае плотность вероятности появления величины δ для изучаемого резонанса описывается распределением Коши [11]:

$$P(\delta) = \frac{a}{\pi (a^2 + \delta^2)},\tag{51}$$

где $a=\sigma(E2)/\sigma(M1)$. Как следует из (51), среднее значение $\langle \delta \rangle = 0$, и распределение δ симметрично относительно $\delta = 0$.

Плотность вероятности $P(A_2)$ для коэффициентов A_2 , как показано в [15], связана с $P(\delta)$ модельно-независимым образом:

$$P(A_2) = P[\delta_1(A_2)] \left| \frac{d\delta_1}{dA_2} \right| + P[\delta_2(A_2)] \left| \frac{d\delta_2}{dA_2} \right|, \tag{52}$$

где $\delta_1(A_2)$ и $\delta_2(A_2)$ — два решения квадратного уравнения, связывающего A_2 и δ . Так, для (p, γ)-реакции $I_{res} \xrightarrow{\gamma} I_f = 3/2[15]$:

$$\delta_{1}(A_{2}) = \frac{-0.775 + \sqrt{0.6 - A_{2}(A_{2} - 0.4)}}{A_{2}},$$

$$\delta_{2}(A_{2}) = \frac{-0.775 - \sqrt{0.6 - A_{2}(A_{2} - 0.4)}}{A_{2}}.$$
(53)

Подставляя (51) и (53) в (52), получим выражение для плотности распределения коэффициентов A_2 в статистической модели [15]. Наиболее просто $P(A_2)$ записывается в статистической модели при $a \equiv \sigma(E2)/\sigma(E1)=1$

$$P(A_{2}) = \frac{1}{2\pi \sqrt{0.6 - A_{2}(A_{2} - 0.4)}},$$

$$\int_{0.6}^{1} P(A_{2}) dA_{2} = 1.$$
(54)

При сравнении с экспериментом параметр *а* варьируется для наилучшего описания экспериментальных данных [15].

В статистической модели отсутствуют корреляции при распаде по различным спиновым каналам. Распределение, учитывающее нестатистические корреляции $E 2 u M 1 \gamma$ -переходов, приведено в [15]. В случае (p, γ)-реакции при $E 2 u M 1 \gamma$ -распаде и постоянном коэффициенте корреляции для матричных элементов $E 2 u M 1 \gamma$ -переходов получаем:

$$P(\varphi) = \frac{1}{\pi} \frac{\sqrt{|a^2 - \langle \delta \rangle^2|}}{a^2 \cos^2 \varphi + \sin^2 \varphi - \langle \delta \rangle \sin 2\varphi},$$

$$\varphi = \arctan(\delta),$$
 (55)

где $\langle \delta \rangle$ — среднее значение величины δ . Аналитические выражения для связи δ и коэффициентов A_2 известны (50), (53), что без труда позволяет рассчитать распределения $P(A_k)$. Естественно, при $\langle \delta \rangle \rightarrow 0$ получим соответствующие формулы статистической модели.

В [11-13,15,135] изучены угловые распределения для γ -распада на основные состояния $I_f^{\pi} = 3/2^-$ для 19, 25 и 37 неаналоговых резонансов со спином и четностью $I_{\text{res}}^{\pi} = 3/2^-$ в ядрах ^{59,61,63}Си. Диапазон энергий возбуждения составлял 5,3÷7 МэВ в ⁵⁹Си, 6÷7 МэВ в ⁶¹Си и 8÷9,5 МэВ в ⁶³Си.

Данные о характеристиках резонансов с $I^{\pi} = 3/2^{-}$ приведены в работах [11,13,15]. Исходя из этих данных, в [15] получены экспериментальные плотности распределения $P(A_2)$. Результаты анализа $P(A_2)$ для ⁶²Ni(p, γ)⁶³Cu реакции приведены на рис.20. На рис.21 дана зависимость величин смеси мульти-

польностей γ -переходов δ от энергии резонансов в ⁶³Cu. В реакциях ^{58,60}Ni(p, γ)^{59,61}Cu зависимость $\delta(E_p)$ имеет такой же характер, как и в реакции ⁶²Ni(p, γ)⁶³Cu, и распределения $P(A_2)$ также не соответствуют статистической модели [15]. В [15,132] получены экспериментальные данные о средних значениях величин δ :

$$\langle \delta \rangle = (0,5 \pm 0,1) B^{59} Cu,$$

 $\langle \delta \rangle = (0,7 \pm 0,1) B^{61} Cu,$ (56)
 $\langle \delta \rangle = (0,6 \pm 0,1) B^{63} Cu.$

Статистическая модель дает значение $\langle \delta \rangle = 0$, что не соответствует экспериментальным величинам.

На рис.20 приведены, помимо экспериментальных значений плотности вероятностей $P(A_2)$, теоретические [15] значения $P(A_2)$, полученные в рамках статистической модели ($\langle \delta \rangle = 0$ (54)) и в рамках модели [15], учитывающей нестатистические корреляции E2- и γ -переходов (55). Параметр $\langle \delta \rangle$ выбирался из экспериментальной (56) оценки $\langle \delta \rangle = 0,5 \div 0,7$, параметр a в (55) варьировался для наилучшего согласия с экспериментом. Из сравнения расчетов с экспериментами сделаны следующие выводы [15].

1. Статистическая модель не описывает экспериментальные данные по плотности распределения величин A_2 в реакциях ^{58,60,62}Ni(p,γ)^{59,61,63}Cu.

Рис.20. Рассчитанные и экспериментальные значения распределений $P(A_2)$ коэффициентов для γ -распада неаналоговых резонансов с $I^{\pi} = 3/2^{-}$ на основное состояние ядра ⁶³Cu: (°) — статистическая модель, (+) — эксперимент, (Δ) — нестатистическая модель

2. Распределения $P(A_2)$, в которых учтены корреляции $E 2 \mu M1\gamma$ -переходов, лучше описывают экспериментальные данные в реакциях ^{58,62}Ni(p,γ)^{59,63}Cu. Для реакции ⁶⁰Ni(p,γ)⁶²Cu в обоих случаях (статистическая модель и модель с учетом $E 2 \mu M1$ корреляций) теоретические оценки $P(A_2)$ значительно расходятся с экспериментом.

3. Для лучшего согласия теории с экспериментом следует считать параметр a в (55) зависящим от энергии резонанса, что соответствует учету деталей распределения простых конфигураций в волновых функциях резонансов по энергии возбуждения ядра.

В [132], исходя из анализа угловых распределений в (*р*, *γ*)-реакциях, сделаны оценки величин компонент в волновых функциях резонансов, обуславливающих не- статистические эффекты («простых» или нестатистических компонент). Волновая функция резонанса записывалась в виде

$$\Psi_{i} = \sum_{j} C_{ij} \varphi_{j} + C_{n_{i}} \varphi_{n}, \quad (57)$$

где C_{n_i} — примесь нестатистической («простой») компоненты ϕ_n для *i*-резонанса, $\sum_j C_{ij} \phi_j$ — стати-

стическая часть волновой функции *i*-резонанса, причем C_{ij} — случайные числа и

$$\sum_{j} \left| C_{ij} \right|^{2} + \left| C_{n_{i}} \right|^{2} = 1 \qquad (58)$$

Рис.21. Зависимость величины смеси мультипольностей δ от энергии налетающих протонов для неаналоговых резонансов с $I^{\pi} = 3/2^{-}$ в ⁶³Cu. Диапазон энергий возбуждения резонансов в ⁶³Cu составлял от 8040 до 9250 кэВ. Среднее значение $\langle \delta \rangle = 0,6 \pm 0,1$, в то время как статистическая модель дает

 $\left\langle \left| C_{n_i} \right|^2 \right\rangle$ коэффициентов Средние значения для реакций ^{58,60,62}Ni(*p*, *γ*)^{59,61,63}Cu составляют 20–50%, то есть резонансы, возбуждаемые в реакции (p, γ), не должны описываться чисто статистической моделью. Аналогичный вывод был сделан в работе [30] из других соображений. В [30] изучался коэффициент линейной корреляции ү-ширин переходов с компонент тонкой структуры $p_{3/2}$ аналога в ⁶¹Cu на основное состояние и на возбужденные $p_{1/2}$ и $f_{5/2}$ состояния этого ядра. При γ -распаде на основное состояние у-ширины определяются заведомо нестатистической компонентой аналога с большим значением изоспина (T_{2}). При γ -распаде на $p_{1/2}$ и $p_{5/2}$ состояния у-ширины определяются, как считалось, статистической, примесной компонентой с меньшим изоспином (Т). В случае статистической природы Т, -компоненты никаких корреляций между ү-ширинами быть не должно. Однако анализ экспериментальных данных [30] показал наличие корреляций между γ -ширинами, а это означает, что состояния $T_{<}$ не имеют сложной природы, характерной для статистической модели.

3.4. Корреляции величин В(Е2) и В(М1) в реакциях ^{58,60,62} Ni(ρ,γ)^{59,61,63}Cu. В статистической модели отсутствуют корреляции между парциальными ширинами при распадах по различным каналам [136]. В

[9,12,131] были обнаружены нестатистические корреляции приведенных вероятностей *E*2 и *M*1 γ -распада неаналоговых резонансов в реакциях ^{58,60,62}Ni(ρ , γ)^{59,61,63}Cu.

Экспериментально изучалось угловое распределение γ -излучения при γ -переходах с различных резонансов с фиксированными спином и четностью $J_f^{\pi} = 3/2^-$ на основное состояние ядер Cu ($J_f^{\pi} = 3/2^-$) в реакции Ni(p, γ)Cu, и далее исследовались величины [9,12,130,131]:

$$x_{i} = \frac{I_{\gamma_{i}}\delta_{i}^{2}k_{p}^{2}}{(1+\delta^{2})E_{\gamma_{i}}^{5}W_{i}(\theta)\varepsilon_{\gamma}(i)},$$

$$y_{i} = \frac{I_{\gamma_{i}}k_{p}^{2}}{(1+\delta_{i}^{2})E_{\gamma_{i}}^{3}W_{i}(\theta)\varepsilon_{\gamma}(i)},$$
(59)

где I_{γ_i} и E_{γ_i} — интенсивность и энергия γ -перехода, k_p — волновой вектор протона, $\varepsilon_{\gamma_i}(i)$ — эффективность регистрации γ -излучения с энергией E_{γ_i} . Затем вычисляется коэффициент корреляции $\rho(x, y)$:

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} (\mathbf{x}_{i} - \langle \mathbf{x} \rangle) (\mathbf{y}_{i} - \langle \mathbf{y} \rangle)}{\left[\sum_{i} (\mathbf{x}_{i} - \langle \mathbf{x} \rangle)^{2} \sum_{i} (\mathbf{y}_{i} - \langle \mathbf{y} \rangle)^{2} \right]^{1/2}} \kappa$$
(60)

где к — поправка, связанная с погрешностями определения x_i и y_i [30,137]:

$$\kappa \approx \left\{ 1 - \frac{1}{2} \left[\frac{\sum_{i} (\Delta x_{i})^{2}}{\sum_{i} (x_{i} - \langle x \rangle)^{2}} \frac{\sum_{i} (\Delta y_{i})^{2}}{\sum_{i} (y_{i} - \langle y \rangle)^{2}} \right] \right\}.$$
(61)

Если мы работаем с разрешением по энергии падающего пучка протонов $\Delta E_p >> \Gamma$ и $\Gamma_{\gamma} << \Gamma_p$, то [130]:

$$\rho(x, y) = \rho(B(E2), B(M1)),$$
 (62)

где Г — полная ширина резонанса, Γ_p — ширина по входному каналу, B(E2) и B(M1) — приведенные вероятности E2 и $M1 \gamma$ -распада. Именно описанная выше ситуация и реализована в экспериментах [11,13,130]. Протоны ускорялись электростатическим генератором ЭГ-5. Разрешение по энергии протонов составляло 2–3 кэВ, что позволяло отделять резонансы друг от друга. Величина Γ_{γ} имеет порядок 10^{-2} эВ, а $\Gamma_{\rho} \cong 10 \div 100$ эВ [6,12,30], т.е. реализуется ситуация, в которой верно выражение (62). Для определения коэффициента корре-

ляции $\rho(B(E2), B(M1))$ величины B(E2) и B(M1) могут быть известны с точ- ностью до постоянного множителя, т.к. согласно (60) этот множитель сокращается. Этот факт позволил [12,130] в (р, γ)-реакциях использовать относительные интенсивности у-переходов для вычисления 0, что уменьшает погрешность результата по сравнению с абсолютными методами. Действительно, в традиционном методе определения абсолютных значений Г, с «толстой» (≅500 мкг/см²) мишенью [6,30] необходимо знать изотопный состав мишени, тормозную способность вещества мишени, протонный заряд, падающий на мишень, эффективность детектора γ-излучения ε_ν. В экспериментах с использованием «тонкой» (≅20 мкг/см²) мишени необходимо знать лишь относительные величины эффективности $\boldsymbol{\epsilon}_{\gamma}$, полного протонного заряда, интенсивности γ-излучения. Относительная эффективность ε, определялась из известного [21,130] баланса интенсивностей у-переходов исследованных многими авторами резонансов (это резонансы, соответствующие энергии налетающих протонов $E_p = 1424$ кэВ в ⁵⁹Cu, $E_p = 1599$ кэВ в ⁶¹Cu, $E_p = 2659$ кэВ в ⁶³Cu). Для контроля выгорания мишени в течение эксперимента измеряются интенсивности γ-излучения для реперных резонансов [12,130].

В реакции ⁶²Ni(p, γ)⁶³Cu определено значение $\rho(B(E2), B(M1))$ для γ -распада на основное состояние ядра ⁶³Cu n=37 неаналоговых резонансов с $J^{\pi} = 3/2^{-}$ и энергией возбуждения *E* от 8,04 до 9,25 МэВ. Оказалось, что [12,130]:

$\rho(B(E2), B(M1)) = 0,6 \pm 0,1$

Для реакции ⁶⁰Ni(p, γ)⁶¹Cu исследовалось n = 25 неаналоговых резонансов с $J^{\pi} = 3/2^{-1}$ и E_{i} от 6,2 до 7,2 МэВ. Оказалось, что при γ -распаде на основное состояние ядра ⁶¹Cu:

$\rho(B(E2), B(M1)) = 0.6 \pm 0.1$

Для реакции ⁵⁸Ni(p, γ)⁵⁹Cu исследовалось n=19 неаналоговых резонансов с $J^{\pi} = 3/2^{-1}$ и энергией возбуждения от 5,5 до 6,8 МэВ. При γ -распаде на основное состояние ядра ⁵⁹Cu:

$$\rho(B(E2), B(M1)) = 0,7 \pm 0,1$$

Таким образом, в результате проделанных экспериментов и их анализа в [12,130] установлено наличие корреляций приведенных вероятностей *E*2 и *M*1 γ -переходов при γ -распаде неаналоговых резонансов с $J^{\pi} = 3/2^{-}$ в реакциях ^{58,60,62}Ni(ρ, γ)^{59,61,63}Cu, что говорит о нестатистическом характере исследованных резонансов.

Совокупность экспериментальных данных по изучению угловых распределений γ -распада неаналоговых резонансов с $J^{\pi} = 3/2^{-}$ в реакциях ^{58,60,62}Ni(ρ, γ)^{59,61,63}Cu и их анализ позволяют сделать вывод о нестатистической природе неаналоговых резонансов, исследованных в [11-13,15, 130-132].

3.5. Нестатистические эффекты в ($p, p' \gamma$)-реакциях. Исследованию реакций ($p, p' \gamma$), идущих с образованием резонансов составного ядра, посвящено значительное число работ [4,10,134,138,139]. Схема реакции показана на рис.22. Экспериментально исследуются угловые распределения протонов, гамма-квантов, $p' \gamma$ -угловые корреляции и ширины для распада резонансов составного ядра. В качестве мишени используются ядра с $J^{\pi} = 0^+$. Распад резонансов может происходить по различным спиновым каналам. Так, например, для распада резонансов $J^{\pi} = 3/2^+$ с возбуждением состояния $J^{\pi} = 2^+$ (рис.22) протон может уносить угловой момент $\ell=0$ или $\ell=2$, и спин канала может быть равным 1/2, 3/2, 5/2. Вероятность распада резонанса с испусканием частицы *i* характеризуется приведенной шириной γ_i^2 , которая связана с парциальной шириной Γ_i , соответствующей распаду резонанса с вылетом частицы *i* и проницаемостью барьера вылета частицы P_i , соотношением

$$\gamma_i^2 = \Gamma_i / P_i. \tag{63}$$

Отношение амплитуд распадов по различным спиновым каналам характеризуется величиной

$$\delta_{s} = \gamma_{s} / \gamma_{s'}. \tag{64}$$

В экспериментах [4,10,134,138,139] поведение приведенных ширин следует распределению Портера — Томаса, то есть не противоречит статистической модели. В то же время с точки зрения статистической модели корреляции ширин и амплитуд при распаде по различным спиновым каналам отсутствуют, а положительные и отрицательные значения δ_s встречаются одинаково часто. В

Рис.22. Схема неупругого рассеяния протонов

работах [4,10,134,138,139] обнаружены три типа нестатистических эффектов, связанных с наличием корреляций приведенных ширин, приведенных амплитуд при распаде по различным спиновым каналам, а также с отличием распределений δ_s от статистической модели. Данные нестатистические эффекты могут встречаться в различных комбинациях для исследуемого ядра при разных энергиях возбуждения резонансов.

В качестве типичного примера приведем данные по исследованию реакции ${}^{48}\text{Ti}(p,p'\gamma){}^{48}\text{Ti}$ с возбужденим резонансов в составном ядре ${}^{49}\text{V}$ [138,139]. Коэффициенты линейной корреляции для приведенных ши-

рин и амплитуд при распаде протонных резонансов со спином $J^{\pi} = 3/2^+$ в ⁴⁹V даны в табл.6. Там же в процентах указан уровень статистической значимости результата. Из данных, приведенных в табл.6, можно сделать вывод [138,139] о наличии нестатистических корреляций как приведенных амплитуд γ_i , так и приведенных ширин γ_1^2 для протонов при распаде резонансов по различным спиновым каналам в реакции ⁴⁸Ti($p, p'\gamma$)⁴⁸Ti. Аналогичные результаты получены и для ряда других ядер [4,10,134,138,139].

Пример распределения отношений амплитуд δ_s для неупругого рассеяния протонов по различным спиновым каналам через резонансы составного ядра ⁴⁹V в реакции ⁴⁹Ti(*p*, *p*' γ)⁴⁹Ti приведены на рис.23 [138,139]. На том же рисунке пунктирной линией показаны расчеты по статистической модели, которые существенным образом отличаются от экспериментальных данных. Таким образом, в реакциях неупругого рассеяния протонов через резонансы составного ядра наблюдается отчетливое проявление нестатистических эффектов.

Таблица 6. Коэффициенты линейной корреляции приведенных ширин и амплитуд для распада неаналоговых протонных резонансов *J*^π = 3 / 2⁺ по различным спиновым каналам в реакции ⁴⁸Ti(*p*, *p*′γ) в интервале энергий налетающих протонов *E*_{*p*} = (2,42÷3,08) МэВ

Ширины	γ_{ρ}^{2}	γ^2_{03}	γ^2_{23}	γ^2_{25}
γ_p^2	1	0,02	-0,05	0,00
γ^2_{03}	8%	1	0,43	0,85
γ^2_{23}	19%	98%	1	0,15
γ^2_{25}	1%	> 99,9%	56%	1

Коэффициенты корреляции приведенных амплитуд $\rho(\gamma_{03}\gamma_{23})=0,84$; $\rho(\gamma_{23}\gamma_{25})==-0,65$; $\rho(\gamma_{03}\gamma_{25})=-0,57$.

Значения коэффициентов корреляции ρ_{ji} для приведенных ширин расположены в строках таблицы выше диагонали. Ниже диагонали (позиции) указаны уровни статистической значимости для ρ_{ji} . Величины γ_p^2 — приведенные ширины упругого рассеяния, γ_{ab}^2 — приведенные ширины неупругого рассеяния, где *a* — орбитальный момент неупруго рассеянного протона, *b* = 2S, где *S* — полный спин выходного канала.

В то же время резонансы, возбуждаемые в реакциях с нейтронами, как правило, неплохо описываются статистической моделью [140]. Столь резкую разницу между свойствами нейтронных и протонных резонансов можно объяснить существованием избытка нейтронов. Действительно, облучая протонами ядра с (N-Z)>0, можно возбуждать простейшие конфигурации типа

Рис.23. Распределение экспериментальных значений $\Phi = \arctan(q_{25}/\gamma_{05})$ для резонансов $3/2^-$ в ⁴⁹V. Статистическая модель всегда должна давать симметричное относительно $\Phi = 0^\circ$ распределение. Распределение экспериментальных значений Φ явно несимметрично относительно $\Phi = 0^\circ$. Пунктиром показаны результаты расчета по статистической модели при $\langle \gamma_{25}^2 / \gamma_{05}^2 \rangle = 1$, где $\langle \gamma_{ij}^2 \rangle$ — среднее значение приведенной ширины для соответствующего спинового канала

 $[\pi p \otimes vh]_{\dagger}$. Данные конфигурации в изученном диапазоне энергий могут возбуждаться с заметным сечением только при наличии избытка нейтронов в ядре, т.е. при (N-Z)>0. С другой стороны, нестатистические эффекты свидетельствуют о наличии определенного типа симметрии ядерного взаимодействия. Нестатистические эффекты, обусловленные конфигурациями $[\pi p \otimes vh]_{\dagger}$, связаны со спин-изоспиновой SU(4)-симметрией ядерного взаимодействия, и с ростом избытка нейтронов эффекты SU(4)-симметрии могут возрастать [79]. В реакциях ^{58,60,62}Ni(p,γ)^{59,61,63}Cu нестатистические эффекты связываются с возбуждением $[\pi p \otimes vh]_{\dagger}$ и $\{[\pi p_I \otimes vh_J]_{\dagger} \otimes vp_J\}_{3/2}$ компонент в волновых функциях резонансов [9,131]. Таким образом, анализ γ -распада неаналоговых резонансов в ^{58,60,62}Ni(p,γ)^{59,61,63}Cu реакциях указывает на наличие частичной SU(4)-симметрии ядерного взаимодействия. Поскольку нестатистические эффекты для неаналоговых резонансов менее ярко выражены, чем для аналоговых резонансов [6,12,132], то спин-изоспиновая SU(4)-симметрия представляет, как и следовало ожидать, более приближенный вид симметрии, чем изоспиновая симметрия ядерного взаимодействия.

ЗАКЛЮЧЕНИЕ

В обзоре изложены результаты работ, в которых исследовался ряд нестатистических эффектов при распадах атомных ядер и в ядерных реакциях, идущих с образованием составного ядра. Анализ всей совокупности экспериментальных и теоретических результатов, рассмотренных в данном обзоре, однозначно свидетельствует о наличии нестатистических эффектов в ядрах, связанных с элементарными модами ядерных возбуждений. Только с учетом нестатистических эффектов можно корректно описывать значительный набор процессов в атомных ядрах и ядерных реакциях. Ожидается, что нестатистические эффекты могут более ярко проявляться в ядрах, сильно удаленных от полосы стабильности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бор О., Моттельсон Б. Структура атомного ядра. М.: Мир, 1971, т.1.
- 2. Hansen P.G. Adv. Nucl. Phys., 1973, v.7, p.159.
- 3. Lane A.M. Ann. Phys., 1971, v.63, p.171.
- 4. Wells W.K., Bilpuch E.G., Mitchell G.E. Z.Phys., 1980, v.A297, p.215.
- 5. Наумов Ю.В., Быков А.А., Изосимов И.Н. ЭЧАЯ, 1983, т.14, вып.2, с.421.
- 6. Наумов Ю.В., Крафт О.Е. Изоспин в ядерной физике. Л.:Наука, 1971.
- 7. Эллиот Дж., Добер П. Симметрия в физике. М.: Мир, 1983, т.1
- 8. Гапонов Ю.В., Лютостанский Ю.С. Ядерная физика, 1974, т.19, с.62.
- 9. Izosimov I.N. Proc. Int. School–Seminar on Heavy Ion Physics (Eds. Oganessian Yu.Ts., Penionzhkevich Yu. E., Kalpakchieva R.) Dubna, 1993, p.528.
- Shriner J.F., Jr, Bilpuch E.G., Westerfeldt C.R., Mitchell G.E. Z.Phys., 1982, v.A305, p.307.
- 11. Крафт О.Е., Наумов Ю.В., Сигалов В.М., Сизов И.В. ЭЧАЯ, 1986, т.17, вып.4, с.1284.
- 12. Изосимов И.Н., Паржицкий С.С., Сизов И.В. Изв. АН СССР., сер.физ., 1988, т.52, с.78.
- 13. Изосимов И.Н., Крафт О.Е., Паржицкий С.С. и др. Изв. АН СССР., сер.физ., 1988, т.52, с. 72.
- 14. Изосимов И.Н., Наумов Ю.В. Изв. АН СССР., сер.физ., 1978, т.42, с.2248.
- 15. **Изосимов И.Н.** Изв. АН СССР, сер.физ., 1989, т.53, с.2451.
- 16. Джелепов Б.С., Зырянова Л.Н., Суслов Ю.П. Бета-процессы. Л.: Наука, 1972, с.51.
- 17. Fujita J., Ikeda K. Nucl. Phys., 1965, v.67, p.145.
- 18. Ikeda K. Progr. Theor. Phys., 1964, v.31, p.434.
- 19. Endt P.M. Nuclear Structure (Ed. Hossain A.). North Holland, Amsterdam, 1967.
- 20. Gaarde C., Kemp K., Naumov Yu. V., Amundsen P.R. Nucl. Phys., 1970, v.A143, p.497.
- 21. **Наумов Ю.В., Крафт О.Е.** ЭЧАЯ, 1975, т.6, вып.4, с.892.
- 22. Doering R.R., Galonsky A., Patterson D.M., Bertsch G. Phys. Rev. Lett., 1975, v.35, p.1691.
- 23. Horen D.J., Goodman C.D., Bainum D.E. et al. Phys.Lett., 1981, v.B99, p.383.
- 24. **Наумов Ю.В., Изосимов И.Н., Петров Б.Ф., Быков А.А.** ОИЯИ, Д7-80-556, Дубна, 1980, с.55.
- 25. Быков А.А., Изосимов И.Н., Наумов Ю.В., Петров Б.Ф. Тезисы 31-го Сов. по ядерной спектроскопии и структуре атомного ядра. Л.: Наука, 1981, с.333.
- Kratz K.L., Rudolph W., Ohm H. et al. Investigation of Beta Strength Functions by Neutron and Gamma Ray Spectroscopy. Institut fur Kernchemie, Mainz, 1978, Germany.

- 27. Быков А.А., Витман В.Д., Наумов Ю.В. и др. Препринт ЛИЯФ №628, Л., 1980; Изв. АН СССР, сер.физ., 1981, т.45, с.874.
- 28. Izosimov I.N., Kalinnikov V.G., Myakushin M.Yu. et al. Preprint JINR, E6-96-454, Dubna, 1996; J. Phys.G, 1998, v.24, p.831.
- 29. Бор О., Моттельсон Б. Структура атомного ядра. М.:Мир, 1977, т.2.
- Наумов Ю.В., Крафт О.Е. Мат. 11. Зимн. школы ЛИЯФ по физике ядра и элементарных частиц. Л., ЛИЯФ, 1976, с.34.
- 31. Klapdor H.V., Wene C.O., Izosimov I.N., Naumov Yu.V. Phys. Lett., 1978, v.78B, p.20.
- 32. Klapdor H.V., Wene C.O., Izosimov I.N., Naumov Yu.V. Z. Phys., 1979, v.A292, p.249.
- 33. Борзов И.Н., Трыков Е.Л., Фаянс С.А. Мат. 24-й Зимн.школы ЛИЯФ по физике ядра и элементарных частиц. Л.: ЛИЯФ, 1989, с.331.
- 34. Губа В.Г., Николаев М.А., Урин М.Г. Мат. 24-й Зимн. Школы ЛИЯФ по физике ядра и элементарных частиц. Л.: ЛИЯФ,1989, с.364.
- Takahashi K., Yamada M., Kondon T. At. Data and Nucl. Data Tables, 1973, v.12, p.101.
- 36. Takahashi K., Yamada M. Progr. Theor. Phys., 1969, v.41, p.1470.
- Гапонов Ю.В., Лютостанский Ю.С. Изобарические состояния сферических ядер. М.: ИАЭ, 1974.
- 38. Гапонов Ю.В., Лютостанский Ю.С. ЭЧАЯ, 1981, т.12, с.1324.
- 39. Moller P., Randrup J. Nucl. Phys., 1990, v.A514, p.1.
- 40. Staudt A., Bender E., Muto K., Klapdor-Kleingrothaus H.V. At. Data and Nucl. Data Tables, 1990, v.44, p.79.
- Mathews G.J., Bloom S.D., Fuller G.M., Bahcall J.N. Phys. Rev., 1985, v.C32, p.796.
- 42. Krumlinde J., Moller P. Nucl. Phys., 1984, v.A417, p.420.
- 43. Izumoto T. Nucl.Phys., 1983, v.A395, p.189.
- 44. Пятов Н.И., Фаянс С.А. ЭЧАЯ, 1983, т.14, с.953.
- 45. Борзов И.Н., Фаянс С.А. Препринт ФЭИ, №1129, 1981.
- Соловьев В.Г. Теория атомного ядра: квазичастицы и фононы. М.: Энергоатомиздат, 1989.
- 47. Kuzmin V.A., Soloviev V.G. J. Phys. G., 1984, v.10, p.1507.
- 48. Муравьев С.Е., Урин М.Г. Изв. АН СССР, сер. физ., 1989, т.53,с.973.
- 49. Изосимов И.Н., Явшиц С.Г., Егоров С.А. Межд. школа-семинар по физике тяжелых ионов. ОИЯИ, Д7-90-142, Дубна , 1990, с.287.
- Frisk F., Hamamoto I., Zang X.Z. Preprint Lund-Mph-95/09, Lund, 1995; Phys. Rev., 1996, v.C52, p.2468.
- 51. Bender E., Muto K., Klapdor H.V. Phys. Lett. B, 1988, v.208, p.53.
- 52. Moller P., Randrup J. Preprint LBL-27504, 1989; Nucl. Phys., 1990, v.A514,p.1.
- 53. Preston M.A. Physics of Nucleus. Addison-Wesley, Reading, 1962.
- 54. Gove N.B., Martin M.J. At. Data and Nucl. Data Tables, 1971, v.10, p.205.
- 55. Быков А.А., Витман В.Д., Наумов Ю.В. и др. Препринт ЛИЯФ №647, Л., 1981; Изв. АН СССР, сер.физ., 1982, т.46, с.2230.
- 56. Jonson B., Hagberg E., Hansen P.G. et al. Conf. on Nucl. Far from Stability. Cargese, France, 1976; CERN Report 76–13, p.277.
- 57. Быков А.А., Витман В.Д., Морозов В.Ф., Наумов Ю.В. Изв. АН СССР, сер.физ., 1980, т.44, с.918.
- 58. Карнаухов В.А. Петров Л.А. Ядра, удаленные от полосы β-стабильности. М.: Энергоиздат, 1981.
- 59. Kratz K.-L., Ohm H., Summerer K. et al. Phys.Lett.B, 1979, v.86, p.21.

- 60. Наумов Ю.В., Крафт О.Е., Петров Б.Ф. и др. ЭЧАЯ, 1978, т.9, с. 1282.
- Hansen P.G., Jonson B. Charged Particle Emission from Nuclei. CRC, Boca Raton, 1989, p.21 (Ed. Poenaru D.N., Ivascu M.S.).
- Table of Radioactive Isotopes. N.Y.: 1986 (Eds. Browne E., Firestone R.B.); Table of isotopes. N.Y.: 1978 (Eds. Lederer G.M., Shirly J.S.).
- 63. Hardy J.C. CERN Report 76-13, 1976, p.267.
- 64. Богданов Д.Д., Карнаухов В.А., Петров Л.А. Ядерная физика, 1973, т.18, с.3.
- 65. Kratz K.-L., Krumlinde J., Leander G.A., Moller P. ACS Symp. Ser., 1986, v.324, p.159.
- Jahnsen T., Pappas A.C., Tunaal T. Delayed Fission Neutrons. Vienna, IAEA, 1968.
- Kratz K.-L., Ohm A., Schroder A. et al. Proc. Int. Conf. on Nuclei Far from Stability. Helsinger, 1981, p.317.
- 68. Klapdor H.V., Metzinger J., Oda T. et al. Preprint MPI H,1981, v.24.
- 69. Nir-El Y., Amiel S. CERN Report 76-13, 1976.
- 70. Hardy I.C., Carraz L.C., Jonson B., Hansen G. Phys. Lett., 1971, v.71B, p.307.
- Izosimov I.N. Proc. Int.Conf. Exotic Nuclei (Ed. Penionzhkevich Yu.E., Kalpakchieva R.), Foros, Crimea, 1991, p.214.
- 72. Greenwood R.C., Helmer R.G., Putnam M.H., Watts K.D. Nucl. Instr. and Meth., 1997, v.A390, p.95.
- 73. Karny M., Nitschke J.M., Archambault L.F. et al. GSI-Preprint 96-63, December 1996.
- 74. Быков А.А., Витман В.Д., Наумов Ю.В. И др. Препринт ЛИЯФ 748, Л., 1982.
- 75. Kalinnikov V.G., Gromov K.Ya., Yanicki M. et al. Nucl. Instr. and Meth., 1992, v.B70, p.62.
- 76. Wawryszczuk J., Yuldashev M.B., Gromov K.Ya. et .al. Z. Phys., 1997, v.A357, p.39.
- Izosimov I.N. In: Int. Conf. on Nuclear Data for Science and Technology. Trieste, Italy, 1997, p.91.
- Klapdor H.V., Metzinger J., Oda T. At. Data Nucl. and Data Tables, 1984, v.31, p.81.
- 79. **Izosimov I.N.** JINR E7-93-126, Dubna, 1993, p.74.
- 80. Берлович Э.Е., Новиков Ю.Н. ДАН СССР, 1969, т.185, с.1025.
- 81. Кузнецов В.И., Скобелев Н.К., Флеров Г.Н. Ядерная физика, 1966, т.4, с.279.
- 82. Скобелев Н.К. Ядерная физика, 1972, т.15, с.444.
- 83. Кузнецов В.И. ЭЧАЯ, 1981, т.12, вып.6, с.1285.
- 84. Белов Л.Г., Гангрский Ю.П., Милллер М.Б. и др. Препринт ОИЯИ P15-9795, Дубна, 1976.
- 85. Гангрский Ю.П., Маринеску Г.М., Миллер М.Б. и др. Препринт ОИЯИ P15-10613, Дубна, 1977; Ядерная физика, 1978, т.27, с.894.
- 86. Батист Л.Х., Берлович Э.Е., Гаврилов В.В. и др. Препринт ЛИЯФ №363, Л.,1977.
- 87. Кузнецов В.И., Скобелев Н.К., Флеров Г.Н. Ядерная физика, 1967, т.5, с.271.
- 88. Habs D., Kleve-Nebenius H., Metag V. et al. Z. Phys., 1978, v.A285, p.53.
- 89. **Гангрский Ю.П., Миллер М.Б., Харисов И.Ф. и др.** Препринт ОИЯИ Р7-10797, Дубна, 1977; Ядерная физика, 1980, т,31, с.306.
- 90. Hall H.L., Gregorich K.E., Henderson R.A. et al. Phys.Rev., 1989, v.C39, p.1866.
- 91. Hall H.L., Gregorich K.E., Henderson R.A. et al. Phys. Rev., 1990, v.C41, p.618.

- 92. Lazarev Yu.A., Oganessian Yu.Ts., Shirokovsky I.V. et al. Europhys. Lett., 1987, v.4, p.893.
- Lazarev Yu.A., Oganessian Yu.Ts., Shirokovsky I.V. et al. Proc. Int. Conf. on Fifty Years Res. in Nucl. Fission (Berlin, April 3–7, 1989). Contr. Papers. West Berlin, 1989, p.6.
- 94. Поликанов С.М. Изомерия формы фтомных ядер. М.: Атомиздат, 1977.
- 95. Klapdor-Kleingrothause H.V. Межд. Школа-семинар по физике тяжелых ионов. ОИЯИ Д7-90-12, Дубна, 1990, с.440.
- 96. Axel P. Phys. Rev., 1962, v.126, p.671.
- 97. Агеев В.А., Головня В.Я., Громова Е.А. и др. Ядерная физика, 1987, т.46, с.700.
- 98. Strutinsky V.M. Nucl. Phys., 1967, v.A95, p.420.
- Moller P., Nix J.R. Proc. Third IAEA Symp. On Physics and Chemistry of Fission. Rochester, N.Y. 1973 IAEA, Vienna, 1974, v.1, p.103.
- 100. Иванова С.П., Комов А.Л., Малов Л.А., Соловьев В.Г. ЭЧАЯ, 1976, т.7, с.450.
- 101. Wapstra A.H., Bos K.A. At. Data and Nucl. Data Tables, 1976, v.17, No.5–6, p.274.
- 102. Krats K.-L., Rudolh W., Ohm H. et al. Nucl. Phys., 1979, v.A317, p.335.
- 103. Kratz K.-L., Rudolh W., Ohm H. et al. Phys. Lett., 1976, v.65B, p.231.
- 104. Oganessian Yu.Ts., Lazarev Yu.A. Heavy Ions and Nuclear Fission (Treatise on Heavy Ion Science) Ed. Bromley D.A., N.Y.: Plenum Press, 1985, v.4, p.3.
- 105. Лазарев Ю.А., Оганесян Ю.Ц., Третьякова С.П. и др. Межд. школа-семинар по физике тяжелых ионов. ОИЯИ Д7-90-142, Дубна, 1990, с.208.
- 106. Мезилев К.А., Новиков Ю.Н., Попов А.В. и др. Межд. школа-семинар по физике тяжелых ионов. ОИЯИ Д7-90-142, Дубна, 1990, с.199.
- 107. Изосимов И.Н. Изв. РАН, сер. физ., 1993, т.57, с.29.
- 108. Moller P., Nix J.R. At. Data and Nucl. Data Tables, 1981, v.26, p.165.
- 109. Klapdor H.V. Fortschr. Physik, 1985, v.33, p.1.
- 110. Изосимов И.Н. Изв.АН СССР, сер. физ., 1992, т.56, с.39.
- 111. Thielemann F.-K., Metzinger J., Klapdor H.V. Z.Phys., 1983, v.A309, p.301.
- 112. Pashkevich V.V. Proc. Int. School-Seminar on Heavy Ion Physics (Alushta, USSR, April 14–21, 1983). JINR, D7-83-644, Dubna, 1983, p.405.
- 113. Егоров С.А., Рубченя В.А., Хлебников С.В. Ядерная физика, 1987, т.46, с.60.
- 114. Weber J., Britt H.C., Gavron A. et al. Phys. Rev., 1976, v.C13, p.2413.
- Thelemann F.-K., Wiescher M. Primordial Nucleosynthesis (Ed. Thompson W., Carney B.) Singapure: World Scientific, 1990, p.92.
- Morrisey D. Unstable Nuclei in Astrophysics. (Eds. Kubono S., Kajino T.) Singapore: World Scientific, 1991, p.12.
- 117. Hashimoto M., Nomoto K., Shigeyama T. Astron. Astrophys., 1989, v.210, p.L5.
- 118. Cameron A.G.W. Cosmic Abundences of Matter. Ed. Waddington, AIP Conf. Proc. 1989, v.183, p.349.
- 119. **Крамаровский Я.М., Чечев В.П.** Синтез элементов во Вселенной.М.: Наука, 1987.
- 120. Burbidge E.M., Burbidge G.R., Fower W.A., Hoyle F. Rev. Mod. Phys., 1957, v.29, p.547.
- 121. Thielemann F.-K., Kratz K.-L. Preprint IKMz 91-4, Universitat Mainz, 1991.
- 122. Wene C.O. Astron. and Astrophys., 1975, v.44, p.233.
- 123. Schramm D.N., Wasserbyrg G.S. Astrophys.J., 1970, v.162, p.57.
- 124. Klapdor H.V., Wene C.O. Astrophys. J. Lett., 1979, v.230L, p.113.
- 125. **Изосимов И.Н., Наумов Ю.В.** Тез. 30-го Сов. по ядерной спектроскопии и структуре атомного ядра. Л.: Наука, 1980, с.265.

- 126. Wene C.O., Johansson S.A.E. CERN Report 76-13, 1976, p.584.
- 127. Schramm D.N. Ann. Rev. Astron. and Astrophys., 1974, v.12, p.383.
- Fowler W.A. Colorado Associated Univ. Press, 1972, p.66; Proc. R.A. Welch Foundation Conf. on Chem. Rev. XXI Cosmochemistry. Houston, 1978, p.61.
- 129. **Наумов Ю.В.** Изв. АН СССР, сер. физ., 1975, т.39, с.1645.
- 130. Изосимов И.Н., Крафт О.Е., Паржицкий С.С., Сизов И.В. Сообщение ОИЯИ, P15-87-256, Дубна, 1987.
- Izosimov I.N. Proc. Eighth Int. Symp. on Capture Gamma–Ray Spectroscopy. Ed. Kern J. Switzerland, 1983, p.593.
- 132. Изосимов И.Н., Крафт О.Е., Наумов Ю.В., Сигалов В.М. Изв. АН СССР, сер. физ., 1986, т.50, с.1952.
- 133. Крафт О.Е., Наумов Ю.В., Паржицкий С.С., Сизов И.В. Изв. АН СССР, сер. физ., 1987, т.40, с.1182.
- 134. Mitchell G.E., Dittrich T.R., Bilpuch E.G. Z.Phys., 1979, v.A289, p.211.
- Izosimov I.N. In: Proc. European Phys. Soc. XV Nucl. Phys. Division Conf. St. Petersburg, Russia, 1995, p.635.
- 136. **Бунаков В.Е.** Мат. VII Зимн. школы ЛИЯФ по физике ядра и элементарных частиц. Л., 1972, с.46.
- 137. Кендалл М., Стьюарт А. Теория распределений. М.: Наука, 1966.
- 138. Chou B. H., Mitchell G.E., Bilpuch E.G., Westerfeldt C.R. Z.Phys., 1981, v.A300, p.157.
- 139. Ramakrishnan P., Chon B.H., Mitchell G.E. et al. Z.Phys., 1983, v.A311, p.160.
- 140. Бечварж Ф., Гонзатко Я., Кралик М. и др. Сообщение ОИЯИ РЗ-12516, Дубна, 1979.