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A few topics of the transport theory of quark-gluon plasma are reviewed. A derivation of
the transport equations form the underlaying dynamical theory, is discussed within the φ4 model.
Peculiarities of the kinetic equations of quarks and gluons are considered, and the plasma (linear)
response to the color ˇeld is studied. The chromoelectric tensor permeability is found and the plasma
oscillations are discussed. Finally, the ˇlamentation instability in the strongly anisotropic parton
system from ultrarelativistic heavy-ion collisions is discussed in detail.

� ¸¸³µÉ·¥´Ò ´¥±µÉµ·Ò¥ ¨§¡· ´´Ò¥ ¢µ¶·µ¸Ò É· ´¸¶µ·É´µ° É¥µ·¨¨ ±¢ ·±-£²Õµ´´µ° ¶² §³Ò.
‚Ò¢µ¤ Ëµ·³Ò É· ´¸¶µ·É´ÒÌ Ê· ¢´¥´¨°, ²¥¦ Ð¨Ì ¢ µ¸´µ¢¥ ¤¨´ ³¨Î¥¸±µ° É¥µ·¨¨, µ¡¸Ê¦¤ ¥É¸Ö
¢ · ³± Ì ³µ¤¥²¨ φ4. � ¸¸³µÉ·¥´Ò µ¸µ¡¥´´µ¸É¨ ±¨´¥É¨Î¥¸±¨Ì Ê· ¢´¥´¨° ±¢ ·±µ¢ ¨ £²Õµ´µ¢
¨ ¨§ÊÎ¥´ ¶² §³¥´´Ò° (²¨´¥°´Ò°) µÉ±²¨± Í¢¥É´ÒÌ ¶µ²¥°. � °¤¥´ Ì·µ³µÔ²¥±É·¨Î¥¸±¨° É¥´§µ·
¶·µ´¨Í ¥³µ¸É¨ ¨ µ¡¸Ê¦¤ ÕÉ¸Ö ¶² §³¥´´Ò¥ µ¸Í¨²²ÖÍ¨¨. ‚ § ±²ÕÎ¥´¨¥ ¤¥É ²Ó´µ µ¡¸Ê¦¤ ÕÉ¸Ö
´¥¸É ¡¨²Ó´µ¸É¨, ¸¢Ö§ ´´Ò¥ ¸ ´ £·¥¢µ³ ¸¨²Ó´µ  ´¨§µÉ·µ¶´µ° ¸¨¸É¥³Ò, µ¡· §ÊÕÐ¥°¸Ö ¶·¨ ¸µÊ¤ -
·¥´¨ÖÌ ÉÖ¦¥²ÒÌ ¨µ´µ¢.

1. INTRODUCTION

The quark-gluon plasma (QGP) is a macroscopic system of deconˇned quarks
and gluons. The very existence of QGP at a sufˇciently large temperature and/or
baryon density is basically an unavoidable consequence of the quantum chro-
modynamics (QCD), which is a dynamical theory of strong interactions (see,
e.g., [1]). The plasma has been present in the early Universe and presumably
can be found in the compact stellar objects. Of particular interest however is the
generation of QGP in relativistic heavy-ion collisions, which has been actively
studied theoretically and experimentally [2] for over ten years. The lifetime of the
plasma produced, if indeed produced, in these collisions is not much longer than
the characteristic time scale of parton processes∗. Therefore, QGP can achieve,

∗The word parton is used as a common name of quarks and gluons.
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in the best case, only a quasi-equilibrium state and studies of the nonequilibrium
phenomena are crucial to discriminate the characteristic features of QGP.

The transport or kinetic theory provides a natural framework to study systems
out of thermodynamical equilibrium. Although the theory was initiated more than
a century ago Å Boltzmann derived his famous equation in 1872 Å the theory
is still under vital development. Application of Boltzmann's ideas to the systems,
which are relativistic and of quantum nature, is faced with difˇculties which have
been overcome only partially till now. For a review see the monography [3]. In
the case of the quark-gluon plasma speciˇc difˇculties appear due to the non-
Abelian dynamics system. Nevertheless, the transport theory approach to QGP is
in fast progress, and some interesting results have been already found.

The aim of this article is to review a few topics of the QGP transport
theory. The ˇrst one is how to derive the transport equations of quarks and
gluons. Since QCD is the underlying dynamical theory, these equations should
be deduced from QCD. However, the kinetic theory of quarks and gluons has been
successfully derived from QCD only in the mean-ˇeld or collisionless limit [4,5].
The derivation of the collision terms is still an open question. We discuss here
the issue within the dynamical model which is much simpler than QCD. Namely,
we consider the self interacting scalar ˇelds with the quartic interaction term.
Then, one can elucidate the essence of the derivation problem.

In the third chapter we present the transport equations of quarks and gluons
obtained in the mean-ˇeld limit. The equations are supplemented by the collision
terms which are justiˇed on the phenomenological ground. We briey discuss
the peculiarities of the transport theory of quarks and gluons and then consider
the locally colorless plasma∗. The dynamical content of QCD enters here only
through the cross sections of parton-parton interactions.

The characteristic features of QGP appear when the plasma is not locally
colorless and consequently it interacts with the chromodynamic mean ˇeld. The
plasma response to such a ˇeld is discussed in the fourth chapter, where the color
conductivity and chromoelectric permeability tensors are found. We also analyse
there the oscillations around the global thermodynamical equilibrium.

The parton momentum distribution is expected to be strongly anisotropic at
the early stage of ultrarelativistic heavy-ion collisions. Then, the parton system
can be unstable with respect to the speciˇc plasma modes. In the ˇfth chapter we
discuss in detail the mode which splits the parton system into the color current
ˇlaments parallel to the beam direction. We show why the uctuation which

∗We call the plasma locally colorless if the color four-current vanishes at each space-time point.
It differs from the terminology used in the electron-ion plasma physics, where the plasma is called
locally neutral if the electric charge (zero component of electromagnetic four-current) is everywhere
zero.
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initiates the ˇlamentation can be very large and explain the physical mechanism
responsible for the uctuation growth. Then, the exponentially growing mode
is found as a solution of the respective dispersion equation. The characteristic
time of the instability development is estimated and ˇnally, the possibility of
observing the color ˇlamentation in nucleus-nucleus collisions at RHIC and LHC
is considered.

Presenting the QGP transport theory we try to avoid model dependent con-
cepts but a very crucial assumption is adopted that the plasma is perturbative,
i.e., the partons weakly interact with each other. As known, QGP becomes per-
turbative only at the temperatures much greater than the QCD scale parameter
Λ ∼= 200 MeV, see, e.g., [6]. However, one believes that many results obtained in
the framework of the perturbative QCD can be extrapolated to the nonperturbative
regime.

In the whole article we use the units where c = k = h̄ = 1. The metric
tensor is diagonal with g00 = −g11 = −g22 = −g33 = 1.

2. DERIVATION OF THE TRANSPORT EQUATION IN φ4 MODEL

The transport equations can be usually derived by means of simple heuristic
arguments similar to those which were used by Boltzmann when he formulated
the kinetic theory of gases. However, such arguments are insufˇcient when one
studies a system of complicated dynamics as the quark-gluon plasma governed by
QCD. Then, one has to refer to a formal scheme which allows one to derive the
transport equation directly from the underlying quantum ˇeld theory. The formal
scheme is also needed to specify the limits of the kinetic approach. Indeed, the
derivation shows the assumptions and approximations which lead to the transport
theory, and hence the domain of its applicability can be established.

Until now the transport equations of the QCD plasma have been successfully
derived in the mean-ˇeld limit [4, 5] and the structure of these equations is
well understood [4, 5, 7Ä10]. In particular, it has been shown that in the quasi-
equilibrium these equations provide [5, 8] the so-called hard thermal loops [11].
The collisionless transport equations can be applied to the variety of problems.
However, one needs the collision terms to discuss dissipative phenomena. In spite
of some efforts [12Ä15], the general form of these terms in the transport equations
of the quark-gluon plasma remains unknown. The QCD transport equations
should also take into account the particle creation and annihilation which are
entirely absent in the nonrelativistic atomic systems described by the Boltzmann
equation. The particle production can occur due to the particle collisions or the
presence of the strong ˇelds as in the Schwinger mechanism [16]. The latter
phenomenon has been actively studied in the context of the quark-gluon transport
theory, see, e.g., [17Ä22]. However, one has had to refer to the simplifying
assumption, as the (quasi-)homogeneity of the ˇeld, to get a tractable equations.
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The so-called SchwingerÄKeldysh [23, 24] formulation of the quantum ˇeld
theory provides a very promising basis to derive the transport equation beyond
the mean-ˇeld limit. Kadanoff and Baym [25] developed the technique for non-
relativistic quantum systems which have been further generalized to relativistic
ones [14,26Ä35]. We mention here only the papers which provide a more or less
systematic analysis of the collision terms.

The derivation of the complete QCD transport equations appears to be a very
difˇcult task. In particular, the treatment of the massless ˇelds such as gluons
is troublesome. Except the well-known infrared divergences, which plague the
perturbative expansion, there is a speciˇc problem of nonequilibrium massless
ˇelds. The inhomogeneities in the system cause the off-mass-shell propagation of
particles and then the perturbative analysis of the collision terms appears hardly
tractable. More speciˇcally, it appears very difˇcult, if possible at all, to express
the ˇeld self-energy as the transition matrix element squared and consequently we
loose the probabilistic character of the kinetic theory. The problem is absent for
the massive ˇelds when the system is assumed to be homogeneous at the inverse
mass or Compton scale. This is a natural assumption within the transport theory
which anyway deals with the quantities averaged over a certain scale which can be
identiˇed with the Compton one. We have developed [36] a systematic approach
to the transport of massless ˇelds, which allows one to treat these ˇelds in a very
similar manner as the massive ones. The basic idea is rather obvious. The ˇelds
which are massless in vacuum gain an effective mass in a medium due to the
interaction. Therefore, the minimal scale at which the transport theory works is
not an inverse bare mass, which is inˇnite for massless ˇelds, but the inverse
effective one. The starting point of the perturbative computation should be no
longer free ˇelds but the interacting ones. In physical terms, we have postulated
existence of the massive quasi-particles and look for their transport equation.
We have successfully applied the method to the massless scalar ˇelds [36], but
the generalization to QCD is far not straightforward due to the much reacher
quasi-particle spectrum.

To demonstrate the characteristic features of the transport theory derivation
we discuss in this chapter the simplest nontrivial model, i.e., the real massive
ˇelds with the Lagrangian density of the form

L(x) =
1

2
∂µφ(x)∂µφ(x) − 1

2
m2φ2(x) − g

4!
φ4(x) . (2.1)

The main steps of the derivation are the following. One deˇnes the contour Green
function with the time arguments on the contour in a complex time plane. This
function, which is a key element of the SchwingerÄKeldysh approach, satisˇes
the DysonÄSchwinger equation. Assuming the macroscopic quasi-homogeneity of
the system, one performs the gradient expansion and the Wigner transformation.
Then, the pair of DysonÄSchwinger equations is converted into the transport and
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mass-shell equations both satisˇed by the Wigner function. One further computes
perturbatively the self-energy which provides the Vlasov and the collisional terms
of the transport equation. Finally, one deˇnes the distribution function of stan-
dard probabilistic interpretation and ˇnds the transport equation satisˇed by this
function.

2.1. Green Functions. The contour Green function is deˇned as

i∆(x, y)
def
= 〈T̃ φ(x)φ(y)〉 ,

where 〈....〉 denotes the ensemble average at time t0 (usually identiˇed with −∞);
T̃ is the time ordering operation along the directed contour shown in Fig. 1. The
parameter tmax is shifted to +∞ in the calculations. The time arguments are
complex with an inˇnitesimal positive or negative imaginary part, which locates
them on the upper or on the lower branch of the contour. The ordering operation
is deˇned as

T̃ φ(x)φ(y)
def
= Θ(x0, y0)φ(x)φ(y) + Θ(y0, x0)φ(y)φ(x) ,

where Θ(x0, y0) equals 1 if x0 succeeds y0 on the contour and equals 0 when x0

precedes y0.
If the ˇeld is expected to develop a ˇnite expectation value, as it happens

when the symmetry is spontaneously broken, the contribution 〈φ(x)〉〈φ(y)〉 is
subtracted from the right-hand side of the equation deˇning the Green function,
see, e.g., [30, 31]. Then, one concentrates on the ˇeld uctuations around the
expectation values. Since 〈φ(x)〉 is expected to vanish in the models deˇned
by the Lagrangians (2.1), we neglect this contribution in the Green function
deˇnition.

We also use four other Green functions with real time arguments:

i∆>(x, y)
def
= 〈φ(x)φ(y)〉 ,

i∆<(x, y)
def
= 〈φ(y)φ(x)〉 ,

i∆c(x, y)
def
= 〈T cφ(x)φ(y)〉 ,

i∆a(x, y)
def
= 〈T aφ(x)φ(y)〉 ,

where T c(T a) prescribes (anti-)chronological time ordering:

T cφ(x)φ(y)
def
= Θ(x0 − y0)φ(x)φ(y) + Θ(y0 − x0)φ(y)φc(x) ,

T aφ(x)φ(y)
def
= Θ(y0 − x0)φ(x)φ(y) + Θ(x0 − y0)φ(y)φ(x) .
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Fig. 1. The contour along the time axis for an evaluation of the operator expectation values

These functions are related to the contour Green functions in the following man-
ner:

∆c(x, y) ≡ ∆(x, y) for x0, y0 from the upper branch,

∆a(x, y) ≡ ∆(x, y) for x0, y0 from the lower branch,

∆>(x, y) ≡ ∆(x, y) for x0 from the upper branch and

y0 from the lower one,

∆<(x, y) ≡ ∆(x, y) for x0 from the lower branch and

y0 from the upper one.

It appears convenient to introduce the retarded (+) and advanced (−) Green
functions

∆±(x, y)
def
= ±

(
∆>(x, y)−∆<(x, y)

)
Θ(±x0 ∓ y0) . (2.2)

One easily ˇnds several identities which directly follow from the deˇnitions and
relate the Green functions to each other.

∆c(x, y) describes the propagation of disturbance in which a single particle is
added to the many-particle system in space-time point y and then is removed from
it in a space-time point x. An antiparticle disturbance is propagated backward
in time. The meaning of ∆a(x, y) is analogous but particles are propagated
backward in time; and antiparticles, forward. In the zero density limit ∆c(x, y)
coincides with the Feynman propagator.

The physical meaning of functions ∆>(x, y) and ∆<(x, y) is more transpar-
ent when one considers the Wigner transform deˇned as

∆
<
>(X, p)

def
=

∫
d4ueipu∆

<
>(X +

1

2
u,X − 1

2
u) . (2.3)

Then, the free-ˇeld energy-momentum tensor averaged over ensemble can be
expressed as

tµν0 (X)
def
= −1

4
〈φ(x)

↔
∂
µ↔
∂
ν

φ(x)〉 =

∫
d4p

(2π)4
pµpνi∆<(X, p) .
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One recognizes the standard form of the energy-momentum tensor in the kinetic
theory with the function i∆<(X, p) giving the density of particles with four-
momentum p in a space-time point X . Therefore, i∆<(X, p) can be treated
as a quantum analog of the classical distribution function. Indeed, the function
i∆<(X, p) is Hermitian. However, it is not positively deˇnite and the probabilistic
interpretation is only approximately valid. One should also observe that, in
contrast to the classical distribution functions, i∆<(X, p) can be nonzero for the
off-mass-shell four-momenta.

2.2. Equations of Motion. The DysonÄSchwinger equations satisˇed by the
contour Green function are[

∂2
x +m2

]
∆(x, y) = −δ(4)(x, y) +

∫
C

d4x′Π(x, x′)∆(x′, y) , (2.4)

[
∂2
y +m2

]
∆(x, y) = −δ(4)(x, y) +

∫
C

d4x′∆(x, x′)Π(x′, y) , (2.5)

where Π(x, y) is the self-energy; the integration over x′0 is performed on the
contour and the function δ(4)(x, y) is deˇned on the contour as

δ(4)(x, y) =


δ(4)(x − y) for x0 , y0 from the upper branch,

0 for x0 , y0 from the different branches,
−δ(4)(x− y) for x0 , y0 from the lower branch.

Let us split the self-energy into three parts:

Π(x, y) = Πδ(x)δ(4)(x, y) + Π>(x, y)Θ(x0, y0) + Π<(x, y)Θ(y0, x0) .

As we shall see later, Πδ provides a dominant contribution to the mean-ˇeld while
Π
>
< determines the collision terms of the transport equations.

With the help of the retarded and advanced Green functions (2.2) and the
retarded and advanced self-energies deˇned in an analogous way, the equations
(2.4) and (2.5) can be rewritten as[

∂2
x +m2 − Πδ(x)

]
∆
>
<(x, y)

=

∫
d4x′

[
Π
>
<(x, x′)∆−(x′, y) + Π+(x, x′)∆

>
<(x′, y)

]
, (2.6)

[
∂2
y +m2 − Πδ(y)

]
∆
>
<(x, y)

=

∫
d4x′

[
∆
>
<(x, x′)Π−(x′, y) + ∆+(x, x′)Π

>
<(x′, y)

]
, (2.7)

where all time integrations run from −∞ to +∞.
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2.3. Towards the Transport Equation. The transport equations are de-
rived under the assumption that the Green functions and the self-energies depend
weakly on the sum of their arguments and that they are signiˇcantly different
from zero only when the difference of their arguments is close to zero. For
homogeneous systems, the dependence on X = (x+ y)/2 drops out entirely due
to the translational invariance and ∆(x, y) depends only on u = x − y. For
weakly inhomogeneous, or quasi-homogeneous systems, the Green functions and
self-energies are assumed to vary slowly with X . We additionally assume that the
Green functions and self-energies are strongly peaked near u = 0, which means
that the correlation length is short.

We will now convert the equations (2.6), (2.7) into the transport and mass-
shell equations by implementing the above approximation and performing the
Wigner transformation (2.3) for all Green functions and self-energies. This is
done by means of the translation rules such as:∫

d4x′f(x, x′)g(x′, y) −→ f(X, p)g(X, p)

+
i

2

[
∂f(X, p)

∂pµ

∂g(X, p)

∂Xµ
− ∂f(X, p)

∂Xµ

∂g(X, p)

∂pµ

]
,

h(x)g(x, y) −→ h(X)g(X, p)− i

2

∂h(X)

∂Xµ

∂g(X, p)

∂pµ
,

∂µxf(x, y) −→ (−ipµ +
1

2
∂µ)f(X, p) .

Here ∂µ ≡ ∂
∂Xµ

and the functions f(x, y) and g(x, y) satisfy the assumptions

discussed above. The function h(x) is assumed to be weakly dependent on x.
The kinetic theory deals only with averaged system characteristics. Thus,

one usually assumes that the system is homogeneous on a scale of the Compton
wave length of the quasi-particles. In other words, the characteristic length of
inhomogeneities is assumed to be much larger than the inverse mass of quasi-
particles. Therefore, we impose the condition∣∣∣∆>

<(X, p)
∣∣∣� ∣∣∣ 1

m2
∂2∆

>
<(X, p)

∣∣∣ , (2.8)

which leads to the quasi-particle approximation. The requirement (2.8) renders
the off-shell contributions to the Green functions ∆

>
< negligible. Thus, we deal

with the quasi-particles having on-mass-shell momenta.
Applying the translation rules and the quasi-particle approximation to Eqs. (2.6),

(2.7), we obtain[
pµ∂µ − 1

2
∂µΠδ(X)∂µp

]
∆
>
<(X, p)



962 MR�OWCZY�NSKI S.

=
i

2

(
Π>(X, p)∆<(X, p)−Π<(X, p)∆>(X, p)

)
− 1

4

{
Π
>
<(X, p),∆+(X, p) + ∆−(X, p)

}
− 1

4

{
Π+(X, p) + Π−(X, p), ∆

>
<(X, p)

}
, (2.9)

[
− p2 + m2 −Πδ(X)

]
∆
>
<(X, p)

=
1

2

(
Π
>
<(X, p)

(
∆+(X, p) + ∆−(X, p)

)
+

(
Π+(X, p) + Π−(X, p)

)
∆
>
<(X, p)

)
+

i

4

{
Π>(X, p), ∆<(X, p)

}
− i

4

{
Π<(X, p), ∆>(X, p)

}
,(2.10)

where we have introduced the Poisson-like bracket deˇned as{
C(X, p), D(X, p)

}
≡ ∂C(X, p)

∂pµ

∂D(X, p)

∂Xµ
− ∂C(X, p)

∂Xµ

∂D(X, p)

∂pµ
.

One recognizes Eq. (2.9) as a transport equation, while Eq. (2.10), as a so-
called mass-shell equation. We write down these equations in a more compact
way:{

p2 −m2 + Πδ(X) + ReΠ+(X, p), ∆
>
<(X, p)

}
= i

(
Π>(X, p)∆<(X, p)−Π<(X, p)∆>(X, p)

)
−

{
Π
>
<(X, p), Re∆+(X, p)

}
, (2.11)

[
p2 −m2 + Πδ(X) + ReΠ+(X, p)

]
∆
>
<(X, p) = −Π

>
<(X, p)Re∆+(X, p)

− i

4

{
Π>(X, p), ∆<(X, p)

}
+
i

4

{
Π<(X, p), ∆>(X, p)

}
.(2.12)

The gradient terms in the right-hand sides of Eqs. (2.11), (2.12) are usually
neglected [30,31].

We introduce the spectral function A deˇned as

A(x, y)
def
= 〈[φ(x), φ(y)]〉 = i∆>(x, y)− i∆<(x, y) ,

where [φ(x), φ(y)] denotes the ˇeld commutator. Due to the equal time commu-
tation relations

[φ(t,x), φ(t,y)] = 0 , [φ̇(t,x), φ(t,y)] = −iδ(3)(x− y) ,
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with the dot denoting the time derivative, the Wigner transformed spectral function
satisˇes the two identities∫

dp0

2π
A(X, p) = 0 ,

∫
dp0

2π
p0A(X, p) = 1 .

From the transport and mass-shell equations (2.11), (2.12) one immediately
ˇnds the equations satisˇed by A(X, p) which are{
p2−m2 +Πδ(X)+ReΠ+(X, p), A(X, p)

}
= 2
{

ImΠ+(X, p), Re∆+(X, p)
}
,

(2.13)[
p2 −m2 + Πδ(X) + ReΠ+(X, p)

]
A(X, p) = 2 ImΠ+(X, p) Re∆+(X, p) .

(2.14)
One solves the algebraic equation (2.14) as

A(X, p) =
2ImΠ+(X, p)(

p2 −m2 + Πδ(X) + ReΠ+(X, p)
)2

+
(
ImΠ+(X, p)

)2 . (2.15)

Then, it is shown that the function of the form (2.15) solves Eq. (2.13) as well.
The spectral function of the free ˇelds can be found as

A0(X, p) = 2πδ(p2 −m2)
(
Θ(p0)−Θ(−p0)

)
.

Since ReΠ+ determines the quasi-particle effective mass and ImΠ+ its width,
the spectral function characterises the quasi-particle properties.

2.4. Perturbative Expansion. As discussed in, e.g., [28, 29, 37] the contour
Green functions admit a perturbative expansion very similar to that known from
the vacuum ˇeld theory with essentially the same Feynman rules. However, the
time integrations do not run from −∞ to +∞, but along the contour shown in
Fig. 1. The right turning point of the contour (tmax) must be above the largest
time argument of the evaluated Green function. In practice, t0 is shifted to −∞
and tmax to +∞. The second difference is the appearance of tadpoles, i.e., loops
formed by single lines, which give zero contribution in the vacuum case. A
tadpole corresponds to a Green function with two equal space-time arguments.
Since the Green function ∆(x, y) is not well deˇned for x = y we ascribe the
function −i∆<(x, x) to each tadpole. The rest of Feynman rules can be taken
from the textbook of Bjorken and Drell [38].

The lowest-order contribution to the self-energy, which is associated with the
graph from Fig. 2, equals

Π(x, y) = − ig
2
δ(4)(x, y)∆<

0 (x, x) ,
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Fig. 2. The lowest-order diagram of the self-energy

Fig. 3. The second-order diagrams of the self-energy

giving

Πδ(x) = − ig
2

∆<
0 (x, x) , (2.16)

and
Π>(x, y) = Π<(x, y) = 0 .

The one-particle irreducible g2 contributions to the self-energy are shown in
Fig. 3. The contribution corresponding to the diagram 3a can be easily computed.
However, it is pure real and the only effect of this contributions is a higher order
modiˇcation of the mean-ˇeld term. Thus, we do not consider these diagrams but
instead we analyse the contribution 3b which provides a qualitatively new effect.
It gives the contour self-energy equal to

Πc(x, y) =
g2

6
∆0(x, y)∆0(y, x)∆0(x, y) ,

and consequently

Π
>
<(x, y) =

g2

6
∆
>
<

0 (x, y)∆
<
>

0 (y, x)∆
>
<

0 (x, y) . (2.17)
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2.5. Distribution Function and Transport Equation. The distribution func-
tion f(X, p) is deˇned as

Θ(p0)i∆<(X, p) = Θ(p0) A(X, p) f(X, p) ,

where A(X, p) is the spectral function (2.15). Then, one ˇnds [36] that

i∆>(X, p) = Θ(p0) A(X, p)
(
f(X, p) + 1

)
−Θ(−p0) A(X, p) f(X,−p),(2.18)

i∆<(X, p) = Θ(p0) A(X, p) f(X, p)−Θ(−p0) A(X, p)
(
f(X,−p) + 1

)
.(2.19)

There is a very important property of ∆
>
< expressed in the from (2.18), (2.19).

Namely, if the Green functions ∆
>
< satisfy the transport equation (2.11) and the

spectral function solves the equation (2.14), the mass-shell equation of ∆
>
<, i.e.,

Eq. (2.12), is satisˇed automatically in the 0-th order of the gradient expansion.
Let us note that the quasi-particle dispersion relation is found as a solution of the
equation

p2 −m2 + Πδ(X) + ReΠ+(X, p) = 0 . (2.20)

The distribution function f satisˇes the transport equation which can be
obtained from Eq. (2.11) for ∆> or ∆<. After using Eq. (2.13) one ˇnds

A(X, p)
{
p2 −m2 + ReΠ+(X, p), f(X, p)

}
= iA(X, p)

(
Π>(X, p) f(X, p)−Π<(X, p)

(
f(X, p) + 1)

)
+ if(X, p)

{
Π>(X, p), Re∆+(X, p)

}
− i

(
f(X, p) + 1

){
Π<(X, p), Re∆+(X, p)

}
, (2.21)

where p0 > 0. We have also used here the following property of the Poisson-like
brackets: {

A, B C
}

=
{
A, B

}
C +

{
A, C

}
B .

The left-hand side of Eq. (2.21) is a straightforward generalization of the drift
term of the standard relativistic transport equation. Computing the Poisson-like
bracket and imposing the mass-shell constraint one ˇnds the familiar structure

1

2
Θ(p0)

{
p2 −m2 + ReΠ+(X, p), f(X, p)

}
= Ep

( ∂
∂t

+ v∇
)
f(X, p)−∇ReΠ+(X, p) · ∇pf(X, p) ,

where the velocity v equals ∂Ep/∂p with the (positive) energy Ep being the
solution of the dispersion equation (2.20).
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Let us now analyse the right-hand side of Eq. (2.21). The collision terms
are provided by the self-energies (2.17). Since the quasi-particles of interest
are narrow (m2 + ReΠ+ � ImΠ+), we take into account only those terms
contributing to Π

>
< which are nonzero for the on-mass-shell momenta. The other

terms are negligibly small [36]. Then, the ˇrst term in r.h.s of the transport
equation (2.21) is very similar to the standard collision term [3] of the Nordheim
[39] (or UehlingÄUhlenbeck [40]) form. Indeed,

i
(

Π>(X, p) f(X, p) − Π<(X, p)
(
f(X, p) + 1)

)
=

g2

2

∫
d4kA+

k

(2π)4

d4qA+
q

(2π)4

d4rA+
r

(2π)4
(2π)4δ(4)(p+ q − k − r)

×
(

(fp + 1)(f q + 1) fk f r − fp f q(fk + 1)(f r + 1)

)
,

where A+
k ≡ Θ(k0) A(X, k) and fk ≡ f(X, k). The last two terms from r.h.s

of Eq. (2.21), which are neglected in the usual transport equation, are discussed
in [36].

3. TRANSPORT EQUATIONS OF QUARKS AND GLUONS

In this chapter we introduce the gauge dependent distribution functions
of quarks and gluons. Then, we discuss the transport equations satisˇed by
these functions. Finally, a very useful notion of the locally colorless plasma is
considered.

3.1. Distribution Functions. The (anti-)quark distribution function
Q(p, x)

(
Q̄(p, x)

)
is a Hermitian Nc × Nc matrix in color space (for a SU(Nc)

color group) with p denoting the quark four-momentum and x the space-time
coordinate [41Ä43]. The function transforms under local gauge transformations
as

Q(p, x)→ U(x)Q(p, x)U †(x) . (3.1)

The color indices are here and in most cases below suppressed.
The gluon distribution function [44] is a Hermitian (N2

c − 1) × (N2
c − 1)

matrix [7] which transforms as

G(p, x)→M(x)G(p, x)M †(x) , (3.2)

where
Mab(x) = Tr

[
τaU(x)τbU

†(x)],

with τa, a = 1, ..., N2
c −1 being the SU(Nc) group generators in the fundamental

representation. One sees that, in contrast to the distribution functions known from
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the physics of atomic gases, the distribution functions of quarks and gluons have
no simple probabilistic interpretation due to the gauge dependence. This is,
however, not surprising if one realizes that the question about the probability
to ˇnd, let us say, a red quark in a phase-space cell centered around (p, x) is
not physical since the color of a quark can be changed by means of a gauge
transformation.

It follows from the transformation laws (3.1), (3.2) that the traces of the
distribution functions are gauge independent, and consequently they can have
a familiar probabilistic interpretation. Indeed, the probability to ˇnd a quark of
arbitrary color in a cell (p, x) is of physical meaning since it is gauge independent.
The quantities, which are color (gauge) independent like the baryon current bµ or
the energy momentum tensor tµν , are entirely expressed through the traces of the
distribution functions

bµ(x) =
1

3

∫
d3p

(2π)3E
pµ
[
Tr
[
Q(p, x)

]
− Tr

[
Q̄(p, x)

]]
,

tµν(x) =

∫
d3p

(2π)3E
pµpν

[
Tr
[
Q(p, x)

]
+ Tr

[
Q̄(p, x)

]
+ Tr

[
G(p, x)

]]
,

with E being the quark or gluon energy. Both quarks and gluons are assumed to
be massless and their spin is treated as an internal degree of freedom. The spin
structure of the distribution functions and the respective transport equations have
been discussed in [9, 10].

The color current, which is a gauge dependent quantity, is expressed not only
through the traces of the distribution functions but also through the functions
themselves. In the Nc ×Nc matrix notation the current reads

jµ(x) = −1

2
g

∫
d3p

(2π)3E
pµ
[
Q(p, x)− Q̄(p, x) − 1

Nc
Tr
[
Q(p, x)− Q̄(p, x)

]
+ 2iτafabcGbc(p, x)

]
, (3.3)

where g is the QCD coupling constant and fabc are the structure constants of the
SU(Nc) group. In the adjoint representation the color current (3.3) is

jµa (x) = −g
∫

d3p

(2π)3E
pµ
[
Tr
[
τa
(
Q(p, x)− Q̄(p, x)

)]
+ifabcGbc(p, x)

]
,

where we have used the equality Tr(τaτb) = 1
2δab.

3.2. Transport Equations. The distribution functions of quarks and gluons
satisfy the following set of transport equations [4, 7, 41Ä44]:

pµDµQ(p, x) + gpµ
∂

∂pν

1

2
{Fµν(x), Q(p, x)} = C[Q, Q̄,G] ,
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pµDµQ̄(p, x)− gpµ ∂

∂pν

1

2
{Fµν(x), Q̄(p, x)} = C̄[Q, Q̄,G] ,

pµDµG(p, x) + gpµ
∂

∂pν

1

2
{Fµν(x), G(p, x)} = Cg[Q, Q̄,G] , (3.4)

where {..., ...} denotes the anicommutator; Dµ and Dµ are the covariant deriva-
tives which act as

Dµ = ∂µ − ig[Aµ(x), ...] , Dµ = ∂µ − ig[Aµ(x), ...] ,

where Aµ and Aµ are the mean-ˇeld four-potentials deˇned as

Aµ(x) = Aµa(x)τa , Aµab(x) = −ifabcAµc (x) .

Fµν and Fµν are the mean-ˇeld stress tensors with a color index structure anal-
ogous to that of the four-potentials. The mean-ˇeld is generated by the color
current (3.3) and the respective equation is

DµF
µν(x) = jν(x) . (3.5)

C, C̄ and Cg are the collision terms which vanish in the collisionless limit,
i.e., when the plasma evolution is dominated by the mean-ˇeld effects∗. As
already mentioned, the collision terms of the QGP kinetic equations have not
been systematically derived yet and their structure remains obscure. The situation
simpliˇes in the case of the colorless plasma discussed in the next section. We
note that the set of transport equations (3.4), (3.5) is covariant with respect to the
gauge transformations (3.1), (3.2).

3.3. Colorless Plasma. Evolving towards thermodynamical equilibrium the
system of quarks of gluons tends to neutralize color charges. It is expected [13]
that after a short period of time the plasma becomes locally colorless, the color
current and the mean-ˇeld Fµν vanish. Then, the distribution functions of quarks
and gluons are proportional to the unit matrices in the color space. Speciˇcally,

Qij(p, x) =
1

Nc
δij q(p, x) , i, j = 1, ..., Nc ,

Q̄ij(p, x) =
1

Nc
δij q̄(p, x) ,

Gab(p, x) =
1

N2
c − 1

δab g(p, x) , a, b = 1, ..., N2
c − 1 .

As is seen, the distribution functions of the colorless plasma are gauge invariant.

∗This occurs when the characteristic mean-ˇeld frequency is much greater than the parton
collision frequency.
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The transport equations of the colorless plasma are essentially simpliˇed.
Indeed, taking the trace of Eqs. (3.4) one ˇnds

pµ∂µq(x, p) = c[q, q̄, g] ,

pµ∂µq̄(x, p) = c̄[q, q̄, g] ,

pµ∂µg(x, p) = cg[q, q̄, g] , (3.6)

where c ≡ TrC, c̄ ≡ TrC̄ and cg ≡ TrCg. Because the trace of a commutator is
zero, the covariant derivatives reduce to the normal ones in (3.6).

In the case of a colorless plasma the color charges can be treated as internal
degrees of freedom of the quarks and gluons, and it is sufˇcient to operate with the
color averaged quantities which are gauge independent. Then, one can imitate the
dynamics of the colorless plasma with a nongauge ˇeld theory model such as φ4.
Then, the collision terms are of the Nordheim [39] (or UehlingÄUhlenbeck [40])
form as discussed in the previous chapter. Therefore, even not knowing the
collision terms C, C̄, and Cg , we expect that the respective terms of the colorless
plasma c, c̄, and cg , which represent the binary collisions, are

c[q, q̄, g] =

∫
d3p2

(2π)3E2

d3p3

(2π)3E3

d3p4

(2π)3E4[
1
2

[
q3q4(1− q1)(1− q2)− q1q2(1− q3)(1 − q4)

]
Wqq→qq(p3, p4|p1, p2)

+
[
q3q̄4(1− q1)(1− q̄2)− q1q̄2(1− q3)(1 − q̄4)

]
Wqq̄→qq̄(p3, p4|p1, p2)

+
[
q3g4(1− q1)(1 + g2)− q1g2(1 − q3)(1 + g4)

]
Wqg→qg(p3, p4|p1, p2)

+
[
g3g4(1− q1)(1− q̄2)−−q1q̄2(1 + g3)(1 + g4)

]
Wqq̄→gg(p3, p4|p1, p2)

]
(3.7)

with the analogous expressions for c̄[q̄, q, g] and cg[g, q, q̄, ]. We have used here
the abbreviations q1 ≡ q(x, p1), q2 ≡ q(x, p2), etc. Furthermore p1 ≡ p. The co-
efˇcient 1

2 in the ˇrst line of the r.h.s. of Eq. (3.7) is required to avoid the double
counting of identical particles. The quantities like Wqg→qg(p3, p4|p1, p2), which
correspond to the quark-gluon scattering, are equal to the square of the respective
matrix element multiplied by the energy-momentum conserving δ function. We
note that the collision terms have to satisfy the relations∫

d3p

(2π)3E

[
c[q, q̄, g]− c̄[q, q̄, g]

]
= 0 ,∫

d3p

(2π)3E
pµ
[
c[q, q̄, g] + c̄[q, q̄, g] + cg[q, q̄, g]

]
= 0 ,

in order to be consistent with the baryon number and energy-momentum conser-
vation.
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In the variety of applications one uses the collision terms in the relaxation
time approximation, i.e.,

c = νpµu
µ(x)

(
qeq(p, x)− q(p, x)

)
, (3.8)

c̄ = ν̄pµu
µ(x)

(
q̄eq(p, x)− q̄(p, x)

)
,

cg = νgpµu
µ(x)

(
geq(p, x)− g(p, x)

)
,

where ν, ν̄, and νg are the collision frequencies and uµ is the hydrodynamic
four-velocity which deˇnes the local rest frame of the quark-gluon system. The
equilibrium distribution functions are

qeq(p, x) =
2NfNc

exp
(
βµ(x)pµ − β(x)µ(x)

)
+1

,

q̄eq(p, x) =
2NfNc

exp
(
βµ(x)pµ + β(x)µ(x)

)
+1

,

geq(p, x) =
2(N2

c − 1)

exp
(
βµ(x)pµ

)
−1

,

where βµ(x) ≡ β(x)uµ(x), β(x) ≡ T−1(x); T (x) and µ(x) are the local tem-
perature and quark chemical potential, respectively; Nf is the number of quark
avours. Spin, avour and color are treated here as internal degrees of freedom.

4. PLASMA COLOR RESPONSE

In this chapter we discuss how the plasma, which is colorless, homogeneous
and stationary, responses to the color small uctuations.

4.1. Linear Response Analysis. The distribution functions are assumed to be
of the form

Qij(p, x) = n(p)δij + δQij(p, x) , (4.1)

Q̄ij(p, x) = n̄(p)δij + δQ̄ij(p, x) ,

Gab(p, x) = ng(p)δab + δGab(p, x) ,

where the functions describing the deviation from the colorless state are assumed
to be much smaller than the respective colorless functions. The same is assumed
for the momentum gradients of these functions.

Substituting (4.1) in (3.3) one gets

jµ(x) = − 1

2
g

∫
d3p

(2π)3E
pµ
[
δQ(p, x)− δQ̄(p, x) (4.2)

− 1

Nc
Tr
[
δQ(p, x)− δQ̄(p, x)

]
+2iτafabcδGbc(p, x)

]
.
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As is seen, the current occurs due to the deviation of the system from the colorless
state. When the system becomes neutral, there is no current and one expects that
there is no mean ˇeld. Therefore, we linearize Eq. (3.5) with respect to the four
potential to the form

∂µF
µν(x) = jν(x)

with Fµν = ∂µAν − ∂νAµ. It should be stressed here that the linearization
procedure does not cancel all non-Abelian effects. The gluon-gluon coupling,
which is of essentially non-Abelian character is included because the gluons con-
tribute to the color current (4.2). Let us also observe that in the linearized theory
the color current is conserved (due to antisymmetry of Fµν ) i.e., ∂µjµ = 0.
Finally we note that, as shown in [5], the semiclassical QCD transport the-
ory effectively incorporates the resummation over the so-called hard thermal
loops [11].

Now we substitute the distribution functions (4.1) to the transport equations
(3.4) with the collision terms (3.8). Linearizing the equations with respect to δQ,
δQ̄, and δG, one gets(

pµ∂µ + νpµu
µ
)
δQ(p, x) (4.3)

= −gpµFµν(x)
∂n(p)

∂pν
+ νpµu

µ
(
neq(p)− n(p)

)
,(

pµ∂µ + ν̄pµu
µ
)
δQ̄(p, x)

= gpµFµν(x)
∂n̄(p)

∂pν
+ ν̄pµu

µ
(
n̄eq(p)− n̄(p)

)
,(

pµ∂µ + νgpµu
µ
)
δG(p, x)

= −gpµFµν(x)
∂ng(p)

∂pν
+ νgpµu

µ
(
neqg (p)− ng(p)

)
.

Performing the linearization one should remember that Aµ is of the order of δQ.
Treating the chromodynamic ˇeld as an external one, Eqs. (4.3) are easily solved

δQ(p, x) = −g
∫
d4x′∆p(x − x′) (4.4)

×
[
pµFµν(x′)

∂n(p)

∂pν
− νpµuµ

(
neq(p)− n(p)

)]
,

δQ̄(p, x) = g

∫
d4x′∆p(x− x′)

×
[
pµFµν(x′)

∂n̄(p)

∂pν
+ ν̄pµu

µ
(
n̄eq(p)− n̄(p)

)]
,
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δG(p, x) = −g
∫
d4x′∆p(x − x′)

×
[
pµFµν(x′)

∂ng(p)

∂pν
− νgpµuµ

(
neqg (p)− ng(p)

)]
,

where ∆p(x) is the Green function of the kinetic operator with the collision term
in the relaxation time approximation,

∆p(x) = E−1Θ(t) e−ν
′t δ(3)(x− vt) ,

with t being the zero component of x, xµ ≡ (t,x), v ≡ p/E and ν′ ≡ νpµuµ;
in the plasma rest frame ν′ = ν.

Substituting the solutions (4.4) in Eq.(4.2) and performing the Fourier trans-
formation with respect to x variable we get

jµ(k) = σµρλ(k)Fρλ(k) (4.5)

with the color conductivity tensor expressed as

σµρλ(k) = i
g2

2

∫
d3p

(2π)3E

[ pµpρ

pσ(kσ + iνuσ)

∂n(p)

∂pλ
(4.6)

+
pµpρ

pσ(kσ + iν̄uσ)

∂n̄(p)

∂pλ
+

2Ncp
µpρ

pσ(kσ + iνguσ)

∂ng(p)

∂pλ

]
.

If the plasma colorless state is isotropic, which is the case of the global equilib-
rium, one ˇnds that σµρλ(k) = σµρ(k)uλ and Eq. (4.5) gets more familiar form
of the Ohm law, which in the plasma rest frame reads

jα(k) = σαβ(k)Eβ(k) ,

where the indices α, β, γ = 1, 2, 3 label the space axes and Eα(k) is the α
component of the chromoelectric vector. The conductivity tensor describes the
response of the QGP to the chromodynamic ˇeld. Within the approximation used
here it is a color scalar (no color indices) or equivalently is proportional to the
unit matrix in the color space. In the next sections we will extract the information
about QGP contained in σµρλ(k).

4.2. Chromoelectric Permeability. Let us introduce, as in the electrodynam-
ics, the polarization vector P(x) deˇned as

divP(x) = −ρ(x) ,
∂

∂t
P(x) = j(x) , (4.7)

where ρ and j are the time-like and space-like components, respectively, of the
color induced four-current, jµ = (ρ, j). The deˇnition (4.7) is self-consistent,
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only when the color current is conserved, not covariantly conserved. This is just
the case of the linear response approach. Further, we deˇne the chromoelectric
induction vector D(x),

D(x) = E(x) + P(x) (4.8)

and the chromoelectric permeability tensor, which relates the Fourier transformed
D and E ˇelds,

Dα(k) = εαβ(k)Eβ(k) , (4.9)

where α, β = 1, 2, 3. Since the conductivity tensor (4.6) is a color scalar the
permeability tensor is a color scalar as well.

Using the deˇnitions (4.7), (4.8), (4.9) one easily ˇnds that

εαβ(k) = δαβ − i

ω
σα0β(k)− i

ω2

[
kγσαβγ(k)− kγσαγβ(k)

]
(4.10)

with σαγβ(k) given by Eq.(4.6); ω is the time-like component of the wave four-
vector, kµ ≡ (ω,k). For the isotropic plasma the two last terms in Eq. (4.10)
vanish. Substituting the conductivity tensor (4.6) into Eq. (4.10) we get the
permeability tensor in the plasma rest frame

εαβ(k) = δαβ +
g2

2ω

∫
d3p

(2π)3

[ vα

ω − kv + iν

∂n(p)

∂pγ
(4.11)

+
vα

ω − kv + iν̄

∂n̄(p)

∂pγ

+ 2Nc
vα

ω − kv + iνg

∂ng(p)

∂pγ

][(
1− kv

ω

)
δγβ +

kγvβ

ω

]
.

In the case of the isotropic plasma the permeability tensor can be expressed as

εαβ(k) = εT (k)
(
δαβ − kαkβ/k2

)
+εL(k) kαkβ/k2

with the longitudinal and transversal permeability functions equal to

εL(k) = 1 +
g2

2ωk2

∫
d3p

(2π)3

[ kv kγ

ω − kv + iν

∂n(p)

∂pγ
(4.12)

+
kv kγ

ω − kv + iν̄

∂n̄(p)

∂pγ
+

kv kγ

ω − kv + iνg

∂ng(p)

∂pγ

]

εT (k) = 1 +
g2

2ω

∫
d3p

(2π)3

[ 1

ω − kv + iν

∂n(p)

∂pγ
(4.13)

+
1

ω − kv + iν̄

∂n̄(p)

∂pγ
+

1

ω − kv + iνg

∂ng(p)

∂pγ

][
vγ − kv kγ

k2

]
.
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Because the QCD equations within the linear response approach coincide (up
to the trivial matrix structure) with those of the electrodynamics, the dispersion re-
lations of the plasma oscillations, or of plasmons, are those of the electrodynamics
and they read [45,46]

det | k2δαβ − kαkβ − ω2εαβ(k) |= 0 . (4.14)

The relation (4.14) gets simpler form for the isotropic plasma. Namely,

εL(k) = 0 , εT (k) = k2/ω2 . (4.15)

The dispersion relations determine the plasma waves which can be propagated
in the medium. Speciˇcally, the plane wave with ω(k), which satisˇes the
dispersion equation (4.14), automatically solves the sourceless Maxwell equations
in a medium. Using the `quantum' language, the dispersion equation gives the
relation between the energy and momentum of the quasi-particle excitations. In
the case of plasma these are the transverse and longitudinal plasmons.

There are three classes of the solutions of Eq. (4.14). Those with pure real
ω are stable Å the wave amplitude is constant in time. If the imaginary part of
frequency is negative, the oscillations are damped Å the amplitude decreases in
time. Of particular interest are the solutions with the positive Imω correspond-
ing to the so-called plasma instabilities Å the oscillations with the amplitude
exponentially growing in time.

The permeability tensor in the static limit (ω → 0) provides the information
about the plasma response to constant ˇelds. Computing εL(ω = 0,k) for the
equilibrium collisionless plasma one ˇnds

εL(ω = 0,k) = 1 +
m2
D

k2
,

where mD is the Debye mass which for the baryonless plasma of massless quarks
and gluons equals

m2
D =

g2T 2(Nf + 2Nc)

6
. (4.16)

The chromoelectric potential of the static point-like source embedded in the
plasma, which equals [46,47]

A0(x) =
g

4π | x | exp(−mD | x |) ,

is screened at the distance 1/mD.
Since the parton density is ∼ T 3, one ˇnds from Eq. (4.16) that the number

of partons in the Debye sphere (the sphere of the radius equal to the screening
length) is ∼ 1/g3. It is much greater than unity if the plasma is perturbative,
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i.e., when 1/g � 1. A large parton number in the Debye sphere justiˇes, in
particular, the use of the mean-ˇeld to describe QGP. Let us also mention that
the ultrarelativistic perturbative plasma is automatically ideal, i.e., the average
parton interaction energy, which is ∼ g2/〈r〉, with 〈r〉 ∼ T−1 being the average
interparticle distance, is much smaller than the parton thermal energy which
equals ∼ T . This is not the case for the nonrelativistic electron plasma. Then,
the screening length is (see, e.g., [46,47])

m2
D = e2ne

T
,

with ne being the electron density∗, which is independent of the temperature.
As is seen, the smallness of the coupling constant does not guarantee that the
nonrelativistic plasma is ideal. This occurs when the number of electrons in the

Debye sphere is large, i.e., when T 3/2 � e3n
1/2
e .

4.3. Oscillations Around the Global Equilibrium. Substituting the equilib-
rium distribution functions, FermiÄDirac for quarks and BoseÄEinstein for gluons,
into Eqs. (4.13) and (4.14) one ˇnds the permeability functions εL and εT , which
for the collisionless (ν = ν̄ = νg = 0) and baryonless (µ = 0) plasma of massless
partons can be computed analytically as

εL = 1 +
3ω2

0

k2

[
1− ω

2k

[
ln | k + ω

k − ω | −iπΘ(k − ω)
]]

, (4.17)

εT = 1− 3ω2
0

2k2

[
1−
( ω

2k
− k

2ω

)[
ln | k + ω

k − ω | −iπΘ(k − ω)
]]

, (4.18)

where k ≡| k | and ω0 is the plasma frequency equal to

ω2
0 =

g2T 2(Nf + 2Nc)

18
. (4.19)

One sees that for ω > k the dielectric functions (4.17), (4.18) are purely real, i.e.,
there are no dissipative processes.

Substituting (4.17), (4.18) into (4.15) one ˇnds the dispersion relation of the
longitudinal mode (the chromoelectric ˇeld parallel to the wave vector)

ω2 =

{
ω2

0 + 3
5k

2 , for ω0 � k

k2
(

1 + 4 exp(−2− 2k2/3ω2
0)
)
, for ω0 � k

∗We use the units, where the ˇne structure constant α = e2/4π. In the Gauss units, which are
traditionally used in the electron-ion plasma physics, α = e2 .
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and

ω2 =

{
ω2

0 + 6
5k

2 , for ω0 � k
3
2ω

2
0 + k2 , for ω0 � k

for the transverse one (the chromoelectric ˇeld perpendicular to the wave vector).
Because the longitudinal and transverse oscillations are time-like (ω2 > k2), the
phase velocity of the waves is greater than the velocity of light. For this reason
the Landau damping is absent. As known, the Landau damping is due to the
collisionless energy transfer from the wave to the plasma particles, the velocity
of which is equal to the wave phase velocity [47].

The oscillations of the collisionless QGP around global equilibrium have
been studied by means of the transport theory in several papers [7, 48, 51Ä53].
The problem has been also discussed in [49, 50] using a speciˇc variant of the
QGP theory with the classical color [41, 54]. In the above presentation we have
followed [7]. The dispersion relations given above agree with those found in the
ˇnite-temperature QCD within the one-loop approximation, see, e.g., [6, 55Ä57].

Let us now consider the dielectric function with nonzero equilibration rates.
As previously, the partons are massless and the plasma is baryonless which
imposes ν = ν̄. Then, one easily evaluates the integrals (4.13) and (4.14) for
ω � k, ω � ν and ω � νg . The results read [7]:

ω2 = ω2
0 − ζ2 +

3

4
φ2 +

3

5
k2 , γ =

1

2
φ

for the longitudinal mode and

ω2 = ω2
0 − ζ2 +

3

4
φ2 +

6

5
k2 , γ =

1

2
φ ,

for the transverse one; ω and γ denote the real and imaginary part, respectively,
of the complex frequency; φ and ζ are parameters related to the equilibration
rates,

φ = ν
Nf

Nf + 2Nc
+ νg

2Nc
Nf + 2Nc

, (4.20)

ζ2 = ν2 Nf

Nf + 2Nc
+ ν2

g

2Nc
Nf + 2Nc

.

One sees that, when compared with the collisionless plasma, the frequency of the
oscillations is smaller and the oscillations are damped. To ˇnd the numerical value
of the damping rate Å the plasma oscillation decrement γ Å the equilibration
rates (ν and νg) have to be estimated.

If ν or νg is identiˇed with the mean free ight time controlled by the binary
collisions, the equilibration rate is of the order of g4 ln 1/g. However, in the
relativistic plasma there is another damping mechanism which is the plasmon
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decay into quark-antiquark or gluon-gluon pair. It is easy to observe that, even in
the limit of massless quarks, the decay into gluons is much more probable than
that into quarks [7,57]. Let us consider the decay of plasmon of zero momentum.
The phase-space volume of the decay ˇnal state is proportional to(

1∓ neq(ω0/2)
)2

, (4.21)

where the upper sign refers to quarks while the lower one to gluons. Since the
plasma frequency (4.19) is much smaller than the temperature in the perturbative
plasma, the factor (4.21) can be expanded as(

1− neq(ω0/2)
)2 ∼= 1/4 + ω0/8T ,(

1 + neq(ω0/2)
)2 ∼= 4T 2/ω2

0 .

One sees that the decay into gluons is more probable than that into quarks by a
factor of order g−2 [57].

Using the standard rules of ˇnite-temperature ˇeld theory, one easily ˇnds
(see, e.g., [7]) the width of the zero-momentum plasmon due to the decay into
gluons

Γd =
g2Nc

243π
ω0

(
1 + neq(ω0/2)

)2∼=
gNcT

23/2π(Nf + 2Nc)1/2
,

which is the same for longitudinal and transverse plasmons. However, Γd cannot
be identiˇed with the plasmon equilibration rate Γ, because the plasmon decays
are partially compensated by the plasmon formation processes. As shown in [58],
see also [57], the formation rate Γf is related to Γd as

Γf = exp(−ω0/T )Γd ∼= (1− ω0/T )Γd .

Since the equilibration rate of the plasmon Γ = Γd − Γf [58], one ˇnds [57]

Γ ∼=
g2NcT

12π
. (4.22)

We note that Γd and Γf are of the order of g, while Γ is of the order of g2.
Since there is a preferred reference frame Å the rest frame of the thermostat Å
the plasmon decay width is not a Lorentz scalar. Therefore, the result (4.22) is
valid only for the zero-momentum or approximately long-wave plasmons.

Substituting νg equal (4.22) and ν = 0 into Eq. (4.20), one estimates the
decrement of the oscillation damping as

γ ∼=
g2

12π

N2
c

Nf + 2Nc
T . (4.23)
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Although ν = 0 the damping rate depends on the number of quark avours. This
seems to be in agreement with the physical intuition. When the number of quark
avours is increased the inertia of the system is also increased, and consequently
the time needed to damp the oscillations is longer. However Eq. (4.23) disagrees
(by a factor of 2Nc/(Nf + 2Nc)) with the result from [57], where γ equals
(4.22). Unfortunately, the discrepancy cannot be resolved within the relaxation
time approximation and a more elaborated analysis is needed.

5. FILAMENTATION INSTABILITY

In the near future the nucleus-nucleus collisions will be studied experimen-
tally at the accelerators of a new generation: Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven and Large Hadron Collider (LHC) at CERN. The collision
energy will be larger by one or two orders of magnitude than that one of the
currently operating machines. A copious production of partons, mainly gluons,
due to hard and semihard processes is expected in the heavy-ion collisions at
this new energy domain [59, 60]. Thus, one deals with the many-parton system
at the early stage of the collision. The system is on average locally colorless
but random uctuations can break the neutrality. Since the system is initially far
from equilibrium, speciˇc color uctuations can exponentially grow in time and
then noticeably inuence the system evolution. While the very existence of such
instabilities, similar to those which are known from the electron-ion plasma, see,
e.g., [61], is fairly obvious and was commented upon long time ago [62], it is
far less trivial to ˇnd those instabilities which are relevant for the parton system
produced in ultrarelativistic heavy-ion collisions.

A system of two interpenetrating beams of nucleons [63, 64] or partons
[65Ä69] was argued to be unstable with respect to the so-called ˇlamentation or
Weibel instability [70]. However, such a system appears to be rather unrealistic
from the experimental point of view. Then, we have argued [71Ä73] that the
ˇlamentation can occur under weaker conditions which are very probable for
heavy-ion collisions at RHIC and LHC. Instead of the two streams of partons, it
appears sufˇcient to assume a strongly anisotropic momentum distribution. We
systematically review here the whole problem.

5.1. Fluctuation Spectrum. We start with the discussion on how the unstable
modes are initiated. Speciˇcally, we show that the uctuations, which act as
seeds of the ˇlamentation, are large, much larger than in the equilibrium plasma.
Since the system of interest is far from the equilibrium, the uctuations are not
determined by the chromodielectric permeability tensor discussed in the previous
section. The uctuation-dissipation theorem does not hold in such a case. Thus,
we derive the color current correlation function which provides the uctuation
spectrum.
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QGP is assumed to be on average locally colorless, homogeneous and sta-
tionary. Therefore, the distribution functions averaged over ensemble are of the
form

〈Qij(t,x,p)〉 = δijn(p) , 〈Q̄ij(t,x,p)〉 = δij n̄(p) ,

〈Gab(t,x,p)〉 = δabng(p) ,

which give the zero average color current.
We study the uctuations of the color current generalizing a well-known

approach to the uctuating electric current [61]. For a system of noninteracting
quarks and gluons we have derived (in the classical limit) the following expression
of the current correlation tensor

Mµν
ab (t,x)

def
= 〈jµa (t1,x1)jνb (t2,x2)〉

=
1

8
g2 δab

∫
d3p

(2π)3

pµpν

E2
f(p) δ(3)(x− vt) , (5.1)

where the effective parton distribution function f(p) equals n(p) + n̄(p) +
2Ncng(p) and (t,x) ≡ (t2 − t1,x2 − x1). Due to the average space-time homo-
geneity the correlation tensor depends only on the difference (t2 − t1,x2 − x1).
The physical meaning of the formula (5.1) is transparent. The space-time points
(t1,x1) and (t2,x2) are correlated in the system of noninteracting particles if the
particles y from (t1,x1) to (t2,x2). For this reason the delta δ(3)(x − vt) is
present in the formula (5.1). The momentum integral of the distribution function
simply represents the summation over particles. The uctuation spectrum is found
as a Fourier transform of the tensor (5.1), i.e.,

Mµν
ab (ω,k) =

1

8
g2 δab

∫
d3p

(2π)3

pµpν

E2
f(p) 2πδ(ω − kv) . (5.2)

When the system is in equilibrium the uctuations are given, according to
the uctuation-dissipation theorem, by the respective response function. For f(p)
being the classical equilibrium distribution function one indeed ˇnds the standard
uctuation-dissipation relation [61] valid in the g2order. For example,

M00
ab (ω,k) = δab

k2

2π

T

ω
ImεL(ω,k) ,

where T is the temperature and εL represents the longitudinal part of the chro-
modielectric tensor (4.13).

5.2. Parton Distributions. We model the parton momentum distribution at
the early stage of ultrarelativistic heavy-ion collision by two functions:

f(p) =
1

2Y
Θ(Y − y)Θ(Y + y) h(p⊥)

1

p⊥ chy
, (5.3)
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and

f(p) =
1

2PΘ(P − p‖)Θ(P + p‖) h(p⊥) , (5.4)

where y, p‖, and p⊥ denote the parton rapidity, the longitudinal, and transverse
momenta, respectively. The parton momentum distribution (5.3) corresponds to
the rapidity distribution which is at in the interval (−Y, Y ). The distribution
(5.4) is at for the longitudinal momentum −P < p‖ < P . We do not specify
the transverse momentum distribution h(p⊥), which is assumed to be of the same
shape for quarks and gluons, because it is sufˇcient for our considerations to
demand that the distributions (5.3), (5.4) are strongly elongated along the z−axis,
i.e., eY � 1 and P � 〈p⊥〉.

The QCD-based computations, see, e.g., [59,60], show that the rapidity distri-
bution of partons produced at the early stage of heavy-ion collisions is essentially
Gaussian with the width of about one to two units. When the distribution (5.3)
simulates the Gaussian one, Y does not measure the size of the `plateau' but
rather the range over which the partons are spread. If one takes the Gaussian
distribution of the variance σ and the distribution (5.3) of the same variance, then
Y =

√
3σ.

As already mentioned, the parton system described by the distribution func-
tions (5.3), (5.4) is assumed to be homogeneous and stationary. Applicability of
this assumption is very limited because there is a correlation between the parton
longitudinal momentum and its position, i.e., partons with very different momenta
will ˇnd themselves in different regions of space shortly after the collision. How-
ever, one should remember that we consider the parton system at a very early
stage of the collision, soon after the Lorentz contracted ultrarelativistic nuclei
traverse each other. At this stage partons are most copiously produced but do
not have enough time to escape from each other. Thus, the assumption of homo-
geneity holds for the space-time domain of the longitudinal size, say, 2 − 3 fm
and life time 2 − 3 fm/c. As shown below, this time is long enough for the
instability to occur.

5.3. Seeds of the Filamentation. Let us now calculate the correlation tensor
(5.2) for the distribution functions (5.3),( 5.4). Due to the symmetry f(p) =
f(−p) of these distributions, the tensor Mµν is diagonal, i.e., Mµν = 0 for
µ 6= ν. Since the average parton longitudinal momentum is much bigger than
the transverse one, it obviously follows from Eq. (5.2) that the largest uctuating
current appears along the z axis. Therefore, we discuss the Mzz component of the
correlation tensor. Mzz(ω,k) depends on the k-vector orientation and there are
two generic cases: k = (kx, 0, 0) and k = (0, 0, kz). The inspection of Eq. (5.2)
shows that the uctuations with k = (kx, 0, 0) are much larger than those with
k = (0, 0, kz). Thus, let us consider Mzz(ω, kx). Substituting the distributions
(5.3), (5.4) into (5.2) one ˇnds after azimuthal integration that Mzz

ab (ω, kx) reaches
the maximal values for ω2 � k2

x. So, we compute Mzz
ab at ω = 0. Keeping in
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mind that eY � 1 and P � 〈p⊥〉 we get the following approximate expressions
for the at y- and p‖ distributions:

Mzz
ab (ω = 0, kx) =

1

8
g2 δab

eY

Y

〈ρ〉
|kx|

, (5.5)

Mzz
ab (ω = 0, kx) =

1

8
g2 δab

P
〈p⊥〉

〈ρ〉
|kx|

, (5.6)

where 〈ρ〉 is the effective parton density given for Nc = 3 as

〈ρ〉 ≡
∫

d3p

(2π)3
f(p) =

1

4π2

∫ ∞
0

dp⊥p⊥ h(p⊥) =
1

3
〈ρ〉qq̄ +

3

4
〈ρ〉g ,

with 〈ρ〉qq̄ denoting the average density of quarks and antiquarks, and 〈ρ〉g that
of gluons. For the at p‖ case we have also used the approximate equality∫ ∞

0

dp⊥ h(p⊥) ∼=
1

〈p⊥〉

∫ ∞
0

dp⊥p⊥ h(p⊥)

to get the expression (5.6). It is instructive to compare the results (5.5), (5.6)
with the analogous one for the equilibrium plasma which is

Mzz
ab (ω = 0, kx) =

π

16
g2 δab

〈ρ〉
|kx|

.

One sees that the current uctuations in the anisotropic plasma are ampliˇed by
the large factor which is eY /Y or P/〈p⊥〉. With the estimated value of Y 2.5
for RHIC and 5.0 for LHC [74], the ampliˇcation factor eY /Y equals 4.9 and
29.7, respectively.

5.4. Filamentation Mechanism. Following [75] we are going to argue that
the uctuation, which contributes to Mzz

ab (ω = 0, kx), grows in time. The form
of the uctuating current is

ja(x) = ja êz cos(kxx) , (5.7)

where êz is the unit vector in the z direction. Thus, there are current ˇlaments
of the thickness π/|kx| with the current owing in the opposite directions in the
neighboring ˇlaments. For the purpose of a qualitative argumentation presented
here the chromodynamics is treated as an eightfold electrodynamics. Then, the
magnetic ˇeld generated by the current (5.7) is given as

Ba(x) =
ja

kx
êy sin(kxx) ,
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Fig. 4. The mechanism of ˇlamentation. The phenomenon is, for simplicity, considered in
terms of the electrodynamics. The uctuating current generates the magnetic ˇeld acting
on the positively charged particles which in turn contribute to the current (see text). ⊗
and � denote the parallel and, respectively, antiparallel orientation of the magnetic ˇeld
with respect to the y-axis

while the Lorentz force acting on the partons, which y along the beam, equals

F(x) = qa v ×Ba(x) = −− qa vz
ja

kx
êx sin(kxx) ,

where qa is the color charge. One observes, see Fig. 4, that the force distributes
the partons in such a way that those, which positively contribute to the current in
a given ˇlament, are focused to the ˇlament centre while those, which negatively
contribute, are moved to the neighboring one. Thus, the initial current grows.

5.5. Dispersion Equation. We analyse here the dispersion equation which
for the anisotropic plasma is of the form (4.14). The plasma is assumed to be
collisionless, i.e., the mean-ˇeld interaction dominates the system dynamics and
ν = i0+. The assumption is correct if the inverse characteristic time of the
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mean-ˇeld phenomena τ−1 is substantially larger than the collision frequency ν.
Otherwise, the inˇnitesimally small imaginary quantity i0+ from (4.12) should
be substituted by iν. Such a substitution however seriously complicates analysis
of the dispersion equation (4.14). Therefore, we solve the problem within the
collisionless limit and only a posteriori argue validity of this approximation.

As already mentioned, the solutions ω(k) of (4.14) are stable when Imω <
0 and unstable when Imω > 0. It appears difˇcult to ˇnd the solutions of
Eq. (4.14) because of the complicated structure of the chromodielectric tensor
(4.12). However, the problem simpliˇes because we are interested in the speciˇc
modes with the wave vector k perpendicular and to the chromoelectric ˇeld E
parallel to the beam. Thus, we consider the conˇguration

E = (0, 0, Ez) , k = (kx, 0, 0) . (5.8)

Then, the dispersion equation (4.14) gets the form

H(ω) ≡ k2
x − ω2εzz(ω, kx) = 0 , (5.9)

where only one diagonal component of the dielectric tensor enters.
5.6. Penrose Criterion. The stability analysis can be performed without

solving Eq. (5.9) explicitly. Indeed, the so-called Penrose criterion [76] states
that the dispersion equation H(ω) = 0 has unstable solutions if H(ω = 0) < 0.
The meaning of this statement will be clearer after we will approximately solve
the dispersion equation in the next section.

Let us compute H(0) which can be written as

H(0) = k2
x − χ2 , (5.10)

with

χ2 ≡ −ω2
0 −

g2

2

∫
d3p

(2π)3

v2
z

vx

∂f(p)

∂px
, (5.11)

where the plasma frequency parameter is

ω2
0 ≡ −

g2

2

∫
d3p

(2π)3
vz

∂f(p)

∂pz
. (5.12)

As we shall see below, ω0 gives the frequency of the stable mode of the conˇg-
uration (5.8) when kx → 0.

Substituting the distribution functions (5.3), (5.4) into Eqs. (5.11) and (5.12)
one ˇnds the analytical but rather complicated expression of H(0). In the case
of the at y distribution we thus take the limit eY � 1, while for the at p‖
distribution we assume that P � 〈p⊥〉. Then, we get for the at y distribution

χ2 ∼= −
αs

4π

eY

Y

∫
dp⊥

(
h(p⊥) + p⊥

dh(p⊥)

dp⊥

)
=
αs

4π

eY

Y
pmin
⊥ h(pmin

⊥ ) , (5.13)
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and for the at p‖ distribution

χ2 ∼= −
αs

4π
P
∫
dp⊥

dh(p⊥)

dp⊥
=
αs

4π
P h(pmin

⊥ ) , (5.14)

where αs ≡ g2/4π2 is the strong coupling constant and pmin
⊥ denotes the minimal

transverse momentum. The function h(p⊥) is assumed to decrease faster than
1/p⊥ when p⊥ →∞.

As seen, the sign of H(0) given by Eq. (5.10) is (for sufˇciently small k2
x)

determined by the transverse momentum distribution at the minimal momentum.
There are unstable modes if pmin

⊥ h(pmin
⊥ ) > 0 for the at y distribution and if

h(pmin
⊥ ) > 0 for the at p‖ case. Since the distribution h(p⊥) is expected to be a

monotonously decreasing function of p⊥, the instability condition for the at p‖
distribution seems to be always satisˇed. The situation with the at y distribution
is less clear. So, let us discuss it in more detail. We consider three characteristic
cases of h(p⊥) discussed in the literature.

1. The transverse momentum distribution due to a single binary parton-parton
interaction is proportional to p−6

⊥ [77] and blows up when p⊥ → 0. In
such a case pmin

⊥ h(pmin
⊥ ) > 0, there are unstable modes and pmin

⊥ should be
treated as a cut-off parameter reecting, e.g., the ˇnite size of the system.

2. The transverse momentum distribution proportional to (p⊥+m⊥)−6.4 with
m⊥ = 2.9 GeV has been found in [74], where except the binary parton-
parton scattering the initial and ˇnal state radiation has been taken into
account. This distribution, in contrast to that from 1), gives pmin

⊥ h(pmin
⊥ ) =

= 0 for pmin
⊥ = 0 and there is no instability. Although one should remember

that the ˇnite value of m⊥ found in [74] is the result of infrared cut-off.
Thus, it seems more reasonable to use the distribution from 1), where the
cut-off explicitly appears.

3. One treats perturbatively only partons with p⊥ > pmin
⊥ assuming that those

with lower momenta form colorless clusters or strings due to a nonpertur-
bative interaction. It should be stressed that the colorless objects do not
contribute to the dielectric tensor (4.12), which is found in the linear re-
sponse approximation [7,66]. Thus, only the partons with p⊥ > pmin

⊥ are of
interest for us. Consequently pmin

⊥ h(pmin
⊥ ) is positive and there are unstable

modes. As shown in [72], the screening lengths due to the large parton
density are smaller than the conˇnement scale in the vacuum. Therefore,
the cut-off parameter pmin

⊥ should be presumably reduced from 1 Å 2 GeV
usually used for protonÄproton interactions to, let us say, 0.1 Å 0.2 GeV.

We cannot draw a ˇrm conclusion but we see that the instability condition
is trivially satisˇed for the at p‖ distribution and is also fulˇlled for the at
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y distribution under plausible assumptions. Let us mention that the difference
between the instability conditions for the at y and p‖ distribution is due to a very
speciˇc property of the y distribution which is limited to the interval (−Y, Y ). The
point is that y → ±∞ when p⊥ → 0 and consequently, the limits in the rapidity
suppress the contribution from the small transverse momenta to the dielectric
tensor. For this reason we need for the instability the distribution h(p⊥) which
diverges for p⊥ → 0 in the case of the at y distribution, while the instability
condition for the at p‖ distribution is satisˇed when h(0) is ˇnite. If we assumed
the Gaussian rapidity distribution instead of (5.3), the instability condition would
be less stringent. In any case, we assume that the Penrose criterion is satisˇed
and look for the unstable modes solving the dispersion equation (5.9).

5.7. Unstable Mode. The dispersion equation (5.9) for a cylindrically sym-
metric system is

k2
x − ω2 + ω2

0 − αs

4π2

∫ ∞
0

dp⊥

∫ ∞
−∞

dp‖ p
2
‖√

p2
‖ + p2

⊥

× ∂f

∂p⊥

∫ 2π

0

dφ cosφ

a− cosφ+ i0+
= 0 , (5.15)

with the plasma frequency ω0 given by Eq. (5.12) and a denoting

a ≡ ω

kx

√
p2
‖ + p2

⊥

p⊥
.

We solve Eq. (5.15) in the two limiting cases |ω/kx| � 1 and |kx/ω| � 1.
In the ˇrst case the azimuthal integral is approximated as∫ 2π

0

dφ cosφ

a− cosφ+ i0+
=

π

a2
+O(a−4) .

Then, the equation (5.15) gets the form

k2
x − ω2 + ω2

0 + η2 k
2
x

ω2
= 0 , (5.16)

where η, as ω0, is a constant deˇned as

η2
0 ≡ −

αs

4π

∫
dp‖dp⊥

p2
‖p

2
⊥

(p2
‖ + p2

⊥)3/2

∂f(p)

∂p⊥
.

We have computed ω0 and η for the at p‖- and y distribution. In the limit
eY � 1 and P � 〈p⊥〉, respectively, we have found

ω2
0
∼=
αs

8Y

∫
dp⊥h(p⊥) , (5.17)
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ω2
0
∼=

αs

2πP

∫
dp⊥p⊥h(p⊥) , (5.18)

and

η2 ∼=
αs

16Y

∫
dp⊥

(
1

4
h(p⊥)− p⊥

dh(p⊥)

dp⊥

)
, (5.19)

η2 ∼= −
αs

4πP ln

(
P
〈p⊥〉

)∫
dp⊥p

2
⊥
dh(p⊥)

dp⊥
. (5.20)

The solutions of Eq. (5.16) are

ω2
± =

1

2

(
k2 + ω2

0 ±
√

(k2
x + ω2

0)2 + 4η2k2
x

)
. (5.21)

One sees that ω2
+ ≥ 0 and ω2

− ≤ 0. Thus, there is a pure real mode ω+, which
is stable, and two pure imaginary modes ω−, one of them being unstable. As
mentioned previously, ω+ = ω0 when kx = 0.

Let us focus our attention on the unstable mode which can be approximated
as

ω2
−
∼=
{
− η2

ω2
0
k2
x , for k2

x � ω2
0

−η2 , for k2
x � ω2

0.

One should keep in mind that Eq. (5.21) holds only for |ω/kx| � 1. We see
that ω− can satisfy this condition for k2

x � ω2
0 if η2 � ω2

0 and for k2
x � ω2

0 if
η2 � ω2

0 . To check whether these conditions can be satisˇed, we compare η2 to
ω2

0 . Assuming that h(p⊥) ∼ p−β⊥ , one ˇnds from Eqs. (5.19), (5.20)

η2 ∼=
1 + 4β

8
ω2

0 , (5.22)

η2 ∼=
β

2
ln

(
P
〈p⊥〉

)
ω2

0 .

Since β ∼= 6 [74,77] we get η2 ≥ 3ω2
0 . Therefore, the solution (5.21) for k2

x � ω2
0

should be correct.
Let us now solve the dispersion equation (5.15) in the second case when

|kx/ω| � 1. Then, the azimuthal integral from Eq. (5.15) is approximated as∫ 2π

0

dφ cosφ

a− cosφ+ i0+
= −2π +O(a) ,

and we immediately get the dispersion relation

ω2 = k2
x − χ2 , (5.23)
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Fig. 5. The schematic view of the dispersion relation of the ˇlamentation mode

with χ2 given by Eq. (5.13) or (5.14). As previously we have assumed that
eY � 1 and P � 〈p⊥〉. Eq. (5.23) provides a real mode for k2

x > χ2 and
two imaginary modes for k2

x < χ2. Since the solution (5.23) must satisfy the
condition |kx/ω| � 1, it holds only for k2

x � |k2
x − χ2|.

The dispersion relation of the unstable mode in the whole domain of wave
vectors is schematically shown in Fig. 5, where the solutions (5.21) and (5.23)
are combined. Now one sees how the Penrose criterion works. When χ2 = 0,
the unstable mode disappears.

5.8. Time Scales. The instability studied here can occur in heavy-ion col-
lisions if the time of instability development is short enough, shorter than the
characteristic time of evolution of the nonequilibrium state described by the dis-
tribution functions (5.3), (5.4).

Let us ˇrst estimate the time of instability development which is given by
1/Imω. As is seen in Fig. 5, |Imω| < η. Thus, we deˇne the minimal time
as τmin = 1/η. To ˇnd τmin we estimate the plasma frequency. We consider
here only the at y distribution which seems to be more reasonable than the at
p‖ distribution. Approximating

∫
dp⊥h(p⊥) as

∫
dp⊥p⊥h(p⊥)/〈p⊥〉 the plasma

frequency (5.12) can be written as

ω2
0
∼=

αsπ

6Y r2
0A

2/3
(Nq +Nq̄ +

9

4
Ng) , (5.24)

where Nc = 3; Nq, Nq̄, and Ng are the numbers of quarks, antiquarks and gluons,
respectively, produced in the volume, which has been estimated in the following
way. Since we are interested in the central collisions, the volume corresponds to
a cylinder of the radius r0A

1/3 with r0 = 1.1 fm and A being the mass number
of the colliding nuclei. Using the uncertainty principle argument, the length of
the cylinder has been taken as 1/〈p⊥〉, which is the formation time of parton with
the transverse momentum 〈p⊥〉.
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Neglecting quarks and antiquarks in Eq. (5.24) and substituting there Ng =
570 for the central AuÄAu collision at RHIC (Y = 2.5) and Ng = 8100 for the
same colliding system at LHC (Y = 5.0) [74], we get

ω0 = 280 MeV for RHIC , ω0 = 430 MeV for LHC

for αs = 0.3 at RHIC and αs = 0.1 at LHC. Using Eq. (5.22) with β = 6 one
ˇnds

τmin = 0.4 fm/c for RHIC , τmin = 0.3 fm/c for LHC .

The plasma has been assumed collisionless in our analysis. Such an assump-
tion is usually correct for weakly interacting systems because the damping rates
of the collective modes due to collisions are of the higher order in αs than the
frequencies of these modes, see, e.g., [61]. However, it has been argued re-
cently [78] that the color collective modes are overdamped due to the unscreened
chromomagnetic interaction. However it is unclear whether these arguments con-
cern the unstable mode discussed here. The point is that the paper [78] deals with
the neutralization of color charges which generate the longitudinal chromoelectric
ˇeld while the unstable mode which we have found is transversal and conse-
quently is generated by the color currents not charges. Let us refer here to the
electron-ion plasma, where the charge neutralization is a very fast process while
currents can exist in the system for a much longer time [76]. In any case, the
above estimates of the instability development should be treated as lower limits.

Let us now discuss the characteristic time of evolution of the nonequilibrium
state described by the distribution functions (5.3), (5.4). Except the possible
unstable collective modes, there are two other important processes responsible
for the temporal evolution of the initially produced many-parton system: free
streaming [79Ä81] and partonÄparton scattering. The two processes lead to the
isotropic momentum distribution of partons in a given cell. The estimated time to
achieve local isotropy due to the free streaming is about 0.7 fm/c at RHIC [81].
The estimates of the equilibration time due to the parton scatterings are similar
[82, 83]. As is seen the three-time scales of interest are close to each other.
Therefore, the color unstable modes can play a role in the dynamics of many-
parton system produced at the early stage of heavy-ion collision, but presumably
the pattern of instability cannot fully develop.

5.9. Detecting the Filamentation. One asks whether the color instabilities
are detectable in ultrarelativistic heavy-ion collisions. The answer seems to be
positive because the occurrence of the ˇlamentation breaks the azimuthal symme-
try of the system and hopefully will be visible in the ˇnal state. The azimuthal
orientation of the wave vector will change from one collision to another while
the instability growth will lead to the energy transport along this vector (the
Poynting vector points in this direction). Consequently, one expects signiˇcant
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variation of the transverse energy as a function of the azimuthal angle. This
expectation is qualitatively different than that based on the parton cascade simu-
lations [59], where the uctuations are strongly damped due to the large number
of uncorrelated partons. Due to the collective character of the ˇlamentation in-
stability the azimuthal symmetry will be presumably broken by a ow of large
number of particles with relatively small transverse momenta. The jets produced
in hard parton-parton interactions also break the azimuthal symmetry. However,
the symmetry is broken in this case due to a few particles with large transverse
momentum. The problem obviously needs further studies but the event-by-event
analysis of the nuclear collision seems to give a chance to observe the color
instabilities in the experiments planed at RHIC and LHC.
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