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√
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� ¸¸³µÉ·¥´  ¸¢Ö§Ó ¸ ´¥¶¥·ÉÊ·¡ É¨¢´Ò³¨ ³µ¤¥²Ö³¨ ¢ · ³± Ì Š•„.

New mode in the hadron scattering is predicted to appear at the energies beyond
√
s ' 2 TeV:

the antishadow scattering mode, and the experiments at LHC and VLHC in hadronic reactions will be
able to reveal it. The appearance of the antishadow scattering mode at these energies is considered
on the basis of unitarity and geometrical notions of hadron interactions. Connections with the
nonperturbative-QCD models are discussed.

INTRODUCTION

One of the most fundamental discoveries in hadron interactions at high ener-
gies is the rise of total cross sections with energy. It is accompanied by the rise
of elastic and inelastic cross sections as well as of the ratio of elastic to the total
cross section.

For the ˇrst time the total cross section increase was observed in K+p
interactions at the Serpukhov accelerator in 1970 [1] and it was discovered later in
pp interactions at CERN ISR [2] and at Fermilab [3] in other nucleon- and meson-
proton interactions. Recent HERA data [4] demonstrated the rising behavior
of the virtual photon-proton total cross sections. Since then a great progress
in the experimental and theoretical studies of hadronic reactions was achieved.
Quantum Chromodynamics appeared as a theory of strong interactions and gave
an explanation for the behavior of the observables in the hard hadronic reactions,
i.e., the reactions with high momentum transfers. However, the dynamics of long
distance interactions (soft processes) is rather far from its understanding despite
much work has been done in this ˇeld. The problems are directly related to the
problems of conˇnement and chiral symmetry breaking.

The approaches to soft hadronic processes are widely varied: Regge-type,
geometrical or QCD-inspired models consider aspects of such processes from the
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different points of view and use various ideas on hadron structure and interaction
dynamics. The major part of the models consider the global characteristics of
hadron interactions such as σtot, σinel, and σdiff related to large distance interac-
tion dynamics as reecting gross features of hadron structure [5], [6]. Despite the
difˇculties in application of perturbative QCD for the description of long-distance
interactions and their obvious nonperturbative character, it is often possible to
represent the high-energy amplitude in the various model approaches as an ex-
pansion over a small parameter which depends on the kinematics of the process,
e.g., for the case of nonincreasing total cross section the general form of the
amplitude is

F (s, t) = s
∑
n

[τ(s)]n exp

[
a(s)t

n

]
,

where τ(s) ∼ 1/ ln s is a small parameter at s→∞.
Since the expansion is not valid for the rising total cross sections, it is

possible to ˇnd another representation for that case with the t-dependent expansion
parameter [7]:

F (s, t) = s

∞∑
m=1

[τ(
√
−t)]mΦm[R(s),

√
−t], t 6= 0,

where
τ(
√
−t) = exp

(
−
√
−t/µ0

)
,

and Φm[R(s),
√
−t] is an oscillating function of transferred momentum. The

above formulas as well as some other representations may be successfully used
for the phenomenological analysis of the scattering amplitude at high energies.

Thus, by now the theoretical treatment of soft hadronic reactions involves
substantial piece of phenomenology and uses various model approaches. They are
often based on divergent postulates, but their phenomenological parts are similar.
In particular, an amplitude V (s, t) is considered as an input for the subsequent
unitarization procedure:

F (s, t) = Φ[V (s, t)].

To reproduce the total cross section rise the input amplitude V (s, t) is usually
considered as a power function of energy. This function being taken as an
amplitude itself violates unitarity in the direct channel. To obey unitarity in the
direct channel a unitarization procedure should be used.

There are several ways to restore unitarity of the scattering matrix. We con-
sider two schemes: based on the use of eikonal and generalized reaction matrix,
respectively. There are also combined methods, but those are not often used. As
was mentioned various models for V (s, t) may be successfully used to provide
phenomenological description of high-energy hadron scattering. However, in the
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particular model approaches the important dynamical aspects of interaction could
be signiˇcantly obscured due to a large number of free parameters.

In this paper we discuss some general properties of hadron scattering, the
implications of unitarity and analyticity, in particular, manifestations of the anti-
shadow scattering mode and respective model predictions for the observables in
elastic scattering and diffraction dissociation. Our main goal is to draw atten-
tion to the existence of the antishadow scattering mode at the energies of LHC
and VLHC. It might provide a new insight into the dynamics of diffraction and
head-on hadronic collisions at superhigh energies.

1. GEOMETRICAL PICTURE

In the collisions of two high energy particles the de Broglie wavelength can
be short compared to the typical hadronic size and hence optical concepts may
be used as useful guidelines. Thus, the hadron scattering can be considered as a
collision of two relativistically contracted objects of ˇnite size.

The relevant mathematical tool for description of high-energy hadronic scat-
tering is based on the impact parameter representation for the scattering amplitude.
In the case of spinless particle scattering this representation has the following
form:

F (s, t) =
s

π2

∫ ∞
0

bdbf(s, b)J0(b
√
−t). (1)

Note that for the scattering of particles with nonzero spin the impact parameter
representation for the helicity amplitudes has a similar form with substitution
J0 → J∆λ, where ∆λ is the net helicity change between the ˇnal and initial
states. The impact parameter representation as was shown in [8] is valid for
all physical energies and scattering angles. This representation provides simple
semiclassical picture of hadron scattering.

It is often assumed, after the Chou Ä Yang model was proposed, that the
driving mechanism of hadron scattering is due to overlapping of the two matter
distributions of colliding hadrons. It could be understood by analogy with Glauber
theory of nuclear interactions: one assumes that the matter density comes from
the spatial distribution of hadron constituents and also assumes a zero-range
interaction between those constituents. Such contact interaction might result from
the effective QCD, e.g., based on the Nambu Ä Jona-Lasinio Lagrangian.

The important role in the geometrical approach belongs to the notion of the
interaction radius. The general deˇnition of the interaction radius which is in
agreement with the above geometrical picture was given in [9]:

R(s) = l0(s)/k, (2)
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where k =
√
s/2 is the particle momentum in the c.m.s. The value for l0(s)

is chosen provided the contributions of the partial amplitudes from the angular
momenta l > l0(s) are vanishingly small.

As a ˇrst approximation one can consider the energy independent interaction
intensity and describe the elastic scattering amplitude in terms of the black disk
model where it has the form:

F (s, t) ∝ iR2(s)
J1(R(s)

√
−t)

R(s)
√
−t

. (3)

Here R ∼ 1f is the interaction radius. The model is consistent with the observed
structure in the differential cross sections of pp and p̄p scattering at t close to
1 (GeV/c)2.

In the simplest case, neglecting the real part and spin, the impact parameter
amplitude f(s, b) can be obtained as an inverse transformation according to Eq.(1)
with

F (s, t) ∝
√
s
dσ

dt
(s, t).

Thus, one can extract information on the geometrical properties of interaction
from the experimental data. The analysis of the experimental data on high-
energy diffractive scattering shows that the effective interaction area expands
with energy and the interaction intensity Å opacity Å increases with energy at
ˇxed impact parameter b. Such analysis used to be carried out every time as the
new experimental data become available. For example analysis of the data at the
ISR energies (the most precise data set on differential cross section for wide t
range available for

√
s = 53 GeV) shows that one can observe a central impact

parameter proˇle with a tail from the higher partial waves and some suppression
(compared to Gaussian) of low partial waves. The scattering picture at such
energies is close to gray disk with smooth edge which is getting darker in its
centre with energy.

Beside the above simple geometrical observations it is useful to keep in mind
the rigorous bounds for the experimental observables.

2. BOUNDS FOR OBSERVABLES
AND THE EXPERIMENTAL DATA

Bounds for the observables obtained on the ˇrm ground of general principles
such as unitarity and analyticity are very important for any phenomenological
analysis of soft interactions. However, there are only few results obtained on the
basis of the axiomatic ˇeld theory.
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First of all it is the FroissartÄMartin bound that gives the upper limit for the
total cross section:

σtot ≤ C ln2 s, (4)

where C = π/m2
π (= 60 mb) and mπ is the pion mass.

Saturation of this bound, as it is suggested by the existing experimental data,
implies the dominance of long-distance dynamics. It also leads to a number of
important consequences for the other observables. For instance, unitarity leads to
the following bound for elastic cross section:

σel(s) ≥ c
σ2

tot(s)

ln2 s
. (5)

Therefore, when the total cross section asymptotically increases as ln2 s,
elastic cross section also must rise like ln2 s. It is important to note here that
there is no similar bound for the inelastic cross section and as we will see further
the absence of such bound allows for appearance of the antishadow scattering
mode at very high energies.

If one considers a more general case when σtot ∝ lnγ s, then at asymptotic
energies one should have

Re F (s, 0)

Im F (s, 0)
' γπ

2 ln s
(6)

and
σātot(s)− σatot(s)

σātot(s) + σatot(s)
≤ ln−γ/2(s), (7)

where σātot(s) and σatot(s) are the total cross sections of the processes ā+ b→ X
and a + b → X , correspondingly. In the case of γ = 2 the total cross sec-
tion difference of antiparticle and particle interactions should obey the following
inequality

∆σtot(s) ≤ ln s. (8)

Contrary to the total cross section behavior, the existing experimental data
seem to prefer decreasing ∆σtot(s). Possible deviations from such behavior
could be expected on the basis of perturbative QCD [10] and it was one of the
reasons for the recent discussions on the Pomeron counterpart Å the Odderon.
However, the recent measurements of the real-to-imaginary part ratio for forward
p̄p scattering provide little support for the Odderon. We will not discuss more
thoroughly the interesting problem of ReF/ImF ratio and will consider for
simplicity the case of pure imaginary amplitude.

For the slope of diffraction cone at t = 0 in the case of a pure imaginary
scattering amplitude the following inequality takes place:

B(s) ≥ σ2
tot(s)

18πσel(s)
(9)
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which means that when the total cross section increases as ln2 s, the same depen-
dence is mandatory for the slope of diffraction cone. It is the stronger shrinkage
than the Regge model predicts: B(s) ∼ α′ ln s.

There is also bound [11] for the total cross section of single diffractive
processes. It was obtained by Pumplin in approach, where inelastic diffraction as
well as elastic scattering are assumed to arise in the form of a shadow of inelastic
processes,c and has the form

σdiff(s, b) ≤ 1

2
σtot(s, b)− σel(s, b). (10)

The most signiˇcant assumption was that the diffractive eigenamplitudes in the
GoodÄWalker [12] picture do not exceed the black disk limit.

At this point some details of the experimental situation have to be men-
tioned. At the highest energies the experimental data for the total and elastic
cross sections, slope parameter of diffraction cone and cross section of single
inelastic diffraction dissociation have been obtained in p̄p collisions at Fermilab.
In particular, those measurements show that

• the rise of the total cross section of pp̄ interactions is consistent with ln2 s
dependence, however other dependences are not ruled out;

• elastic cross section rises faster than the inelastic and total cross sections
and has a magnitude about 1/4 of the total cross section.

Comparing the value of the elastic-to-total cross section ratio with the lower
energy data one can conclude that the higher the energy, the higher both absolute
and relative probabilities of elastic collisions.

Impact parameter analysis [13] of the data shows that the scattering amplitude
is probably beyond the black disk limit |f(s, b)| = 1/2 in head-on collisions.
The Pumplin bound (Eq.(10)) is also violated in such collisions and this is not
surprising if one recollects the original ad hoc assumption on the shadow scattering
mode.

3. ANTISHADOW SCATTERING MODE

The basic role in our consideration belongs to unitarity of the scattering
matrix SS+ = 1 which is a reformulation of the probability conservation. In
the impact parameter representation the unitarity equation rewritten for the elastic
scattering amplitude f(s, b) at high energies has the form

Im f(s, b) = |f(s, b)|2 + η(s, b) (11)
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where the inelastic overlap function η(s, b) is the sum of all inelastic channel
contributions. It can be expressed as a sum of nÄparticle production cross sections
at the given impact parameter

η(s, b) =
∑
n

σn(s, b). (12)

As was mentioned assumption of a pure imaginary amplitude is a rather common
approximation at high energies and is adequate for our qualitative analysis. Then
the unitarity Eq.(11) points out that the elastic scattering amplitude at given impact
parameter value is determined by the inelastic processes. Equation (11) implies
the constraint

|f(s, b)| ≤ 1

while the black-disk limit presumes inequality

|f(s, b)| ≤ 1/2.

The equality |f(s, b)| = 1/2 corresponds to maximal absorption in the partial
wave with angular momentum l ' b√s/2.

The maximal absorption limit is chosen a priori in the eikonal method of
unitarization when the scattering amplitude is written in the form:

f(s, b) =
i

2
(1− exp [iω(s, b)]), (13)

and imaginary eikonal ω(s, b) = iΩ(s, b) is considered. The function Ω(s, b) is
called opacity. Eikonal unitarization automatically satisˇes the unitarity Eq.(11)
and in the case of pure imaginary eikonal leads to the amplitude which always
obeys the black-disk limit.

However, unitarity equation has two solutions for the case of pure imaginary
amplitude:

f(s, b) =
i

2
[1±

√
1− 4η(s, b)]. (14)

Eikonal unitarization with pure imaginary eikonal corresponds to the choice of
the particular solution with sign minus.

Several models have been proposed for the eikonal function. For instance,
Regge-type models lead to the Gaussian dependence of Ω(s, b) on impact pa-
rameter. To provide rising total cross sections, opacity should have a power
dependence on energy

Ω(s, b) ∝ s∆ exp [−b2/a(s)], (15)

where a(s) ∼ ln s. In the framework of perturbative QCD-based models the
driving contribution to the opacity is due to jet production in gluon-gluon inter-
actions, when

Ω(s, b) ∝ σjet exp [−µb], (16)
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where σjet ∼ (s/s0)∆. Such parameterizations lead to the rising total and elastic
cross sections and slope parameter:

σtot(s) ∼ σel(s) ∼ B(s) ∼ ln2 s (17)

and the ratio
σel(s)

σtot(s)
→ 1

2
. (18)

To include the mode, where the scattering amplitude exceeds the black-disk
limit, one should consider the eikonal functions with nonzero real parts. To
ensure the transition from shadow to antishadow mode the real part of eikonal
should gain an abrupt increase equal to π at some s = s0. The conventional
models do not foresee such a critical behavior for real part of the eikonal.

However, it does not mean that the eikonal model itself is in trouble. In
particular, the account for uctuations of the eikonal [14] strongly modiˇes the
structure of the amplitude and reduces it to algebraic form which is similar to
that used in the unitarization scheme based on the generalized reaction matrix.

The latter method is based on the relativistic generalization of the Heitler
equation of radiation damping [15]. In this approach the elastic scattering am-
plitude satisˇes unitarity equation since it is constructed as a solution of the
following equation [15]

F = U + iUDF (19)

presented here in the operator form. Eq.(19) allows one to satisfy unitarity
provided the inequality

ImU(s, b) ≥ 0 (20)

is fulˇlled. The form of the amplitude in the impact parameter representation is
the following:

f(s, b) =
U(s, b)

1− iU(s, b)
, (21)

where U(s, b) is the generalized reaction matrix, which is considered as an input
dynamical quantity similar to eikonal function. Similar form for the scattering
amplitude was obtained by Feynman in his parton model of diffractive scattering
[16]. Inelastic overlap function is connected with U(s, b) by the relation

η(s, b) =
ImU(s, b)

|1− iU(s, b)|2 . (22)

Construction of particular models in the framework of the UÄmatrix approach
proceeds with the same steps as it does for the eikonal function, i.e., the basic
dynamics as well as the notions on hadron structure are used to obtain a particular
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form for the U matrix. For example, the Regge-pole approach [17] provides the
following form for the U matrix:

U(s, b) ∝ is∆ exp [−b2/a(s)], a(s) ∼ α′ ln s, (23)

while the chiral quark model which will be discussed below gives the exponential
b dependence

U(s, b) ∝ is∆ exp [−µb], (24)

where µ is the constant proportional to the masses of the constituent quarks. We
have mentioned here only the gross features of those model parameterizations
without going into details.

Both the parameterizations lead to ln2 s rise of the total and elastic cross
sections and slope parameter B(s):

σtot(s) ∼ σel(s) ∼ B(s) ∼ ln2 s (25)

at s→∞. The above results are similar to conclusions of eikonal unitarization.
However, these two unitarization schemes lead to different predictions for

the inelastic cross sections and for the ratio of elastic to total cross section. This
ratio in the UÄmatrix unitarization scheme reaches its maximal possible value at
s→∞, i.e.,

σel(s)

σtot(s)
→ 1, (26)

which reects in fact that the bound for the partial-wave amplitude in the
U -matrix approach is |f | ≤ 1, while the bound for the case of imaginary eikonal
is (black-disk limit): |f | ≤ 1/2.

When the amplitude exceeds the black-disk limit (in central collisions at high
energies), then the scattering at such impact parameters turns out to be of an
antishadow nature. It corresponds to the solution of unitarity equation (11) with
plus sign. In this antishadow scattering mode the elastic amplitude increases with
the decrease of the inelastic channels contribution.

The shadow scattering mode is considered usually as the only possible one.
But the two solutions of the unitarity equation have an equal meaning and the
antishadow scattering mode could also appear in central collisions ˇrst as the
energy becomes higher. Both the scattering modes are realized in a natural way
in the U -matrix approach despite the two modes are described by the two different
solutions of unitarity Eq.(14).

Let us consider the transition to the antishadow scattering mode [18]. With
conventional parameterizations of the U -matrix in the form of Eq. (23) or Eq.(24)
the inelastic overlap function increases with energies at modest values of s. It
reaches its maximum value η(s, b = 0) = 1/4 at some energy s = s0, and
beyond this energy the antishadow scattering mode appears at small values of b.
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The region of energies and impact parameters corresponding to the antishadow
scattering mode is determined by the conditions Im f(s, b) > 1/2 and η(s, b) <
1/4. The quantitative analysis of the experimental data [19] gives the threshold
value of energy:

√
s0 ' 2 TeV.

Thus, the function η(s, b) becomes peripheral when energy is increasing.
At such energies the inelastic overlap function reaches its maximum value at
b = R(s), where R(s) is the interaction radius. So, beyond the transition threshold
there are two regions in impact parameter space: the central region of antishadow
scattering at b < R(s) and the peripheral region of shadow scattering at b > R(s).
At b = R(s) the maximal absorption (black ring) takes place (Fig. 1).

Fig. 1. Shadow and antishadow scattering regions

The transition to the antishadow scattering at small impact parameters at high
energies results also in a relatively slow rise of inelastic cross section:

σinel(s) = 8π

∫ ∞
0

bdb ImU(s, b)

|1− iU(s, b)|2 ∼ ln s (27)

at s→∞.
It should be noted that appearance of the antishadow scattering mode does

not contradict the basic idea that the particle production is the driving force for
elastic scattering. Indeed, the imaginary part of the generalized reaction matrix is
the sum of inelastic channel contributions:

ImU(s, b) =
∑
n

Ūn(s, b), (28)

where n runs over all inelastic states, and

Ūn(s, b) =

∫
dΓn|Un(s, b, {ξn}|2, (29)
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and dΓn is the n-particle element of the phase space volume. The functions
Un(s, b, {ξn}) are determined by the dynamics of 2 → n processes. Thus,
the quantity ImU(s, b) itself is a shadow of the inelastic processes. However,
unitarity leads to selfÄdamping of the inelastic channels [20] and increase of the
function ImU(s, b) results in decrease of the inelastic overlap function η(s, b),
when ImU(s, b) exceeds unity.

At the energies when the antishadow mode starts to develop (it presumably
could already occur at the energies of the Tevatron-Collider) the Pumplin bound
Eq.(10) for inelastic diffraction dissociation cannot be applied since the main
assumption used under its derivation is not valid any more.

4. THE TWO MODES OF HADRON SCATTERING
AND THE PREASYMPTOTIC EFFECTS

In this section we give a speciˇc analysis of the hadron scattering on the basis
of particular model. In Refs.21,22 the notion of an effective chiral quark model
was used for the description of elastic scattering at small and large angles. Hadron
dynamics is considered in the framework of effective Lagrangian approach.

A common feature of the chiral models [23] is the representation of a baryon
as an inner core carrying the baryonic charge and anouter condensate surrounding
this core [24]. Following these observations it is natural to represent a hadron
as consisting of the inner region where valence quarks are located and the outer
region ˇlled with quark condensate [22]. Such a picture for the hadron structure
implies that overlapping and interaction of peripheral condensates in hadron col-
lision occurs at the ˇrst stage. In the overlapping region the condensates interact
and as a result virtual massive quarks appear. Being released part of hadron en-
ergy carried by the peripheral condensates goes to a generation of massive quarks.
Besides mass, quark acquires an internal structure and a ˇnite size. Quark radii
are determined by the radii of the clouds. Strong interaction radius of quark Q is
determined by its Compton wavelength:

rQ = ξ/mQ, (30)

where constant ξ is universal for different avors. In the model valence quarks
located in the central part of a hadron are supposed to scatter in a quasi-indepen-
dent way by the produced virtual massive quarks at given impact parameter and
by the other valence quarks.

The function U(s, b) (generalized reaction matrix) [15] Å the basic dynam-
ical quantity of this approach Å is chosen as a product of the averaged quark
amplitudes

U(s, b) =

N∏
Q=1

〈fQ(s, b)〉 (31)



BEYOND THE BLACK-DISK LIMIT 1281

in accordance with assumed quasi-independent nature of valence quark scattering.
The b dependence of the function 〈fQ〉 related to the quark form factor FQ(q)
has a simple form 〈fQ〉 ∝ exp(−mQb/ξ).

Thus, the generalized reaction matrix (in a pure imaginary case) gets the
following form

U(s, b) = ig

[
1 + α

√
s

mQ

]N
exp (−Mb/ξ), (32)

where M =
∑N

q=1mQ.
At moderate energies s� s0 (where

√
s0 ≡ mQ/α) the function U(s, b) can

be represented in the form

U(s, b) = ig

[
1 +Nα

√
s

mQ

]
exp (−Mb/ξ). (33)

At very high energies s � s0 we could neglect the energy independent term in
(32) and rewrite the expression for U(s, b) as

U(s, b) = ig
(
s/m2

Q

)N/2
exp (−Mb/ξ). (34)

Calculation of the scattering amplitude is based on the impact parameter repre-
sentation and the analysis of singularities of F (s, β) in complex β plane [7].

Besides the energy dependence of these observables we will emphasize its
dependence on geometrical characteristics of nonperturbative quark interactions.

The total cross section has the following energy and quark-mass dependences

σtot(s) =
πξ2

〈mQ〉2
Φ(s,N), (35)

where 〈mQ〉 = 1
N

∑N
Q=1 mQ is the mean value of the constituent quark masses

in the colliding hadrons. The function Φ has the following behavior:

Φ(s,N) =


(
8g/N2

)
[1 +Nα

√
s/mQ] , s� s0,

ln2 s, s� s0.
(36)

Thus, at asymptotically high energies the model provides

lim
s→∞

σtot(āb)

σtot(ab)
= 1.

Linear with
√
s preasymptotic rise of the total cross sections is in agreement

with the experimental data up to
√
s ∼ 0.5 TeV [19].
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The inelastic cross section can be calculated in the model explicitly, viz:

σ|rminel(s) =
8πξ2

N2〈mQ〉2
ln

[
1 + g(1 +

α
√
s

mQ
)N
]
. (37)

At asymptotically high energies the inelastic cross section rise is as follows

σinel(s) =
4πξ2

N〈mQ〉2
ln s. (38)

At s� s0 the dependence of the hadron interaction radius R(s) and the ratio
σel/σtot on 〈mQ〉 is provided by the following equations:

R(s) =
ξ

2〈mQ〉
ln s, (39)

σel(s)

σtot(s)
= 1− 4

N ln s
. (40)

It is important to note here that such a behavior of the ratio σel/σtot and σinel(s)
results from self-damping of inelastic channels [20] at small impact distances.
Numerical estimates [19] show that the ratio σel(s)/σtot(s) becomes close to the
asymptotic value 1 at extremely high energies

√
s = 500 TeV.

Thus, unitarization drastically changes the scattering picture: at lower ener-
gies inelastic channels provide dominant contribution and scattering amplitude has
a shadow origin, while at high energies elastic scattering dominates over inelasic
contribution and the scattering picture corresponds to the antishadow mode. The
functional s dependences of observables also differ signiˇcantly. For example,
s dependence of total cross section at s � s0 is described by a simple linear
function of

√
s. It has been shown that such dependence does not contradict

the experimental data for hadron total cross sections up to
√
s ∼ 0.5 TeV. Such

dependence corresponds to that of the hard Pomeron with ∆ = 0.5, however,
it was obtained in different approach [22]. This is a preasymptotic dependence
and it has nothing to do with the true asymptotics of the total cross sections.
In the model such behavior of the hadronic cross sections reects the energy
dependence of a number of virtual quarks generated under condensate collisions
in the intermediate transient stage of hadronic interaction.

5. ANTISHADOW SCATTERING MODE
AND INELASTIC DIFFRACTIVE PROCESSES

Inelastic diffractive production as well as elastic scattering at low transferred
momenta are the two basic processes which would lead to understanding of
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large distance dynamics and hadron structure. Concerning inelastic diffractive
processes this statement can be traced back to the seminal paper [12], where such
processes were considered as a result of a difference in absorption of various
proton states. Later on, these states have got a parton-like interpretation. New
data were obtained for single diffraction production process

h1 + h2 → h1 + h∗2, (41)

when the hadron h2 is excited to the state h∗2 with invariant mass M and the
same quantum numbers. Its subsequent decay results in the multiparticle ˇnal
state. The inclusive differential cross section shows a simple dependence on the
invariant mass

dσdiff

dM2
∝ 1

M2
. (42)

However, energy dependence of the diffractive production cross section σdiff(s)
is not so evident from the data. This ambiguity is partly due to difˇculties in the
experimental deˇnition of the inelastic diffractive cross section.

The particular experimental regularities observed in diffractive production
can be described in the framework of different approaches. 1/M2 dependence is
naturally described by the triple-pomeron diagrams in the framework of Regge-
model. The proposed in Ref.25 similarity between the Pomeron and photon
exchanges allowed one to calculate diffractive dissociation cross section in terms
of structure function νW2 measured in deep inelastic lepton scattering. Several
models use optical picture for the description of diffractive production [26] but
these models in large extent concern the angular distribution of diffractive cross
section and M2 dependence is left beyond their scope. The attempt to explain M2

dependence in the framework of optical model, considering diffractive dissociation
as a bremsstrahlung where virtual quanta are released from a strong ˇeld was made
in Ref.27.

In this section for description of single diffractive processes we use model
approach described in section 4.

To obtain the cross section of the diffractive dissociation process we should
single out among the ˇnal states in Eq.(28) those corresponding to the process
(41). Let us for simplicity consider again the case of pure imaginary U matrix.
Then we can represent dσdiff/dM

2 in the following form

dσdiff

dM2
= 8π

∫ ∞
0

bdb
Udiff(s, b,M)

[1 + U(s, b)]2
, (43)

where expression for Udiff(s, b,M) includes contributions from all the ˇnal states
|n〉diff which results from the decay of the excited hadron h∗2 of mass M : h∗2 →
|n〉diff .
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For consideration of the diffractive production at the quark level we extend the
picture for hadron interaction for elastic scattering, described in section 4. Since
the constituent quark is an extended object there is a nonzero probability of its
excitation at the ˇrst stage of hadron collision during the interaction of peripheral
condensates. Therefore it is natural to assume that the origin of diffractive
production process is the excitation of one of the valence quarks in colliding
hadron: Q → Q∗, its subsequent scattering and decay into the ˇnal state. The
excited constituent quark is scattered similar to other valence quarks in a quasi-
independent way. The function Udiff(s, b,M) can be represented then as a product

Udiff(s, b,M) = 〈fQ∗(s, b,MQ∗)〉
N−1∏
Q=1

〈fQ(s, b)〉, (44)

where MQ∗ is the mass of excited constituent quark, which is proportional to
the mass M of excited hadron h∗2 for large values of M . The last statement
presumes the additivity of constituent quark masses. The b dependence of the
amplitude 〈fQ∗〉 is related to the form factor of excited quark whose radius is
determined by its mass MQ∗ (rQ∗ = ξ/MQ∗). The expression for Udiff(s, b,M)
can be rewritten then in the following form:

Udiff(s, b,M) = g∗U(s, b) exp [−(MQ∗ −mQ)b/ξ], (45)

where constant g∗ is proportional to the relative probability of excitation of the
constituent quark. The value of g∗ is a nonzero one, however, g∗ < 1 since we
expect that the excitation of any constituent quark has lower probability compared
to probability for this quark to stay unexcited. The excited quark is not stable
and its subsequent decay is associated with the decay of excited hadron h∗2 into
the multiparticle ˇnal state |n〉diff .

The cross section of diffractive dissociation process is given by expression
(43) and has the following s- and M2 dependences

dσdiff

dM2
' 8πg∗ξ2

(MQ∗ −m2
Q)2

η(s, 0) ' 8πg∗ξ2

M2
η(s, 0). (46)

Thus, we obtained the familiar 1/M2 dependence of the diffraction cross section
which is related in this model to the geometrical size of excited constituent quark.

The double dissociation processes

h1 + h2 → h∗1 + h∗2 (47)

can be considered on the grounds of previous approach to the single diffractive
dissociation. Here one of the constituent quarks in each of the colliding hadrons
should be excited. The cross section of double diffraction process has similar



BEYOND THE BLACK-DISK LIMIT 1285

M2 and s dependences and is to be suppressed in comparison with the single
diffractive cross section by an extra factor g∗ < 1.

The energy dependence of single diffractive cross section has the following
form

σdiff(s) = 8πg∗ξ2η(s, 0)

∫ M2
1

M2
0

dM2

M2
= 8πg∗ξ2η(s, 0) ln

s(1− x1)

M2
0

, (48)

where x1 is the lower limit of the relative momentum of hadron h1(x1 ' 0.8−0.9)
which corresponds to the experimental constraint on diffractive process. Eq. (48)
shows that the total cross section of diffractive dissociation has a nontrivial energy
dependence which is determined by the contribution of inelastic channels into
unitarity equation at zero value of impact parameter. The dependence of η(s, 0)
is determined by Eq. (22), where expression for U(s, b) is given by Eq. (32).
At s ≤ s0, (s0 is determined by equation |U(s0, 0)| = 1) η(s, 0) increases with
energy. This increase as it follows from Eq. (32) and from the experimental
data [28] is rather slow one. However at s ≥ s0, η(s, 0) reaches its maximum
value η(s, 0) = 1/4 and at s > s0, the function η(s, 0) decreases with energy. At
s→∞:

σdiff(s) ∝
(

1√
s

)N
ln s (49)

since η(s, 0) ∝ (1/
√
s)
N

in this limit.
Thus at asymptotical energies the inelastic diffraction cross section drops to

zero. Decrease of diffractive production cross section at high energies (s > s0)
is due to the fact that η(s, b) becomes peripheral at s > s0 and the whole picture
corresponds to the antishadow scattering at b < R(s) and to the shadow scattering
at b > R(s), where R(s) is the interaction radius. The qulitative behavior of
σdiff(s) is shown in Fig.2.

Fig. 2. Energy dependence of diffractive cross section

The development of the antishadow mode in head-on pp- and pp̄ collisions
could be associated with new phenomena in the central hadronic collisions, where
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the temperatures are high and the energy density can be up to several GeV/fm3.
In such collisions the constituent quarks have noticeable probability to be excited.
Due to its high mass and small transverse size the excited state has low probability
of interactions with other particles. It may be also related to an interesting
phenomena in cosmic ray experiments where particles with abnormal persistency
in lead chambers were observed [29].

Of course, there might be different reasons for decrease of σdiff(s). The
decreasing energy dependence of σdiff(s) was also predicted in Refs.30,31. As
was pointed out in Ref.12 in the limit of complete absorption the diffractive dis-
sociation should vanish. It was advocated in Ref.14 that this situation will occur
at superhigh energies and it is the reason for decrease of inelastic diffractive cross
section. This is completely the same behavior as is predicted by the model pre-
sented, however in our case the reason for that is the transition to the antishadow
scattering mode in head-on collisions in the multi-TeV energy range. It should
be noted, however, that the diffractive cross section at preasymptotic energies
has a similar to total and elastic cross-section energy dependence and it will be
discussed in the concluding part of this paper.

6. UNIVERSAL PREASYMPTOTICS

The straitforward interpretation of the recent HERA data on the deep-inelastic
scattering together with the analysis of the data on hadron-hadron scattering in
terms of the Regge model could lead to the unexpected conclusion on the existence
of the various Pomerons [32] or the various manifestations of unique Pomeron in
the different processes depending on the typical scale of the process [33]. The
approaches [34, 35] contending the dominance of the soft Pomeron do not rule
out existence of the hard Pomeron either.

Indeed, soft hadronic reactions imply that Pomeron's intercept αP = 1.08
[32], and small-x dependence of the structure function F2(x,Q2) leads to αP =
1.4-1.5 [36, 37] and the measurements of the diffractive cross section in the
deep-inelastic scattering provide αP = 1.23 [38]. So, does this mean that we
have few Pomerons or we have few different manifestations of the same Pomeron
depending on the particular process? Probably both options are not to be con-
sidered as the ˇrm ones, since the experimental data used to advocate these
statements were obtained at not high enough energies where, in fact, the preas-
ymptotic regime of interactions does take place. The above conclusions are based
on the presumed dominance of the Pomeron contribution already in the preas-
ymptotic energy region. What is called a Pomeron is to be interpreted as a true
asymptotical contribution of the driving mechanism.

In this section we argue that all the three classes of the processes described
above are related to the similar mechanisms, and the corresponding energy de-
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pendence of the cross sections can be well described by the universal functional
energy dependence of the type a + b

√
s. Such dependence is valid for the

preasymptotic energy region only and beyond this region unitarity changes the
picture drastically. We consider for illustration the unitarized chiral quark model
(section 4).

Fit to the total hp cross sections gives small values for the parameters g and
α(g, α� 1) [19]. It means that at s� s0 the second term in the square brackets
in Eqs. (21) and (22) is small and we can expand over it. The numerical value
of s0 is determined by the equation |U(s, 0)| = 1 and is [19]

√
s0 ' 2 TeV. At

this energy the amplitude has the value |f(s0, 0)| = 1/2. The value of s0 is
on the verge of the preasymptotic energy region, i.e., the Tevatron energy is at
the beginning of the road to the asymptotics. Evidently the HERA energy range
W (=

√
sγp) ≤ 300 GeV is in a preasymptotic domain.

The above model gives the linear with
√
s dependence for the total cross

sections according to Eqs. (21) and (22):

σhp,γptot = a+ b
√
s, (50)

where parameters a and b are different for different processes and the same is
true for the scale s0. It was shown [19] that Eq.(50) is in good agreement with
the experimental data.

The same dependence for the total cross section of γ∗p scattering is assumed
by the smallÄx behavior of the structure function F2(x,Q2) [36,37] and obtained
in [39]:

F2(x,Q2) = a(Q2) + b(Q2)/
√
x. (51)

The experimental data also indicate the critical behavior of the function b(Q2) at
Q2 ' 1 (GeV/c)2. This scale could be related to the radius of a constituent quark
and its structure.

The third value for the Pomeron intercept αP = 1.23 has been obtained from
the analysis of the experimental data on the diffractive cross section in deep-
inelastic scattering [38] where the dependence of dσdiff

γ∗p→XN/dM
2
X on W was

parameterized according to the Regge model and the Pomeron dominance has
been assumed:

dσdiff
γ∗p→XN/dM

2
X ∝ (W 2)2αP−2. (52)

The data demonstrate linear rise of the differential cross section
dσdiff

γ∗p→XN/dM
2
X with W , i.e., we observe here just the same functional de-

pendence on the c.m.s. energy as for σhp,γp,γ
∗p

tot . Regarding the preasymptotic
nature of the interaction mode we arrive to the universal c.m.s. energy dependence
in the framework of the used model.



1288 TROSHIN S.M., TYURIN N.E.

Indeed, in the framework of this model the hadron inelastic diffractive cross
section is given by the following expression [40]:

dσdiff
hp→XN
dM2

X

' 8πg∗ξ2

M2
X

η(s, 0), (53)

where
η(s, b) = ImU(s, b)/[1− iU(s, b)]2

is the inelastic overlap function.
At the preasymptotic energies s � s0 the energy dependence of inelastic

diffractive cross section resulting from Eq. (22) is again determined by the
generic form

dσdiff
hp→XN
dM2

X

∝ a+ b
√
s. (54)

Inelastic diffractive cross section for the γ∗p interactions can be obtained using
for example VMD model, i.e.,

dσdiff
γ∗p→XN
dM2

X

∝ a(Q2) + b(Q2)W. (55)

The same functional dependence can be obtained using the ªaligned jetª model
[41] along with the unitarized chiral quark model [42].

The above linear dependences for the cross sections of different processes
is the generic feature associated with the preasymptotic nature of the interaction
dynamics at s� s0. As one goes above this energy range, the function |U(s, b)|
is rising and when |U(s, 0)| ≥ 1, the unitarity starts to play the major role and
provides the ln2 s rise of the total cross sections at s � s0 [42] and also the
following behavior of the structure function F2(x,Q2)

F2(x,Q2) ∝ ln2(1/x) (56)

at x→ 0 [39]. At the same time unitarity leads to the decreasing dependence of
the inelastic diffractive cross section at s→∞

dσdiff

dM2
X

∝
(

1√
s

)N
, (57)

for the hp-, γp- and γ∗p processes [40]. Eq. (57) is associated with the anti-
shadow scattering mode which develops at small impact parameters at s > s0.

Thus, we might expect the different asymptotic and universal preasymptotic
behaviors for the different classes of the diffraction processes.

To summarize, we would like to emphasize that the uniˇed description of
the processes of hp-, γp- and γ∗p- diffraction scattering with the universal cross
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section dependence on the c.m.s. interaction energy is possible. For illustration
we used the unitarized chiral quark model which has a nonperturbative origin and
leads to the linear c.m.s. energy dependence of the cross sections in the preasymp-
totic energy region for the above processes. Universality of such preasymptotic
behavior agrees with the experiment.

The assumption on the existence of the different Pomerons results from the
use of the asymptotic formulas in the preasymptotic energy region and the neglect
of the unitarity at higher energies beyond this preasymptotic region. It should be
taken with certain caution.

CONCLUSION

Studies of soft interactions at the highest energies can lead to the discoveries
of fundamental importance. The genesis of hadron scattering with rising energy
can be described as transition from the grey to black-disk and eventually to black
ring with the antishadow scattering mode in the centre. Such transitions are under
control of unitarity of the scattering matrix.

The appearance of antishadow scattering mode could be revealed performing
impact parameter analysis of elastic scattering and directly in the measurements
of the inelastic diffractive cross section (cf. Figs. 1,2).

It would be interesting to speculate on the particular physical origin of the
antishadow scattering mode. Its existence can be correlated with the new phenom-
ena expected at high energies in the central hadronic collisions. Such collisions
are usually associated with the formation of quarkÄgluon plasma and disoriented
chiral condensate in the inner part of the interaction region. What are the partic-
ular correlations between those phenomena and the antishadow scattering? The
answer can be obtained in the nonperturbative QCD studies and in the experi-
ments devoted to studies of soft processes at LHC and VLHC. It seems that the
anomalies observed in cosmic ray experiments [29] might also be correlated with
development of the antishadow scattering mode in the central hadron collisions.

This work was supported in part by the Russian Foundation for Basic Re-
search under Grant No. 99-02-17995.
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