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It is shown that Fock's theory of hydrogen atom gives an example of the nonrelativistic Snyder-
like Quantum Geometry (QG).
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1. INTRODUCTON

Fock's theory of hydrogen atom [1] is a very bright landmark in the history
of quantum theory. Many physicists trust that the meaning of this theory is much
more general and important than the explanation of the symmetry of one speciˇc
atomic system though very important one. They believe that its actual meaning
still must be understood, that it contains some ªsignal from the futureª, some
features of the true quantum theory of particle interactions. The search for this
more general sense of [1] can only be based on attempts to develop Fock's idea
in this or in that way, making ªexperimentsª on it, for example, generalizing it to
the case of the relativistic quantum (ˇeld) theory. And attempts to interpret [1]
in a new sense take place indeed. Works based on the historical paper [1] have
permanently appeared since the time it was published in 1935, certifying the faith
of the authors in its more profound destination.

In the present paper an attempt has been made to look at Fock's approach
from the point of view of Quantum Geometry and noncommutative differential
calculus. This work is a development of the article [9].

There are no grounds to transfer the geometric notions derived from the
macroscopic experience to small (microscopic) distances. From the philosophical
point of view this question has been discussed since ancient times. The term
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ª′αµερosª has been introduced simultaneously with ª′ατoµosª and denotes the
smallest, indivisible portion of the space.

The suggestions to consider geometry as a subject of quantization naturally
appeared almost simultaneously with quantum theory itself. So, Quantum Geom-
etry (QG) is as old as quantum theory itself. One of the ˇrst QG models was
suggested by H.Snyder [2,3]. In this approach usual commuting position operators
were changed for the noncommuting quantities of a concrete form. W.Pauli [3]
stressed that new Snyder's coordinate operators could be considered as boosts of
the momentum space of constant curvature (De Sitter or Anti De Sitter momen-
tum space). In other words, the Snyder quantization of space-time is based on
the substitution of the pseudo-Euclidean geometry of the momentum space by the
De Sitter geometry.

To be more exact, actually Snyder didn't use the connection of his quantum
coordinates with generators of the isometry group of the curved momentum space
(see [3]). The idea to consider the momentum space with non-Euclidean geometry
as a cornerstone of the theory with quantum space-time belongs to Yu.A.Golfand
[5] and was developed by I.E.Tamm [6] and others [7Ä12].

Such a change of the geometry of the momentum space leads to the modi-
ˇcation of the procedure of extension of the S matrix off the mass shell [11], i.e.,
to the different dynamical description. In fact, the statement on the geometry of
the momentum space off the mass shell is an additional axiom of quantum ˇeld
theory (QFT). Actually in the standard QFT, this axiom is accepted without saying.
In the nonrelativistic theory, the extension off the energy shell on the ground of
Schréodinger equation in the momentum space and LippmannÄSchwinger equation
must be considered.

We can think that some background interaction exists, which modiˇes the
geometry of the momentum space. See in this connection Ref. 8. As we have
stressed above, all other axioms are fulˇlled, including the standard translation
invariance. The last means that there are relative coordinates (properly deˇned)
which are the subjects of quantization [11]. In consequence of the change of the
geometry of the p space, the space-time becomes quantum (noncommutative).

We stress that physical meaning of the geometry and topology of the mo-
mentum space has not obtained clear physical interpretation yet. The space-time
groups considered in QFT as the covariance groups are the isometry groups of
space-time.

It is worth mentioning a series of recent papers [14Ä16] where it has been
shown that the curved momentum space and the corresponding Snyder-like quan-
tum space naturally arise when considering the 2+1 model of gravity interacting
with the scalar ˇeld. (The canonical momenta belong to the hyperboloid in
four-dimensional projective hyperboloid.)

The explicit character of Snyder's approach to space-time quantization has
a remarkable consequence: we can deˇne the spectrum of a commutative set
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of operators constructed from
∧
xµ and other generators of the De Sitter group.

As was shown in [11], the formulation of the generalized causality condition
and QFT in terms of the points of this new numerical quantum space-time is as
comprehensive procedure as it is in the usual QFT with the Minkovskian space-
time. In this approach the structure of the singular ˇeld-theoretic functions is
entirely reconstructed as compared to the standard QFT, and the corresponding
perturbation theory is free of ultraviolet divergences.

In the present paper, we shall use Fock's theory of hydrogen atom symme-
try to show that it is in fact the realization of the picture described above in the
nonrelativistic case: The Coulomb ˇeld fulˇlls the role of the background interac-
tion mentioned above, which provides the non-Euclidean geometry of momentum
space. The modiˇed shifts of the last (which are up to some similarity transfor-
mation the RungeÄLenz vector's components) can be considered as nonrelativistic
analogs of Snyder's coordinates (2).

The paper is organized as follows. In Section 2, we consider Snyder's
theory. In Section 3, we recall brie�y the necessary moments of Fock's theory
of hydrogen atom. Sections 4, 5 are devoted to the analysis of the spectrum
and matrix elements of unitary irreducible representations of the isometry group
of momentum space and the interpretation of the spectrum as quantum space
(QS) is given. It is shown that the Schréodinger equation in QS is a differential-
difference equation with the increment equal to Bohr's radius. In Section 6, an
introduction to the noncommutative differential calculus with impact to apply it
to the Schréodinger equation in QS is given. Section 7 contains the theory of the
Schréodinger equation in QS as a noncommutative differential equation in QS. In
the last 8th Section an example of integrable case (q-oscillator) of the generalized
Schréodinger equation is given.

2. SNYDER APPROACH

In this approach the usual quantum mechanical coordinate operators

xµ = i�
∂

∂pµ
, µ = 0, 1, 2, 3, gµν = diag(1,−1,−1,−1), (1)

i.e., the generators of translations of the Minkovski momentum space, are substi-

tuted by Snyder quantum coordinates
∧
xµ, i.e., the generators of De Sitter boosts:

∧
xµ= il0

(
p4

∂

∂pµ
− pµ

∂

∂p4

)
,

[∧
xµ,

∧
xν

]
= −il20

∧
Mµν , (2)

where l0 , the ªfundamental lengthª, indicates the scale at which the effects of
QG become appreciable. A plausible candidate for this role is Planck's length

lPlanck =
√

c�

G .
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3. FOCK'S THEORY OF HYDROGEN ATOM

The Schréodinger equation for Hydrogen atom (we limit ourselves with the
case of continuum part of spectrum)

Hψ(
→
x) =


Ep − e2∣∣∣→x ∣∣∣


ψ(

→
x) = Eqψ(

→
x ) =

q2

2µ
ψ(

→
x ), (3)

where Ep = p2

2µ , Eq = q2

2µ , in the momentum representation takes the form

(
p2 − q2

)
ψ(

→
p ) =

�

π2a

∫
d3p′ ψ(

→
p′)∣∣∣→p′ − →

p
∣∣∣2 , (4)

where a is the atomic unit of length (Bohr's radius)

a =
�2

µe2
. (5)

Recall that atomic units of energy, momentum and time are correspondingly

ea =
µe4

�2
, πa =

µe2

�
, τa =

�3

µe4
. (6)

Following V.A.Fock [1] we take into account the non-Euclidean geome-
try of momentum space, naturally arising here. For the continuous part of
the energy spectrum it is pseudo-Euclidean 3-dimensional space of negative
curvature (Lobachevsky space). Introducing 4-dimensional projective momenta
Pµ (µ = 0, 1, 2, 3) we have

→
P=

2q
→
p

→
p

2

−q2

, P0 =
→
p

2

+q2

→
p

2

−q2

, q =
√

2µE , (7)

P 2
0−

→
P

2

= 1 , (8)

or inverse relation
→
p=

q
→
P

P0 − 1
, p2 = q2 P0 + 1

P0 − 1
. (9)

Equation (8) describes the two-sheet hyperboloid (the upper sheet corresponds
to 1 ≤ P0 < +∞; the lower pole, to −∞ < P0 ≤ −1 ).
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It is convenient to use the hyperspherical coordinates

→
P= sinhα

→
n, P0 = ± coshα,

→
n=

→
P∣∣∣→P ∣∣∣ = (sin θ cosφ, sin θ sin φ, cos θ) . (10)

The volume element in the Lobachevsky space is

dΩP =
d3P

|P0|
= sinh 2α sin θdαdθdφ. (11)

The distance s(P, P ′) of two points of the Lobachevsky space (8) is
given by

cosh s(P, P ′) =

∣∣∣∣∣1 − (P − P ′)2

2

∣∣∣∣∣ . (12)

In terms of Pµ equation (4) takes the form

Φr(P ) =
r

2π2a

∫
dΩP ′

(P − P ′)2
Φr(P ′), (13)

where

Φr(P ) = (p2 − q2)2ψ(
→
p ), r =

�

q
. (14)

This equation is manifestly invariant under the group of motions of the
Lobachevsky momentum space which is Lorentz group. The generators of the
Lorentz group boosts

∧
xi= −i

[
P0

∂

∂P i
− Pi

∂

∂P 0

]
(15)

up to some similarity transformation coincide with the additional integrals of
motion of the Coulomb problem, i.e., RungeÄLenz invariants. From the other
side their similarity to Snyder coordinates (2) is evident.

4. WAVE FUNCTIONS AND DIFFERENTIAL-DIFFERENCE
SCHRéODINGER EQUATION IN QUANTUM SPACE

As was shown by V.A.Fock [1] the solutions of the Schréodinger equation in
momentum space (13) are the eigen-functions of the LaplaceÄBeltrami operator
on the Lobachevsky space (8), or the Casimir operator of the Lorentz group:(

→
x

2
− 1

�2

→
L

2
)

Φr(P ) =
(

1 +
r2

a2

)
Φr(P ), (16)
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where
→
L is the vector of angular momentum operators. The solutions of (16) are

the matrix elements of unitary irreducible (inˇnite dimensional) representations
of the Lorentz group. For the principal series of unitary representations of the
Lorentz group the parameter r runs over the interval

0 ≤ r < ∞ (17)

which coincides with the physically admissible region of variation (see (14)).
From the other side the interval (17) is the range of variation of the relative
distance in the three-dimensional Euclidean space. Taking these properties of r
into account we interpret the parameter r as the relative distance in the quantum
space [8,10].

Let us consider the quantities

Φr(P ) =<
→
r |

→
P>=

∣∣∣P0−
→
P

→
nr

∣∣∣−1−i r
a

, (18)

where
→
r = r

→
nr,

→
nr

2
= 1. (19)

Expression (18) from the one hand is the solution of the equation (16),
from the other hand it is the generating function for the radial solutions of the
Schréodinger equation in the momentum space (13). The expression (18) plays the
role of the plane wave in quantum r space. The radial solutions of the Schréodinger
equation in the momentum space can be obtained from the expansion in spherical
harmonics:

<
→
r |

→
P>= 4π

∞∑
l=0

m=l∑
m=−l

il < ρ, l, | α ><
→
nr| l, m >< l, m |→n>, (20)

where ρ is the dimensionless parameter:

ρ =
r

a
(21)

and

< l, m |→n>=< l, m | θ, φ >= Ylm(
→
n), <

→
n | l, m >= Y ∗

lm(
→
n). (22)

The functions < ρ, l | α > are the radial wave functions of the Coulomb
problem in the momentum space. They can be obtained also as the Fourier trans-
forms of the radial solutions in conˇgurational space. We present the different

representations of < ρ, l | α > in terms of Legendre functions P
−l− 1

2
iρ− 1

2
(coshα) :

< ρ, l | α >= (−i)l

√
π

2 sinhα

Γ(iρ + l + 1)
Γ(iρ + 1)

P
−l− 1

2
iρ− 1

2
(coshα) , (23)
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the Gegenbauer functions Cl+1
iρ−l−1 (coshα) :

< ρ, l | α >=

(−i)l

√
π

2 sinh α

(
sinh α

2

)l+ 1
2 Γ (2l + 2)Γ(iρ − l)

Γ(iρ + 1)Γ(l + 3
2 )

Cl+1
iρ−l−1 (coshα) , (24)

and hypergeometric function 2F1 (α, β; γ; z) :

< ρ, l | α >= (−i)l

√
π

2 sinhα

(
sinhα

2

)l+ 1
2 Γ(iρ + l + 1)

Γ(iρ + 1)Γ(l + 3
2 )

×

(25)

×2F1

(
iρ + l + 1,−iρ + l + 1; l +

3
2
;− sinh 2 α

2

)
=

= (−i)l

√
π

2 sinhα

(
sinh α

2

)l+ 1
2 Γ(iρ + l + 1)

Γ(iρ + 1)Γ(l + 3
2 )

eα(iρ−l−1)×

(26)

× 2F1

(
−iρ + l + 1, l + 1; 2l + 2; 2e−α sinh α

)
=

=
√

π

2

(
−i

sinhα

2

)l Γ(iρ + l + 1)
Γ(iρ + 1)Γ(l + 3

2 )
×

(27)

×2F1

(
iρ + l + 1

2
,
−iρ + l + 1

2
; l +

3
2
;− sinh 2α

)
.

These different representations are convenient for performing the contraction
limit when we consider in the next section the correspondence with usual (non-
quantum) space limit. The following orthogonality and completeness conditions
for the radial solutions are valid

2
π

∫ ∞

0

sinh 2α dα < ρ, l | α >< α | ρ′, l >=
δ (ρ − ρ′)

ρ2
, (28)

2
π

∫ ∞

0

ρ2dρ < α | ρ, l >< ρ, l | α′ >=
δ (α − α′)
sinh 2α

, (29)
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and corresponding conditions for the plane waves (18):

1
(2π)3

∫
<

→
r |

→
P><

→
P |

→
r′> dΩP = δ

(
→
r −

→
r′
)

, (30)

1
(2π)3

∫
<

→
P |→r ><

→
r |

→
P ′> d3r = δ

(
→
P −

→
P ′
)

P0. (31)

The plane wave in quantum space and its radial part obey the following
equations off the energy shell, i.e., for Ep �= Eq or p �= q:

ea

[
cosh

(
i

∂

∂ρ

)
+

i

ρ
sinh

(
i

∂

∂ρ

)
− ∆θ,φ

ρ2
ei ∂

∂ρ − 1
]

<
→
r |

→
P>=

=
∧
H0<

→
r |

→
P>= EP <

→
r |

→
P>, (32)

ea

[
cosh

(
i

∂

∂ρ

)
+

i

ρ
sinh

(
i

∂

∂ρ

)
− l(l + 1)

ρ2
ei ∂

∂ρ − 1
]

< ρ, l | α >=

=
(

∧
H0l −EP

)
< ρ, l | α >, (33)

where EP = ea (|P0| − 1) = 2ea sinh 2 α
2 , ea = µe4

�2 is the atomic unit of

energy. The strong argument for the idea that plane wave <
→
r |

→
P> describes the

free motion in the quantum r space is the existence of three more differential-

difference operators
∧
pi for which <

→
r |

→
P> is the eigenfunction with eigenvalues

equal to the momentum components

∧
pi<

→
r |

→
P>= pi <

→
r |

→
P>, (34)

where

∧
p1= πa

{
sin θ cosφ

(
ei ∂

∂ρ −
∧
H0

)
− i

(
cos θ cosφ

ρ

∂

∂θ
− sin φ

ρ sin θ

∂

∂φ

)
ei ∂

∂ρ

}
∧
p2= πa

{
sin θ sin φ

(
eiρ ∂

∂ρ −
∧
H0

)
− i

(
cos θ sinφ

ρ

∂

∂θ
+

cosφ

ρ sin θ

∂

∂φ

)
ei ∂

∂ρ

}
∧
p3= πa

{
− cos θ

(
ei ∂

∂ρ −
∧
H0

)
+ i

sin θ

ρ

∂

∂θ
ei ∂

∂ρ

}
(35)

πa = µe2

�
is the atomic unit of momentum.

It looks now quite natural to make the next step and introduce the interaction
term V (r) into the free differential-difference Schréodinger equation in quantum
space (32). From the usual point of view this corresponds to some perturbations
for the Coulomb potential. We stress that there are even integrable cases for such
differential-difference equations (see [13] and references therein).
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5. CONTRACTION

The important requirement to the theory with curved momentum space is
its correspondence with the usual theory. In the physical regime, when we can
neglect the effects of curvature, all relations must go over into the usual ones.
Let us ˇrst analyse this problem in the momentum space (7). The vicinities of
the tops of both poles

P0 ≈ ±1 (36)

carry the �at geometry. For these regions we are in the regime when the InéonéuÄ
Wigner contraction [17] is an actual approach. For example Snyder's quantum
coordinate operators (15) go over into usual coordinate operators (1) in these
regions.

The tops of the hyperboloid (8) are:

P0 = 1 or q ∼= 0, i.e. ρ � πa∣∣∣→p ∣∣∣ , (37)

P0 = −1 or q → ∞, i.e.
∣∣∣→p ∣∣∣	 πa

ρ
. (38)

In classical physics the small p-s correspond to great impact parameters. In
this regime the scattered particle slightly feels the Coulomb ˇeld. In the case
of the bound states we must consider the orbits corresponding to big values of
principal quantum number n. In the contraction limit all ˇnite-difference relations
reduce to standard differential relations of Quantum Mechanics. For example the
differential-difference operators of momentum (35) reduce to usual momentum
operators

∧
pi e

i
→
r

→
P

� = −i�
∂

∂xi
e

i
→
r

→
p

� = pie
i
→
r

→
p

� , (39)

and the plane wave (18) converts to usual exponential function:∣∣∣P0−
→
P

→
nr

∣∣∣−1−i r
a

<
→
r |

→
P>= exp

{
−
(
1 + i

r

a

)
ln
(
P0−

→
P

→
nr

)}
≈

(40)

≈ exp
{
−
(
1 + i

r

a

)
ln
(
1−

→
P

→
nr + · ··

)}
≈

≈ exp
{
i
r

a

→
P

→
nr + · ··

}
≈ ei

→
P

→
x

� .
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6. NONCOMMUTATIVE DIFFERENTIAL CALCULUS AND
FINITE-DIFFERENCE DERIVATIVES

We start this section with an historical remark. Referring to the second
Snyder's paper on quantum space (the second paper of [2]) we invite the reader
to convince that his generalization of Maxwell's equations for the case of QG is
based, in fact, on a version of the noncommutative differential calculus.

Let us show that the ˇnite-difference Schréodinger equation (33) is natu-
rally described in terms of noncommutative differential calculus [18Ä23]. This
calculus can be naturally and most easily introduced on a ground of the theory of
differential forms as its deformation. We shall limit ourselves with the differential
calculus over the associative algebra A over R or C. In our case the necessity
to consider an algebra over C follows from the form of the ˇnite-difference
Schréodinger equation, containing shifts by the imaginary quantity ia. This is
general property of the ˇnite-difference Schréodinger equation (33) corresponding
to the continuous part of the spectrum of hydrogen atom, requiring to consider the
wave functions in the complex ρ plane. Finite linear combinations of elements of
A and ˇnite products are again elements of A. The multiplication is associative.
A differential calculus on A is a Z-graded associative algebra over C

Ω (A) =
∑
r=0

⊕ Ωr (A) , (41)

Ω0 (A) = A, Ωr (A) = {0} ∀r < 0. (42)

The elements of Ωr (A) are called r forms. There exist an exterior derivative
operator d which satisˇes the following conditions

d2 = 0 (43)

and
d (ωω′) = (dω)ω′ + (−1)rωdω′, (44)

where ω and ω′ are r and r′ forms, respectively. A is the commutative algebra
generated by the coordinate functions xi, i = 1, ...n. In the standard differential
calculus on usual manifolds differentials commute with functions:[

xi, dxj
]

= 0, i, j = 1, ...n (45)

in terms of real coordinates xi . For us it is essential that (45) can be generalized
(deformed) in different ways with (41)Ä(44) still true. Let us consider in more
detail the deformation of (45) of the form[

xi, xj
]

= 0, (46)
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[
xi, dxj

]
=

n∑
k=1

dxkCij
k, (47)

where the Cij
k are (complex) constants which are constrained by the requirement

of a consistent differential calculus.
• Let us apply d to (46) and use (47), this gives

d
[
xi, xj

]
= −

[
xj , d xi

]
+
[
xi, d xj

]
=

(48)

= −
n∑

k=1

dxkCji
k +

n∑
k=1

dxkCij
k = 0,

or
Cij

k = Cji
k. (49)

This means in particular [
xi, dxj

]
=
[
xj , dxi

]
. (50)

The last relation can be proved directly:[
xi, dxj

]
=
(
dxi
)
xj − xjdxi =

(51)

= d
(
xixj − xjxi

)︸ ︷︷ ︸
=0

+xjdxi − xidxj =
[
xj , dxi

]
.

• Taking the commutator of dxi with (46) we obtain[[
xi, dxj

]
, dxk

]
=

= xi

{
dxkxj +

n∑
l=1

dxlCjk
l

}
− xj

{
dxkxi +

n∑
l=1

dxlCik
l

}
−

−dxk
(
xixj − xjxi

)
={

dxkxi +
n∑

m=1

dxmCik
m

}
xj +

n∑
l=1

{
dxlxi +

n∑
m=1

dxmCil
m

}
Cjk

l− (52)

{
dxkxj +

n∑
m=1

dxmCjk
m

}
xi −

n∑
l=1

{
dxlxj +

n∑
m=1

dxmCjl
m

}
Cik

l−
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dxk
(
xixj − xjxi

)
=

n∑
l,m=1

dxm
(
Cil

mCjk
l − Cjl

mCik
m

)
= 0,

or
n∑

l=1

Cik
lC

jl
m =

n∑
l=1

Cjk
l Cil

m, (53)

using (49) the last equation can also be written in a form

n∑
l=1

Ck[i
lC

j]l
m = 0. (54)

This means that n matrices Ci with entries Cik
l mutually commute.

• Taking the commutator of xk with (47) also yields (53) and therefore no
additional conditions.

Acting with d on (47) and using the Leibniz rule (44) we obtain the classical
commutation rule

dxidxj = −dxjdxi (55)

for differentials. The equations obtained by commuting xk through these relations
are identically satisˇed.

The Hodge ∗ operator (or duality transformation) for the noncommutative
differential forms is introduced by the standard formula

∗
(
dxi1 · · · dxik

)
=

1
(n − k)!

∑
εi1 ···ikik+1 ···in dxik+1 · · · dxin . (56)

For convenience we shall make difference between right
→∗ and left

←∗ Hodge

operators. By deˇnition
→∗ acts on the forms of the type∑(

dxi1 · · · dxik f(x)
)
, (57)

←∗ acts on the forms of the type∑(
f(x) dxi1 · · · dxik

)
(58)

in both cases by the standard formula (56). Action of the operator
→∗ on the forms

of the type (58) and action of the operator
←∗ on the forms of the type (57) gives

0. Correspondingly we introduce right and left δ operations

→
δ =

→∗ d
→∗ ,

←
δ =

←∗ d
←∗ . (59)

Let A be the algebra of all functions on C. In what follows we consider
the one-dimensonal case. It is generated by canonical coordinate function of one
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variable ψ(ρ) = ρ. One of the simplest deformations of the ordinary differential
calculus on A is

[dρ, ρ] =
i

2
dρ, (60)

where i (in dimensional units ia) is the step in the ˇnite-difference Schréodinger
equation. To establish the connection between the noncommutative differen-
tial calculus and ˇnite-difference operations (in Schréodinger eq.) is our goal
here. This is a special case of the commutation structure (47) considered above.
Similar relations are encountered when considering the differential calculus on
the lattice [18Ä23]. Equation (60) can be rewritten in a form

dρ ρ =
(

ρ +
i

2

)
dρ , (61)

which can be generalized to the total algebra A as

dρ ψ(ρ) = ψ

(
ρ +

i

2

)
dρ . (62)

Then we can introduce the generalized derivatives (left and right) correspond-
ing to our deformed differential calculus. For the left derivative we write

dψ(ρ) =
(→

∂ ψ(ρ)
)

dρ. (63)

From Leibniz rule (44) we have

d (ψ(ρ) ϕ(ρ)) = dρ
(→

∂ (ψ(ρ) ϕ(ρ))
)

= (dψ(ρ)) ϕ(ρ) + ψ(ρ) (dϕ(ρ)) =

= dρ
(→

∂ ψ(ρ)
)

ϕ(ρ) + ψ(ρ) dρ
(→

∂ ϕ(ρ)
)

(64)
after using (62)

d (ψ(ρ) ϕ(ρ)) = dρ
(→

∂ ψ(ρ)
)

ϕ(ρ) + dρ ψ(ρ +
i

2
)
(→

∂ ϕ(ρ)
)

. (65)

Now from the commutativity rule (46)

ψ(x) ϕ(x) = ϕ(x) ψ(x) (66)

it follows also that equivalent Leibniz rule is valid

d (f(x) g(x)) = dx
(→

∂ (f(x) g(x))
)

= (dg(x)) f(x) + g(x) (df(x)) =

= dx
(→

∂ g(x)
)

f(x) + dx g(x + i
2 )
(→

∂ f(x)
)

.

(67)
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Equalizing (65) and (67) we obtain(→
∂ ψ(ρ)

) [
ϕ(ρ + i

a

2
) − ϕ(ρ)

]
=
(→

∂ ϕ(ρ)
) [

ψ(ρ +
I

2
) − ψ(ρ)

]
, (68)

or →
∂ ψ(ρ)

ψ(ρ + i
2 ) − ψ(ρ)

=
→
∂ ϕ(ρ)

ϕ(ρ + i
2 ) − ϕ(ρ)

= const, (69)

where const is the same for any function under differentiation. To calculate this
const we choose

ψ(ρ) = ρ. (70)

This gives

dρ = dρ
(→

∂ ρ
)

=⇒
(→

∂ ρ
)

= 1 (71)

and

const =
→
∂ ρ

(ρ + i
2 ) − ρ

=
2
i
. (72)

The ultimate expression for the left partial derivative is

→
∂ ψ(ρ) =

ψ(ρ + i
2 ) − ψ(ρ)
i
2

. (73)

The expression for the right derivative
←
∂ ψ(ρ) is obtained in a similar way

and has the form
←
∂ ψ(ρ) =

ψ(ρ) − ψ(ρ − i
2 )

i
2

. (74)

7. NONCOMMUTATIVE DIFFERENTIAL CALCULUS AND
SCHRéODINGER EQUATION IN QUANTUM SPACE

In this section we shall apply the noncommutative differential calculus of
previous section to the Schréodinger equation (33). Let us exclude the ªˇrst
ˇnite-difference radial derivativeª from this equation making a substitution

ψl(ρ) =
< ρ, l | α >

ρ
. (75)

Recall that similar substitution excludes the ˇrst radial derivative in the usual
Schréodinger (differential) equation. Taking into account the following rules for

ˇnite-difference operations sinh
(
i ∂

∂ρ

)
and cosh

(
i ∂

∂ρ

)
:

sinh i
∂

∂ρ
ψ(ρ)ϕ(ρ) =
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= sinh i
∂

∂ρ
ψ(ρ) cosh i

∂

∂ρ
ϕ(ρ) + cosh i

∂

∂ρ
ψ(ρ) sinh i

∂

∂ρ
ϕ(ρ) (76)

cosh i
∂

∂ρ
ψ(ρ)ϕ(ρ) =

= cosh i
∂

∂ρ
ψ(ρ) cosh i

∂

∂ρ
ϕ(ρ) + sinh i

∂

∂ρ
ψ(ρ) sinh i

∂

∂ρ
ϕ(ρ) (77)

and relations

cosh i
∂

∂ρ

1
ρ

=
ρ

ρ2 + 1
, sinh i

∂

∂ρ

1
ρ

=
−i

ρ2 + 1
, (78)

we obtain

ea

[
cosh

(
i

∂

∂ρ

)
− l(l + 1)

2ρ
ei ∂

∂ρ
1
ρ
− 1 + V (ρ) − EP

]
ψl(ρ) =

= ea

[
2 sinh 2

(
i

2
∂

∂ρ

)
− l(l + 1)

2ρ
ei ∂

∂ρ
1
ρ

+ V (ρ) − EP

]
ψl(ρ) = (79)

=
(

ρ
∧
H0l

1
ρ

+ V (ρ) − EP

)
ψl(ρ) = 0.

Let us consider the expression

1
2

(→
δ d+

←
δ d
)

ψ(ρ) =
1
2

(→
δ +

←
δ
)

dψ(ρ) =
1
2

(→∗ d
→∗ d+

←∗ d
←∗ d
)

ψ(ρ) =

=
1
2

(→
δ +

←
δ
)((→

∂ ψ(ρ)
)

dρ + dρ
(←

∂ ψ(ρ)
))

=

=
1
2

(→
δ +

←
δ
)[(ψ(ρ + i

2 ) − ψ(ρ)
i
2

)
dρ + dρ

(
ψ(ρ) − ψ(ρ − i

2 )
i
2

)]
=

=
1
2

(→∗ +
←∗
)

d

[
ψ(ρ + i

2 ) − ψ(ρ − i
2 )

i
2

]
= (80)

−
(→∗ +

←∗
)[(

ψ(ρ + i) − ψ(ρ) − ψ(ρ +
i

2
) + ψ(ρ − i

2
)
)

dρ +

+dρ

(
ψ(ρ − i) − ψ(ρ) + ψ(ρ +

i

2
) − ψ(ρ − i

2
)
)]

=

= −2
(

cosh i
∂

∂ρ
− 1
)

ψ(ρ) = −4 sinh 2 i

2
∂

∂ρ
ψ(ρ).
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Using this result we can deˇne left and right momentum operators in the
form →

p= −i�
→∗ d,

←
p= −i�

←∗ d (81)

and free particle momentum operator

∧
p=

1
2

(→
p +

←
p
)

, (82)

where
→
p is not a vector but the right momentum operator! So, the ˇrst term in

(79) takes the form
∧
p
2

2µ
=

1
2µ

(
−2π0 sinh

i

2
∂

∂ρ

)2

. (83)

The centrifugal term in (79) can be written in the form

l(l + 1)
ρ(ρ + i)

ei ∂
∂ρ =

1
ρ

→
λ

2 1
ρ
, (84)

where
→
λ=

√
l(l + 1)

(
1 −

→
p

2π0

)
. (85)

Ultimately we obtain the Schréodinger equation in quantum space in terms of
noncommutative differential calculus as

Hψl(ρ) =


 ∧

p
2

2µ
+

1
ρ

→
λ

2 1
ρ

+ V (ρ)


ψl(ρ) = EP ψl(ρ). (86)

8. LINEAR OSCILLATOR = q-OSCILLATOR IN QUANTUM SPACE

From the usual point of view the interaction term V (ρ) in the differential-
difference Schréodinger equation (32) corresponds to the perturbed Coulomb po-
tential. Let us consider an example of integrable case for the Schréodinger equation
with interaction. We write the ladder operators

a± = ∓ i√
2πa cos r

2l0

e
± 1

2

(
r

λ0

)2 (∧
p

)
e
∓ 1

2

(
r

λ0

)2

(87)

= ± i
√

2
cos r

2l0

e
± 1

2

(
ρ

λ0

)2 (
sinh

ia

2
∂

∂r

)
e
∓ 1

2

(
r

λ0

)2

,
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∧
p is the noncommutative differential operator of radial momentum introduced in
previous section, ω is the frequency, λ0 is a parameter of dimension of length:

λ0 =

√
�

µω
. (88)

The ladder operators (87) obey the deformed commutation relation[
a−, a+

]
q

= qa−a+ − q−1a+a− = 2
(
q−1 − q

)
, (89)

which guarantees the exact solubility of this ˇnite-difference problem, q is a
dimensionless quantity, parameter of deformation, which is expressed in terms of
physical parameters:

q = e
− a2

4λ2
0 = e−

�ω
4ea = e

− ω�
3

4µe4 . (90)

We introduce the Hamiltonian

∧
H=

1
2
{
a−, a+

}
q

=
1
2
{
qa−a+ + q−1a+a−} (91)

obeying deformed commutation relations with ladder operators[
a±,

∧
H

]
q∓1

= ±
(
q2 − q−2

)
a±, (92)

which in fact guarantee the integrability, and obtain the energy spectrum

En = 2ea

(
e

�ω
2ea

(n+ 1
2 ) − cosh

�ω

4ea

)
. (93)

This integrable case can be easily identiˇed with the well-known q oscillator.
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