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Collective phenomena in strongly nonequilibrium systems interacting with electromagnetic ˇeld
are considered. Such systems are described by complicated nonlinear differential or integro-differential
equations. The aim of this review is to show that many nonlinear collective phenomena can be
successfully treated by a recently developed method called the Scale Separation Approach whose name
is due to the idea of separating different characteristic space-time scales existing in nonequilibrium
statistical systems. This approach is rather general and can be applied to various nonequilibrium
physical problems, several of which are discussed here. The problems considered not only serve
as illustrations of the method but are quite important by themselves presenting interesting physical
effects, such as Collective Liberation of Light, Turbulent Photon Filamentation, Superradiant Spin
Relaxation, Negative Electric Current, and Magnetic Semiconˇnement of Atoms.

ˆ¸¸²¥¤ÊÕÉ¸Ö ±µ²²¥±É¨¢´Ò¥ Ö¢²¥´¨Ö ¢ ¸¨²Ó´µ´¥· ¢´µ¢¥¸´ÒÌ ¸¨¸É¥³ Ì, ¢§ ¨³µ¤¥°¸É¢ÊÕÐ¨Ì
¸ Ô²¥±É·µ³ £´¨É´Ò³ ¶µ²¥³. ’ ±¨¥ ¸¨¸É¥³Ò µ¶¨¸Ò¢ ÕÉ¸Ö ¸²µ¦´Ò³¨ ´¥²¨´¥°´Ò³¨ ¤¨ËË¥·¥´Í¨-
 ²Ó´Ò³¨ ¨²¨ ¨´É¥£·µ¤¨ËË¥·¥´Í¨ ²Ó´Ò³¨ Ê· ¢´¥´¨Ö³¨. –¥²Ó ¤ ´´µ£µ µ¡§µ·  Å ¶µ± § ÉÓ, ÎÉµ
³´µ£¨¥ ´¥²¨´¥°´Ò¥ ±µ²²¥±É¨¢´Ò¥ Ö¢²¥´¨Ö ³µ£ÊÉ ¡ÒÉÓ Ê¸¶¥Ï´µ µ¶¨¸ ´Ò ¸ ¶µ³µÐÓÕ · §¢¨Éµ£µ
´¥¤ ¢´µ ³¥Éµ¤ , ´ §¢ ´´µ£µ ³¥Éµ¤µ³ · §¤¥²¥´¨Ö ³ ¸ÏÉ ¡µ¢, µ¸´µ¢ ´´µ£µ ´  ¨¤¥¥ ¢Ò¤¥²¥´¨Ö · §-
²¨Î´ÒÌ Ì · ±É¥·´ÒÌ ¶·µ¸É· ´¸É¢¥´´µ-¢·¥³¥´´ÒÌ ³ ¸ÏÉ ¡µ¢, ¸ÊÐ¥¸É¢ÊÕÐ¨Ì ¢ ´¥· ¢´µ¢¥¸´ÒÌ
¸É É¨¸É¨Î¥¸±¨Ì ¸¨¸É¥³ Ì. �ÉµÉ ¶µ¤Ìµ¤ µ¡² ¤ ¥É ¤µ¸É ÉµÎ´µ° µ¡Ð´µ¸ÉÓÕ ¨ ³µ¦¥É ¡ÒÉÓ ¶·¨³¥-
´¥´ ± ¢¸¥¢µ§³µ¦´Ò³ ´¥· ¢´µ¢¥¸´Ò³ Ë¨§¨Î¥¸±¨³ ¶·µ¡²¥³ ³, ´¥±µÉµ·Ò¥ ¨§ ±µÉµ·ÒÌ · ¸¸³ É·¨-
¢ ÕÉ¸Ö ¢ ¤ ´´µ³ µ¡§µ·¥.  ¸¸³µÉ·¥´´Ò¥ ¶·µ¡²¥³Ò ´¥ Éµ²Ó±µ ¨£· ÕÉ ·µ²Ó ¨²²Õ¸É· Í¨¨ ³¥Éµ¤ ,
´µ ¢ ¦´Ò ¨ ¸ ³¨ ¶µ ¸¥¡¥, ¶·¥¤¸É ¢²ÖÖ ¨´É¥·¥¸´Ò¥ Ë¨§¨Î¥¸±¨¥ ÔËË¥±ÉÒ, É ±¨¥, ± ± ±µ²²¥±É¨¢-
´µ¥ µ¸¢µ¡µ¦¤¥´¨¥ ¸¢¥É , ÉÊ·¡Ê²¥´É´µ¥ ËµÉµ´´µ¥ ´¨É¥µ¡· §µ¢ ´¨¥, ¸¢¥·Ì¨§²ÊÎ É¥²Ó´ Ö ¸¶¨´µ¢ Ö
·¥² ±¸ Í¨Ö, µÉ·¨Í É¥²Ó´Ò° Ô²¥±É·¨Î¥¸±¨° Éµ± ¨ ³ £´¨É´Ò° ¶µ²Ê±µ´Ë °´³¥´É  Éµ³µ¢.

1. INTRODUCTION

Strongly nonequilibrium cooperative processes that occur in statistical sys-
tems interacting with electromagnetic ˇeld are described by complicated nonlinear
differential and integro-differential equations. For treating such difˇcult problems,
a general approach has been recently developed called the Scale Separation Ap-
proach whose basic idea is to present the evolution equations in such a form
where it could be possible to separate several characteristic space-time scales. In
many cases, different scales appear rather naturally being directly related to the
physical properties of the considered system.

Since the scale separation approach makes the mathematical foundation for
the following applications, we start the review with presenting the basic tech-
niques of this approach. Then we demonstrate it by applying the method to
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different physical problems related to strongly nonequilibrium processes occur-
ring under the interaction of electromagnetic ˇeld with matter. The considered
examples not only serve as illustrations of the method but are of importance as
such since they concern interesting and rather nontrivial physical effects. For
consideration, those effects are chosen that have been ˇrst correctly described
or predicted by the authors. Among these effects, we would like to emphasize,
as the most interesting, the following: Collective Liberation of Light, Turbulent
Photon Filamentation, Superradiant Spin Relaxation, Negative Electric Current,
and Magnetic Semiconˇnement of Atoms.

The content of the report is as follows. In Section 2 the Scale Separation
Approach is described. This method makes it possible to solve, or to strongly
simplify, many complicated systems of nonlinear differential equations, including
stochastic and partial-derivative equations. The mathematical procedure of solving
nonlinear differential equations in the following applications is based on this
approach. The examples we consider have mainly to do with the evolution
equations describing strongly nonequilibrium statistical systems interacting with
electromagnetic ˇelds. We concentrate our attention on collective phenomena
whose existence as such, as well as their properties, are due to nonlinear effects.
This is why we constantly have to deal with nonlinear equations.

Resonant interactions of electromagnetic ˇeld with radiating systems are usu-
ally described by the MaxwellÄBloch equations, in which one often passes to the
momentum representation by means of Fourier transform. But we prefer to work
in the Real-Space representation, outlined in Section 3, which seems to be more
convenient for employing the Scale Separation Approach. Another convenient
trick we employ is the elimination of electromagnetic ˇeld from evolution equa-
tions. For this purpose, the operator Maxwell equations, supplemented by the
Coulomb calibration, can be rewritten in the integral form connecting the vector
potential with the retarded current formed by the radiating system. Substituting
this vector potential into evolution equations eliminates from them electromag-
netic ˇeld. In this way, we come to the system of equations not containing
explicitly electromagnetic ˇeld, instead of which there appears an effective di-
pole interaction of radiating atoms. After eliminating electromagnetic ˇeld, we
have less equations, although the price for this is that these equations become
integro-differential. Nevertheless, the obtained equations are more convenient
for applying to them our method of solution. Another important advantage of
the derived equations is the possibility of taking into account quantum effects.
Such effects are often principal, while the standard semiclassical MaxwellÄBloch
equations cannot take account of them. To simplify evolution equations, not
loosing quantum effects, is the idea of the Stochastic Mean-Field Approximation
of Section 4. Since cooperative electromagnetic phenomena are directly related to
arising coherence, Section 5 gives the deˇnitions for Dynamical Characteristics
of Coherence.
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The equations derived in the previous sections and the method of solution
developed above are applied to several concrete systems exhibiting interesting
physical properties. In Section 6, we suggest the theory of Collective Liberation
of Light, which can occur in materials with polariton band gap. In Section 7,
we consider the invuence of external ˇelds on radiation properties of resonant
atoms, checking whether it is feasible to get Ampliˇcation by Nonresonant Fields.
Section 8 discusses the so-called Méossbauer Magnetic Anomaly observed in some
magnetic materials. In Section 9 the Problem of Pattern Selection is analyzed.
This problem arises, for instance, when one needs to describe resonant media with
spatially nonuniform electromagnetic structures. For treating the problem, we
have suggested an original approach based on probabilistic analysis of possible
spatiotemporal patterns. This method is applied, in Section 10, to describing
Turbulent Photon Filamentation in resonant media.

Scale Separation Approach, being a general method, can be employed for
treating strongly nonequilibrium systems of different physical nature. In Section
11, it is used for giving a thorough picture of Superradiant Spin Relaxation
occurring in nonequilibrium nuclear magnets. This method also makes it possible
to analyse nonlinear differential equations in partial derivatives. Such an analysis
helps in ˇnding conditions under which unusual nonlinear effects can happen.
This is illustrated in Section 12 by describing a transient effect of Negative
Electric Current in nonuniform semiconductors. Another novel effect of Magnetic
Semiconˇnement of Atoms is described in Section 13. Both these effects have been
predicted by the authors. In Section 14, we discuss conditions when Nuclear
Matter Lasing could be possible.

Throughout the review, we consider several physical systems of rather differ-
ent nature, Because of this, it is more appropriate to give all details and to discuss
the related literature in the corresponding sections, limiting the Introduction by
a brief enumeration of the considered problems. Section 15 contains Conclusion
summarizing main results.

2. SCALE SEPARATION APPROACH

Because of the pivotal role of this approach for treating physical problems
in the following sections, we need to start by presenting its general scheme. It
is possible to separate ˇve main steps, or parts, of the approach: (i) stochastic
quantization of short-range correlations; (ii) separation of variables onto fast
and slow; (iii) averaging method for multifrequency systems; (iv) generalized
expansion about guiding centers; and (v) selection of scales for space structures.
Below, these steps are explicitly explained.

2.1. Short-Range Stochastic Quantization. When considering nonequilib-
rium processes in statistical systems, one needs to write evolution equations for
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some averages < Ai > of operators Ai(t), where t is time and i = 1, 2, . . . , N
enumerates particles composing the considered system. For simplicity, a discrete
index i is employed, although everywhere in what follows one could mean an
operator A(	ri, t) depending on a continuous space variable 	ri.

There exists the well-known problem in statistical mechanics consisting in
the fact that writing an evolution equation for < Ai > one does not get a
closed set of equations but a hierarchical chain of equations connecting correlation
functions of higher orders. Thus, an equation for < Ai > involves the terms as∑

j < AiBj > with double correlators < AiBj >, and the evolution equations
for the latter acquire the terms with triple correlators, and so on. The simplest
way for making the system of equations closed is by resorting to the mean-ˇeld
type decoupling < AiBj > → < Ai >< Bj >. When considering radiation
processes, this decoupling is called the semiclassical approximation. Then the
term

∑
j < AiBj > reduces to < Ai >

∑
j < Bj >, so that one can say

that < Ai > is subject to the action of the mean ˇeld
∑

j < Bj >. The
semiclassical approximation describes well coherent processes, when long-range
correlations between particles govern the evolution of the system, while short-
range correlations, due to quantum vuctuations, are not important. However, the
latter may become of great importance if there are periods of time when the long-
range correlations are absent. For example, this may happen at the beginning of
a nonequilibrium process when long-range correlations have had yet no time to
develop. Then neglecting short-range correlations can lead to principally wrong
results for the whole dynamics.

To include the invuence of short-range correlations, the semiclassical approx-
imation can be modiˇed as follows:

∑
j

< AiBj >=< Ai >


∑

j

< Bj > +ξ


 , (1)

where ξ is a random variable describing local short-range correlations. It is
natural to treat ξ as a Gaussian stochastic variable deˇned by its ˇrst, � ξ �,
and second, � |ξ|2 �, moments. According to the short-range character of local
ˇelds, we should set

� ξ � = 0 . (2)

The second moment, aiming at taking into account incoherent local vuctuations,
can be deˇned by means of the following reasoning. Consider the equality

�

∣∣∣∣∣∣
∑
j

< AiBj >

∣∣∣∣∣∣
2

� = | < Ai > |2



∣∣∣∣∣∣
∑
j

< Bj >

∣∣∣∣∣∣
2

+ � |ξ|2 �
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resulting from deˇnitions (1) and (2). On the other hand, wishing to take into
account both long-range coherent and short-range incoherent terms, one should
write∣∣∣∣∣∣

∑
j

< AiBj >

∣∣∣∣∣∣
2

= | < Ai > |2



∣∣∣∣∣∣
∑
j

< Bj >

∣∣∣∣∣∣
2

+
∑
j

| < Bj > |2


 ,

where the ˇrst term in the brackets corresponds to the coherent while the second
term, to incoherent parts. Comparing the latter two equalities, we come to the
conclusion that

� |ξ|2 � =
∑
j

| < Bj > |2 . (3)

As far as short-range correlations and vuctuations are often due to quantum ef-
fects, the manner of taking them into account by introducing a stochastic variable
ξ can be named the stochastic quantization. Then the decoupling (1) may be
termed the stochastic mean-ˇeld approximation. A similar kind of approximation
has been used for taking account of quantum spontaneous emission of atoms in
the problem of atomic superradiance [1]. Somewhat related ideas have also been
used in the stochastic quantization of quantum ˇeld theory [2].

2.2. Classiˇcation of Function Variations. Employing the stochastic mean-
ˇeld approximation makes it possible to write down a closed set of stochastic
differential equations. The next step is to ˇnd such a change of variables which
results in the possibility of separating the functional variables onto fast and slow.
Let us consider, ˇrst, the variation of functions in time. Assume that we come to
the set of equations of the form

du

dt
= f ,

ds

dt
= εg , (4)

in which f = f(ε, u, s, ξ, t), g = g(ε, u, s, ξ, t), and ε� 1 is a small parameter.
Equations (4) are complimented by initial conditions

u = u0 , s = s0 (t = 0) . (5)

Here, for simplicity, we deal with only two functions, u and s, and one small
parameter ε. The whole procedure is straightforwardly applicable to the case of
many functions and several parameters.

Let the functions f and g be such that

lim
ε→0

f �= 0 , lim
ε→0

εg = 0 . (6)

Then from Eqs. (4) it follows that

lim
ε→0

du

dt
�= 0 , lim

ε→0

ds

dt
= 0 . (7)
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This permits us to classify the solution u as fast, compared to the slow solution s.
In turn, the slow solution s is a quasi-invariant with respect to the fast solution
u. Thus, we may classify the functions representing the sought solutions onto
fastly and slowly varying in time.

In the case of partial differential equations, one has, in addition to time, a
space variable 	r. Then the notion of fast and slow functions can be generalized
as follows [3]. Let 	r ∈ V, with V being the measure of the volume V, and let
t ∈ [0, T ], where T can be inˇnite. If one has

lim
ε→0

� 1
V

∫
V

∂u

∂t
d	r � �= 0 , lim

ε→0
� 1
T

∫ T

0

	∇u dt� �= 0 , (8)

while

lim
ε→0

� 1
V

∫
V

∂s

∂t
d	r � = 0 , lim

ε→0
� 1
T

∫ T

0

	∇s dt� = 0 , (9)

then the solution u can be called fast on average with respect to both space and
time, as compared to s that is slow on average. In such a case, s is again a
quasi-invariant with respect to u. In general, it may, of course, happen that one
of the solutions is fast in time but slow in space, or vice versa, as compared to
another solution. Note that in the Hamiltonian mechanics quasi-invariants with
respect to time are called adiabatic invariants [4]. A generalization of this notion
to the case of both space and time variables [3] is given by deˇnition (9).

2.3. Multifrequency Averaging Technique. Let us continue considering
the ordinary differential equations (4). The generalization to the case of partial
differential equations can be done similarly to the way discussed at the end of
the previous section. After classifying the function u as fast and s as slow,
we may resort to the KrylovÄBogolubov averaging technique [5] extended to
multifrequency systems.

Since the slow solution s is a quasi-invariant for the fast variable u, one
considers the equation for the fast function, with the slow one kept ˇxed,

∂X

∂t
= f(ε,X, z, ξ, t) , (10)

here s = z being treated as a constant parameter. The initial conditions for
Eq. (10) is

X = u0 (t = 0) . (11)

The pair of solutions

X = X(ε, z, ξ, t) , z = const (12)
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are called the generating solutions. Substituting the solution X into the right-hand
side of the equation for the slow function s, one deˇnes the average

g(ε, z) ≡ � 1
τ

∫ τ

0

g(ε,X(ε, z, ξ, t), z, ξ, t) dt� , (13)

in which τ is the characteristic time of fast oscillations. In many cases, it is
sufˇcient to set τ → ∞. In this way, we come to the equation

dz

dt
= ε g(ε, z) , (14)

with the initial condition
z = s0 (t = 0) . (15)

The solution to Eq. (14),
z = z(ε, t) , (16)

is to be substituted into X yielding

y(ε, ξ, t) = X(ε, z(ε, t), ξ, t) . (17)

Generating solutions (12) are the ˇrst crude approximations one starts with. More
elaborate solutions (16) and (17) are termed guiding centers.

Notice two points that difference the considered way of obtaining the guiding
centers (16) and (17) from the standard averaging method [5]. The ˇrst point
is in retaining in Eq. (10) the small parameter ε, which makes it possible to
correctly take into account important physical effects, such as attenuation. The
standard manner of deˇning the generating solutions with setting ε = 0 would
result in essentially more rough approximations. The second difference is in the
occurrence of the stochastic average in deˇnition (13), since here we are dealing
with stochastic differential equations.

2.4. Generalized Asymptotic Expansion. The generating solutions (12)
play the role of the trial zero-order approximation, while the guiding centers (16)
and (17) essentially improve the trial approximations. Higher-order corrections
may be obtained by presenting the general solutions as asymptotic expansions
about the guiding centers. Then, k-order approximations are written as

uk = y(ε, ξ, t)+
k∑

n=1

yn(ε, ξ, t) εn , sk = z(ε, t)+
k∑

n=1

zn(ε, ξ, t) εn . (18)

Such series are named generalized asymptotic expansions [6], since the expansion
coefˇcients depend themselves on parameter ε. The right-hand sides of Eqs. (4)
are also to be expanded about the guiding centers yielding

f(ε, uk, sk, ξ, t) 
 f(ε, y, z, ξ, t) +
k∑

n=1

fn(ε, ξ, t) εn ,
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g(ε, uk, sk, ξ, t) 
 g(ε, y, z, ξ, t) +
k∑

n=1

gn(ε, ξ, t) εn . (19)

Then, expansions (18) and (19) are to be substituted in Eqs. (4) with equating
the like terms with respect to the explicit powers of ε. Thus, in the ˇrst order,
this gives

dy1
dt

= f1(ε, ξ, t)− g(ε, z) X1(ε, ξ, t) ,
dz1
dt

= g(ε, y, z, ξ, t)− g(ε, z) , (20)

where

X1(ε, ξ, t) ≡
∂

∂z
X(ε, z, ξ, t) , z = z(ε, t) .

For the approximations of order n ≥ 2, we get

dyn
dt

= fn(ε, ξ, t) ,
dzn
dt

= gn(ε, ξ, t) . (21)

The initial conditions for all n = 1, 2, . . . are

yn = zn = 0 (t = 0) . (22)

The functions fn and gn depend on y1, y2, . . . , yn, and on z1, z2, . . . , zn, but it
is important that the dependence on yn and zn is linear. The latter follows from
the fact that expanding a function

f

(
y +

k∑
n=1

yn ε
n

)
=

k∑
n=1

fn ε
n

in powers of ε, one has

f1 = f ′(y)y1, f2 =
1
2!
[f ′′(y)y1 + f ′(y)y2] ,

f3 =
1
3!
[f ′′′(y)y1 + 2f ′′(y)y2 + f ′(y)y3] ,

and so on. In this way, Eqs. (20) directly deˇne y1 and z1, and Eqs. (21) are
linear equations, thus, being easily integrated.

Usually, one does not need the higher-order approximations since the main
physics, in the majority of cases, is already well described by the guiding centers
(16) and (17). The latter are good approximations to the exact solutions [7]
in the time interval 0 ≤ t ≤ Ts/ε, where Ts is a characteristic time of the
slow-solution variation. In those cases when the higher-order approximations are
important, each k-order approximant can also be improved by invoking some
sort of summation [8] of asymptotic series (18), for instance, the self-similar
summation [9Ä12].
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2.5. Selection of Space Structures. The solutions to differential or integro-
differential nonlinear equations in partial derivatives are generally nonuniform
in space exhibiting the formation of different spatial structures. And it often
happens that a given set of equations possesses several solutions corresponding
to different spatial patterns or to different scales of such patterns [13]. When
there is a family of solutions describing several possible patterns, the question
arises which of these solutions, and respectively patterns, is preferable and in
what sense could it be preferable. This problem of pattern selection is a general
and very important problem constantly arising in considering spatial structures.
In this subsection we delineate a simple way that in many cases helps to solve
the problem of pattern selection. A more reˇned theory will be presented in
Sections 9 and 10.

Assume that the obtained solutions describe spatial structures that can be para-
metrized by a multiparameter β, so that the k-order approximations uk(β,	r, t)
and sk(β,	r, t) include the dependence on β whose value is, however, yet un-
deˇned. To deˇne β, and respectively the related pattern, one may proceed in
the spirit of the self-similar approximation theory [14Ä23], by treating β as a
control function. According to the theory [14Ä23], control functions are to be
deˇned from ˇxed-point conditions for an approximation cascade constructed for
an observable quantity. For the latter, one may take the average energy deˇned as
follows. The internal energy, which is a statistical average of the system Hamil-
tonian, is a functional E[u, s] of the solutions. Taking the k-order approximations
for the latter and averaging the internal energy over the period of fast oscillations
and over stochastic variables, one gets the average energy

Ek(β) ≡ � 1
τ

∫ τ

0

E[uk(β,	r, t), sk(β,	r, t)] dt� . (23)

For the sequence of approximations, {Ek(β)}, it is possible to construct an
approximation cascade whose ˇxed point can be given by the condition

∂

∂β
Ek(β) = 0 , (24)

from which one gets the control function β = βk deˇning the corresponding
pattern. According to optimal control theory, control functions are deˇned so that
to minimize a cost functional. The latter, in our case, is naturally represented by
the average energy (23). Hence, when the ˇxed-point equation (24) has several
solutions, one may select of them that one which minimizes the cost functional
(23), so that

Ek(βk) = absmin
β

Ek(β) . (25)

Equations (24) and (25) have a simple physical interpretation as the minimum
conditions for the average energy (23). However, one should keep in mind that
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there is no, in general, such a principle of minimal energy for nonequilibrium
systems [13]. Therefore the usage of the ideas from the self-similar approximation
theory [14Ä23] provides a justiˇcation for employing conditions (24) and (25) for
nonequilibrium processes.

The scale separation approach presented in this section makes it possible to
solve rather complicated sets of nonlinear differential equations describing various
nonequilibrium phenomena in statistical systems. More details on this approach
can be found in Refs. 24Ä28.

3. REAL SPACE REPRESENTATION

When considering the interaction of atoms with electromagnetic ˇelds, one
usually employs the so-called mode representation, expanding ˇeld operators over
mode wave functions [29,30]. These can be either free-mode functions, that is
plane waves, or resonator-mode functions depending on the resonator geometry.
We prefer to deal with the real-space representation because of the following
reasons: First, the evolution equations in this representation are written in a form
more convenient for analysing temporal nonstationary behaviour of solutions.
Second, it is more suitable for describing nonuniform solutions corresponding to
self-organized space structures. And third, this representation is more appropriate
for using the scale separation approach. Since the real space representation is
rarely considered in literature, it is worth recalling in brief the derivation of the
main equations in this representation [31]. To understand the basis of the main
evolution equations is very important, for these equations will be constantly used
in what follows. One more peculiarity of the consideration below, differencing
it from the standard texts, is the comparison of the formulas for the cases of
electrodipole and magnetodipole transitions.

Let us have a system of radiators that can be atoms, molecules, nuclei, etc.
Assume that the size of a radiator, a0, is small as compared to the mean distance
between them, a, as well as to the characteristic radiation wavelength λ,

a0

a
� 1 ,

a0

λ
� 1 , (26)

while the relation between a and λ can be arbitrary. Canonical variables related
to the electromagnetic ˇeld are the electric ˇeld 	E and the vector potential 	A,
whose commutation relations are

[
Eα(	r, t), Aβ(	r ′, t)

]
= 4πi c δαβ δ(	r − 	r ′) ,

[
Eα(	r, t), Eβ(	r ′, t)

]
=
[
Aα(	r, t), Aβ(	r ′, t)

]
= 0 ,
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where c is the light velocity and the indices α, β = 1, 2, 3, or x, y, z, enumerate
the Cartesian coordinates. The magnetic ˇeld is

	H(	r, t) = 	∇× 	A(	r, t) .

To uniquely deˇne the latter, we invoke the Coulomb gauge condition

	∇ · 	A(	r, t) = 0 .

Here and in what follows the system of units is used where � ≡ 1.
The radiator charges are described by the annihilation, ψ, and creation, ψ†,

ˇeld operators with the commutation relations[
ψ(	r, t), ψ†(	r ′, t)

]
∓ = δ(	r − 	r ′) , [ψ(	r, t), ψ(	r ′, t)]∓ = 0 ,

[
ψ(	r, t), 	E(	r ′, t)

]
=
[
ψ(	r, t), 	A(	r ′, t)

]
= 0 ,

in which the indices minus or plus mean the commutators or anticommutators,
respectively, depending on the Bose or Fermi statistics of the charges.

Assume that in addition to the quantum radiation ˇelds 	E and 	H there are
classical ˇelds 	E0 and 	H0 for which we have

	E0(	r, t) = −	∇ϕ0(	r, t) , 	H0(	r, t) = 	∇× 	A0(	r, t) , 	∇ · 	A0(	r, t) = 0 .

These additional ˇelds can be due to external sources or can be created by the
matter which the radiators are inserted in.

Each radiator is also subject to the action of a scalar potential ϕi(	r) rep-
resenting all stationary Coulomb interactions. Thus, we may introduce the total
scalar and vector potentials

ϕtot(	r, t) = ϕ0(	r, t) +
N∑
i=1

ϕi(	r) , 	Atot(	r, t) = 	A0(	r, t) + 	A(	r, t) , (27)

where N is the number of radiators. Then the local energy operator is deˇned as

Ĥ(	r, t) =
1

2m0

[
i 	∇+

e

c
	Atot(	r, t)

]2
+ e ϕtot(	r, t) , (28)

where m0 is mass and e, charge of a particle. Omitting here the relativistic term
e2 	A2

tot/c
2 and using the Coulomb calibration, we have

Ĥ(	r, t) = − ∇2

2m0
+

ie

m0 c
	Atot(	r, t) · 	∇+ e ϕtot(	r, t) .
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The Hamiltonian of the system of radiators interacting with electromagnetic
ˇeld and with matter is written as the sum

Ĥ = Ĥr + Ĥf + Ĥrf + Ĥm + Ĥmf , (29)

in which the terms represent, respectively, the Hamiltonians of radiators, ˇeld,
radiatorÄˇeld interaction, matter, and matterÄˇeld interaction. The Hamiltonian
of the system of radiators is

Ĥr(t) =
∫
ψ†(	r, t)

[
− ∇2

2m0
+ e

N∑
i=1

ϕi(	r)

]
ψ(	r, t) d	r . (30)

This includes also the direct interaction of radiators with matter by means of the
effective scalar potentials ϕi(	r). The ˇeld Hamiltonian writes

Ĥf (t) =
1
8π

∫ [
	E2(	r, t) + 	H2(	r, t)

]
d	r . (31)

The radiatorÄˇeld interaction is described by

Ĥrf (t) =
∫
ψ†(	r, t)

[
ie

m0 c
	Atot(	r, t) · 	∇+ e ϕ0(	r, t)

]
ψ(	r, t) d	r . (32)

The Hamiltonians of matter and of matterÄˇeld interaction are to be speciˇed
according to particular cases under consideration.

The size of a radiator, according to inequalities (26), is the smallest char-
acteristic length. If 	ri is the centerÄofÄmass of a radiator, we shall use the
notation

	Ei(t) ≡ 	E(	ri, t) , 	Hi(t) = 	H(	ri, t) ,

	Ai(t) ≡ 	A(	ri, t) , 	E0i(t) ≡ 	E0(	ri, t) , 	H0i(t) = 	H0(	ri, t) .

For 	r in the vicinity of 	ri, we may write

ϕ0(	r, t) 
 −	r · 	E0i(t) (	r ≈ 	ri) ,

	A0(	r, t) 
 − 1
2
	r × 	H0i(t) , 	A(	r, t) 
 	Ai(t)−

1
2
(	r − 	ri)× 	Hi(t) .

The energy levels of each radiator are deˇned by the Schréodinger equation

[
− ∇2

2m0
+ e ϕi(	r)

]
ψn(	r − 	ri) = En ψn(	r − 	ri) ,
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where it is assumed that all radiators are identical and ϕi(	r) = ϕ(	r − 	ri). The
eigenfunctions ψn(	r − 	ri) form a complete orthonormal set enumerated by the
indices n and i, so that∫
ψ∗
m(	r−	ri) ψn(	r−	rj) d	r = δmn δij ,

∑
in

ψ∗
n(	r−	ri) ψn(	r ′−	ri) = δ(	r−	r ′).

With these functions, we may deˇne the density of transition current

	jmn(	r) = − ie

2m0

[
ψ∗
m(	r)	∇ψn(	r)− ψn(	r)	∇ψ∗

m(	r)
]

(33)

and the transition current

	jmn =
∫
	jmn(	r) d	r . (34)

We also introduce the electric transition dipole

	dmn = e
∫
ψ∗
m(	r) 	r ψn(	r) d	r (35)

and the magnetic transition dipole

	µmn =
1
2c

∫
	r ×	jmn(	r) d	r . (36)

Using the equality

	∇ = m0

[
	r, − ∇2

2m0
+ e ϕi(	r)

]
,

one can connect the electric transition current (34) and transition dipole (35) as

	jmn = i ωmn
	dmn , ωmn ≡ Em − En . (37)

The ˇeld operators can be expanded over the basis of the wave functions as

ψ(	r, t) =
∑
n

N∑
i=1

cni(t) ψn(	r − 	ri) .

From the commutation relations for the ˇeld operators one has[
cmi(t), c

†
ni(t)

]
∓
= δmn δij , [cmi(t), cnj(t)]∓ = 0 .

The fact that each radiator is certainly in one of the states labelled by the index
n is expressed by the unipolarity condition∑

n

c†ni(t) cni(t) = 1 . (38)
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The wave functions ψn(	r−	ri), in agreement with inequalities (26), are localized
in a small region of the size of a radiator. Such functions are called the localized
orbitals. The localization condition can be represented by the equality∫

ψ∗
m(	r − 	ri) f(	r) ψn(	r − 	rj) d	r = 0 (i �= j) ,

in which f(	r) is a ˇnite function.
Using the notations and conditions introduced above, we transform the radi-

ator Hamiltonian (30) to the form

Ĥr(t) =
∑
n

N∑
i=1

En c
†
ni(t) cni(t) . (39)

The radiatorÄˇeld Hamiltonian (32) becomes

Ĥrf(t) = −
∑
mn

N∑
i=1

c†mi(t)cni(t)
[
	dmn · 	E0i(t) +

1
c
	jmn · 	Ai(t) + 	µmn · 	Bi(t)

]
,

(40)
where

	Bi(t) = 	H0i(t) + 	Hi(t) (41)

is the total magnetic ˇeld.
From deˇnitions (34) to (36), we have

	d∗mn = 	dnm , 	j∗mn = 	jnm , 	µ∗mn = 	µnm .

Because the wave functions are usually either symmetric or antisymmetric with
respect to the spatial inversion, so that

|ψn(−	r)| = |ψn(	r)| , (42)

then we see that 	dnn = 	jnn = 0 but, in general, 	µnn �= 0.
The next approximation that is usually involved is related to the situation

when only a couple of radiator levels takes part in the considered process. This
happens when the transition frequency

ω0 ≡ ω21 = E2 − E1 > 0 (43)

for these two levels is selected by means of an external alternating ˇeld whose
frequency is close to the transition frequency (43). In this way, considering
only two levels is equivalent to the quasiresonance approximation. Then, it is
convenient to introduce the transition operators

σ−i (t) = c
†
1i(t) c2i(t) , σ+

i (t) = c
†
2i(t) c1i(t)
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and the population-difference operator

σzi (t) = c
†
2i(t) c2i(t)− c

†
1i(t) c1i(t) ,

so that

2c†1i(t) c1i(t) = 1− σzi (t) , 2c†2i(t) c2i(t) = 1 + σzi (t) .

The commutation relations for the introduced operators are

[σ−i , σ
+
j ] = −δij σzi , [σ−i , σ

−
j ] = [σ+

i , σ
+
j ] = 0, [σ−i , σ

z
j ] = 2 δij σ−i ,

[σ+
i , σ

z
j ] = −2 δij σ+

i , [σ−i , 	Aj ] = [σ−i , 	Ej ] = [σzi , 	Aj ] = [σzi , 	Ej ] = 0,

where all operators are taken at coinciding times.
With the notation

	d21 ≡ 	d , 	µ21 ≡ 	µ , (44)

we have 	d12 = 	d∗, 	µ12 = 	µ∗, and consequently

	j12 = − i ω0
	d∗ , 	j21 = i ω0

	d . (45)

Since only the difference between level energies is measurable, one can set
E1 = 0. Then the radiator Hamiltonian (39) reduces to

Ĥr(t) =
1
2

N∑
i=1

ω0 [1 + σzi (t)] . (46)

Everywhere in what follows we assume that electromagnetic ˇelds acting on
a radiator do not change the classiˇcation of its energy levels. In the other
case it would be impossible to talk about quasiresonance. This implies that the
interaction energies of a radiator with ˇelds are assumed to be much smaller than
ω0. Because of the latter, the term

1
2

N∑
i=1

[(	µ11 + 	µ22) + (	µ22 − 	µ11) σzi (t)] · 	Bi(t) ,

entering the radiatorÄˇeld Hamiltonian (40), can be neglected as compared to
Eq. (46). As a result, we obtain

Ĥrf (t) = −
N∑
i=1

[
1
c
	ji(t) · 	Ai(t) + 	di(t) · 	E0i(t) + 	µi(t) · 	Bi(t)

]
, (47)

where the notation

	ji(t) = i ω0

[
	d σ+

i (t)− 	d∗ σ−i (t)
]
, 	di(t) = 	d σ+

i (t) + 	d∗ σ−i (t) ,
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	µi(t) = 	µ σ+
i (t) + 	µ∗ σ−i (t) (48)

is used. The Hamiltonian of the matterÄˇeld interaction can be written analo-
gously to the ˇrst term in Eq. (47) as

Ĥmf (t) = − 1
c

N0∑
j=1

	Jmj(t) · 	Aj(t) , (49)

where N0 is the number of particles forming the matter and 	Jmj is a local matter

current having the structure of the operator 	Jmj = (e/m)	pj , with 	pj being the
momentum of a j-particle.

The transition between the quantum states ψ1 and ψ2 can be either accom-
panied by the change of parity or not. Then from deˇnitions (35) and (36) it
follows that one has one of two possibilities:

	d �= 0 , 	µ = 0 (changed parity) ;

	d = 0 , 	µ �= 0 (conserved parity) . (50)

Thus, we actually have to deal with only one of the dipole transitions, either with
electric or with magnetic. Here we consider them in parallel in order to compare
these two cases.

4. STOCHASTIC MEAN-FIELD APPROXIMATION

Now it is necessary to write down the evolution equations for the operators
entering the total Hamiltonian (29) whose terms are given by Eqs. (46), (31),
(47), and (49). The Heisenberg equations yield

1
c

∂

∂t
	E(	r, t) = 	∇× 	H(	r, t)− 4π

c
	J(	r, t) ,

1
c

∂

∂t
	A(	r, t) = − 	E(	r, t) , (51)

which are, actually, the operator Maxwell equations, where the operator of cur-
rent is

	J(	r, t) =
N∑
i=1

[
	ji(t)− c 	µi(t)× 	∇

]
δ(	r − 	ri) +

N0∑
j=1

	Jmj(t) δ(	r − 	rj) . (52)

For the transition operators we have

dσ−i
dt

= − i ω0 σ
−
i +

(
k0 	d · 	Ai − i 	d · 	E0i − i 	µ · 	Bi

)
σzi (53)
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for the lowering operator, where k0 ≡ ω0/c, and the Hermitian conjugate equation
for the rising operator σ+

i . For the population-difference operator we get

dσzi
dt

= −2k0
(
	d σ+

i + 	d∗ σ−i

)
· 	Ai+

+2i
(
	d σ+

i − 	d∗ σ−i

)
· 	E0i + 2 i

(
	µ σ+

i − 	µ∗ σ−i
)
· 	Bi . (54)

From Eqs. (51), using the Coulomb calibration, we ˇnd the wave equation(
	∇2 − 1

c2
∂2

∂t2

)
	A(	r, t) = − 4π

c
	J(	r, t) . (55)

The solution of the latter has the form

	A(	r, t) = 	Avac(	r, t) +
1
c

∫
	J

(
	r ′, t− |	r − 	r ′|

c

)
d	r ′

|	r − 	r ′| , (56)

in which 	Avac is the vacuum vector potential being a solution of the uniform
wave equation. With the operator of current (52), the vector potential (56) can
be written as the sum

	A = 	Avac + 	Arad + 	Amat (57)

of the vacuum potential 	Avac, the radiator potential

	Arad(	ri, t) =
∑
j

1
crij

	jj

(
t− rij

c

)
+
∑
j

	rij
r3ij

×
(
rij

∂

∂rij
− 1
)
	µj

(
t− rij

c

)
,

(58)
and of the matter potential

	Amat(	ri, t) =
∑
j

1
c rij

	Jmj

(
t− rij

c

)
, (59)

where 	rij ≡ 	ri − 	rj , rij ≡ |	rij |, and the summation
∑

j does not include the
term with j = i.

Our aim is to derive the evolution equations for the variables

ui(t) ≡ < σ−i (t) > , si(t) ≡ < σzi (t) > , (60)

in which the angle brackets mean the statistical averaging over the radiator degrees
of freedom. For the double correlators, we shall employ the meanÄˇeldÄtype
decoupling

< σαi σ
β
j > = < σαi >< σ

β
j > (i �= j) . (61)
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The quantum effects due to self-action [29] can be taken into account by including
into the evolution equations the attenuation terms deˇned by

γ ≡ 4
3
k3
0

(
d20 + µ

2
0

)
, (62)

where d0 ≡ |	d| and µ0 ≡ |	µ|. More generally, one includes the phenomenological
longitudinal and transverse attenuation parameters γ1 and γ2.

To take into account the retardation, we may remember that the action of
electromagnetic ˇelds is characterized by the energies that are much smaller than
ω0. That is, in the zero order one has σ−i ∼ exp(−iω0t), as follows from Eq.
(53). This suggests to treat the retardation by means of the formula

< σ−j

(
t− rij

c

)
> = uj(t) exp(i k0 rij) , (63)

which can be called the quasirelativistic approximation since in the relativistic
limit, c→ ∞, Eq. (63) becomes an identity.

Comparing the terms of the vector potential (58), induced by either electrodi-
pole or magnetodipole transitions, we notice their essential difference. Really,
averaging over angles gives ∑

j

f(rij) 	rij = 0 , (64)

unless there is a special arrangement of radiators in space. Hence, the vector
potential induced by magnetodipole transitions, in usual conditions, is negligibly
small. Then for the averaged potential (58), we have

< 	Arad(	ri, t) > = i k2
0

∑
j

(
	d ϕ∗

ij u
∗
j − 	d∗ ϕij uj

)
, (65)

where

ϕij ≡
exp(i k0 rij)
k0 rij

. (66)

The invuence of vacuum vuctuations and of matter is characterized by the
term

ξi(t) ≡ k0 	d ·
[
	Avac(	ri, t) + 	Amat(	ri, t)

]
, (67)

which we consider as a stochastic variable, whose properties are to be deˇned by
additional conditions.

In this way, we come to the evolution equations for the transverse variable,

dui
dt

= −(i ω0 + γ2) ui − i si
(
	d · 	E0i + 	µ · 	H0i

)
+
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+i k3
0 si

	d ·
∑
j

(
	d ϕ∗

ij u
∗
j − 	d∗ ϕij uj

)
+ si ξi , (68)

and for the longitudinal variable,

dsi
dt

= 2 i u∗i
(
	d · 	E0i + 	µ · 	H0i

)
− 2 i ui

(
	d∗ · 	E0i + 	µ∗ · 	H0i

)
−

−2 i k3
0 (	d u

∗
i + 	d

∗ ui) ·
∑
j

(
	d ϕ∗

ij u
∗
j − 	d∗ ϕij uj

)
−γ1(si− ζ)−2(u∗i ξi+uiξ

∗
i ),

(69)
where ζ ∈ [−1, 1] is a pumping parameter. An equation for u∗i can be obtained
by the complex conjugation of Eq. (68). Another useful equation is

d|ui|2
dt

= −2 γ2 |ui|2 + si (u∗i ξi + ui ξ∗i )− i si u∗i
(
	d · 	E0i + 	µ · 	H0i

)
+

+i si ui
(
	d∗ · 	E0i + 	µ∗ · 	H0i

)
+

+i k3
0 si

(
u∗i
	d+ ui 	d∗

)
·
∑
j

(
	d ϕ∗

ij u
∗
j − 	d∗ ϕij uj

)
. (70)

Equations (68) to (70) are basic for describing nonequilibrium collective phenom-
ena in radiating systems. The set of assumptions employed for deriving these
equations can be brievy named the stochastic meanÄˇeld approximation since
the meanÄˇeldÄtype decoupling (61) was used for the radiator correlators, but
quantum effects are taken into account through the stochastic variable (67).

5. DYNAMICAL CHARACTERISTICS OF COHERENCE

One of the most important results of the cooperative behaviour of radiators is
the appearance of coherent radiation. The level of coherence of electromagnetic
ˇelds can be described by the corresponding correlation functions [32]. Here we
introduce another characteristic of coherence, which is convenient for considering
the radiation from ensembles of radiators [33].

The energy density of the radiated electromagnetic ˇeld is

W ≡ 1
8π

(
	E2 + 	H2

)
, (71)

where 	E = 	E(	r, t) and 	H = 	H(	r, t). Differentiating Eq. (71) with respect to
time, using the Maxwell equations (51), and deˇning the intensity of scattering

∂Ws

∂t
≡ 1
2

(
	J · 	E + 	E · 	J

)
(72)
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and the Poynting vector

	S ≡ c

8π

(
	E × 	H − 	H × 	E

)
, (73)

we obtain the continuity equation

∂

∂t
(W +Ws) + div	S = 0 . (74)

The intensity of radiation into the unit solid angle is

I(	n, t) ≡ <: 	n · 	S(	r, t) :> r2 , (75)

where 	n ≡ 	r/r, r ≡ |	r|, and the colons imply the normal ordering of operators.
To accomplish the latter, one separates the Hermitian operators into their conjugate
parts, which, for instance, for the vector potential (58) reads as

	Arad(	r, t) = 	A+(	r, t) + 	A−(	r, t) , (76)

where

	A+(	r, t) =
∑
j

[
i k0 	d

|	r − 	rj |
+
1 + i k0 |	r − 	rj |

|	r − 	rj |3
	µ× (	r − 	rj)

]
σ+
j

(
t− 1

c
|	r − 	rj |

)
.

Respectively, the electromagnetic positive and negative ˇelds related to Eq. (76)
are

	Erad ≡ − 1
c

∂ 	Arad

∂t
= 	E+ + 	E− , 	Hrad ≡ 	∇× 	Arad = 	H+ + 	H− .

In the time and space derivatives, we may employ, for differentiating σ±j , the
relations(

1
c

∂

∂t
+

∂

∂rij

)
σ±j

(
t− rij

c

)
= 0 ,

(
∂

∂rij
± i k0

)
σ±j

(
t− rij

c

)
= 0 .

In the wave zone, where r � |	ri| and |	r − 	rj | 
 r − 	n · 	rj , (r � |	rj |), we
have

	A+(	r, t) 
 i
k0
r

(
	d+ 	µ× 	n

)∑
j

σ+
j

(
t− r − 	n · 	rj

c

)
, (77)

from where
	E+ = −ik0 	A+ , 	H+ = 	n× 	E+ . (78)

Then in the part of the Poynting vector (73), describing the radiation from the
ensemble of radiators, one has

	Srad =
c

4π
	Erad × 	Hrad , 	Hrad = 	n× 	Erad .
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For the corresponding part of the radiation intensity (75), we get

Irad(	n, t) =
cr2

4π
<: 	E2

rad −
(
	n · 	Erad

)2

:> . (79)

Averaging the latter over stochastic variables and over fast oscillations yields

I(	n, t) ≡ ω0

2π

∫ 2π/ω0

0

� Irad(	n, t)� dt , (80)

the slow variables in the process of integration being kept ˇxed. For the radiation
intensity (79), this results in

I(	n, t) = ω0 γ
N∑
ij

fij(	n) < σ+
i (t)σ

−
j (t) > , (81)

where

fij(	n) ≡
3
8π

|	n× 	e|2 exp (i k0 	n · 	rij) (82)

and 	e = 	d/d0 or 	µ/µ0 depending on the type of radiation.
In the radiation intensity (81), we may separate the terms with the coinciding

and with different indices, so that
∑

ij =
∑

i=j +
∑

i�=j . This makes it possible
to separate the radiation intensity into the incoherent and coherent parts,

I(	n, t) = Iinc(	n, t) + Icoh(	n, t) , (83)

so that the incoherent radiation intensity is

Iinc(	n, t) =
1
2
ω0 γ

N∑
i=1

fii(	n) [1 + si(t)] (84)

while the coherent radiation intensity is

Icoh(	n, t) = ω0 γ

N∑
i�=j

fij(	n) u∗i (t)uj(t) . (85)

Here the equality 2σ+
i σ

−
i = 1 + σzi was used. The total radiation intensity is

given by the integral

I(t) ≡
∫
I(	n, t) dΩ(	n) = Iinc(t) + Icoh(t) (86)

over solid angles. Here the incoherent part is

Iinc(t) =
1
2
ω0 γ

N∑
i=1

[1 + si(t)] , (87)



COOPERATIVE ELECTROMAGNETIC EFFECTS 1149

and the coherent part is

Icoh(t) = ω0 γ
N∑
i�=j

fij u∗i (t)uj(t) , (88)

where

fij ≡
∫
fij(	n) dΩ(	n) , fii = 1 . (89)

Finally, the level of coherence can be deˇned [33] by means of the coherence
coefˇcients

Ccoh(	n, t) ≡
Icoh(	n, t)
Iinc(	n, t)

, Ccoh(t) ≡
Icoh(t)
Iinc(t)

. (90)

The radiation is mainly incoherent when Ccoh � 1 and it is almost purely coherent
if Ccoh � 1.

6. COLLECTIVE LIBERATION OF LIGHT

A system of initially inverted atoms can, due to photon exchange, become
strongly correlated, as a result emitting a coherent pulse. This effect of self-
organization, accompanied by a coherent burst, is called the Dicke superradiance
[34]. This phenomenon is well studied for atoms in vacuum [1,29,30], includ-
ing different particular cases, such as superradiance in two-component systems
[35Ä37], superradiance from ensembles of three-level molecules [1,38], two-
photon superradiance [39,40], and so on (see citations in Refs. [41]). When
radiating atoms or molecules are placed in a solid, they interact with phonons
[42,43], which can lead to such interesting phenomena as the laser cooling of
solids [44, 45].

When an atom is placed in a periodic dielectric structure, in which, due
to periodicity, a photonic band gap develops, then spontaneous emission with a
frequency inside the band gap can be rigorously forbidden [46,47]. This kind of
matter, where photon band gap appears because of the structure periodicity in real
space, has been called photonic band-gap materials. The photon band gap also
appears in natural dense media due to photon interactions with optical collective
excitations, such as phonons, magnons, or excitons [48,49]. One calls this type of
the gap the polariton band gap since photons coupled with collective excitations
of a medium are termed polaritons.

If a single resonance atom is placed in a medium with a photon band gap,
and the atomic transition frequency lies inside this gap, then the spontaneous
emission is suppressed, which is named the localization of light [46,47]. This
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effect is caused by the formation of a photonÄatom bound state [50Ä52]. When
a collection of identical resonance atoms is doped into a medium with a photon
band gap, so that the atomic transition frequency is inside this gap, then the
atoms, in principle, can radiate because of the formation of a photonic impurity
band within the photon band gap [50,53Ä55]. A model case of a concentrated
sample, whose linear size L is much smaller than the radiation wavelength λ,
has been considered for studying superradiance near a photonic band gap [56,57],
when the transition frequency almost coincides with the frequency of the upper
band edge. Here, following Ref. 58, we study the realistic case of a sample with
λ� L.

Assume that the localization of light occurs for a single atom with an electric
dipole transition, so that its population difference is always s0 = s(0). Consid-
ering an ensemble of resonance atoms, we resort to Eqs. (68), (69), and (70).
For simplicity, we write ui = u and si = s. Introduce the effective coupling
parameters

g ≡ 3γ
4γ2

∑
j

sin(k0 rij)
k0 rij

, g′ ≡ 3γ
4γ2

∑
j

cos(k0 rij)
k0 rij

, (91)

where γ ≡ 4k3
0 d

2
0/3. In the absence of resonator imposing a selected mode,

g ≈ g′ ≈ 3γ
4γ2

ρ λ3 , (92)

where ρ is the density of resonance atoms. It is convenient to introduce the
effective frequency and effective attenuation deˇned, respectively, as

Ω ≡ ω0 + γ2 g′ s , Γ ≡ γ2 (1− g s) . (93)

These expressions include the invuence of local ˇelds [59] through the coupling
parameters (91). Since the latter take into account the existence of an ensemble
of atoms, we may call Ω and Γ the collective frequency and collective width,
respectively.

With these notations, Eq. (68) reduces to

du

dt
= − (i Ω+ Γ) u+ s ξ + γ2 	ed

2 (g + i g′) s u∗ , (94)

where ξ = ξi and 	ed ≡ 	d/d0. Equation (69) becomes

ds

dt
= −4 γ2 g |u|2 − γ1 (s− s0)− 2 (u∗ ξ + u ξ∗)−

−2 γ2
[
(g + i g′) (u∗ 	ed)

2 + (g − i g′) (u 	ed∗)2
]
, (95)
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where ζ = s0 takes into account that for a single atom the localization of light
occurs. And for Eq. (70), we have

d|u|2
dt

= −2 Γ |u|2 + s (u∗ ξ + ξ∗ u)+

+γ2 s
[
(g + i g′) (u∗ 	ed)

2 + (g − ig′) (u 	ed∗)2
]
. (96)

Let us accept the natural inequalities

γ1
Ω

� 1 ,
γ2
Ω

� 1 ,
∣∣∣∣ΓΩ
∣∣∣∣� 1 . (97)

And, as always, we keep in mind that the interaction term (67) is small as
compared to the frequency Ω, or that � ξ � = 0, which tells that this term is
small on average. Then, according to Sec. 2, we may classify the solution u as
fast while s and |u|2 as slow. Solving Eq. (94), with s being a quasi-invariant,
we get

u(t) =
[
u0 + s

∫ t

0

e(i Ω+Γ) t′ ξ(t′) dt′
]
e−(i Ω+Γ) t . (98)

Introduce the notation

α ≡ lim
τ→∞

Re
τ Γ s

∫ τ

0

� ξ∗(t)u(t)� dt , (99)

where Re means the real part and which, if � ξ �= 0, takes the form

α = lim
τ→∞

Re
τ Γ

∫ τ

0

dt

∫ t

0

e−(i Ω+Γ)(t−t′) � ξ∗(t)ξ(t′) � dt′ .

When ξ(t) is a stochastic variable corresponding to a stationary random process,
so that

� ξ∗(t) ξ(t′) � =� ξ∗(t− t′) ξ(0)� ,

then the notation (99) becomes

α = lim
τ→∞

Re
τ Γ

∫ τ

0

dt

∫ t

0

e−(i Ω+Γ) t′ � ξ∗(t′) ξ(0)� dt′ .

Deˇning a new function

w ≡ |u|2 − α s2 , (100)

and averaging the right-hand sides of Eqs. (95) and (96) over time and over
stochastic variables we get

ds

dt
= −4 g γ2 w − γ∗1 (s− ζ∗) ,

d|u|2
dt

= −2 Γ w ,
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where
γ∗1 ≡ γ1 + 4 γ2 α , ζ∗ ≡ γ1

γ∗1
s0 .

In what follows, we assume that the quantity (99), describing the intensity of
interaction between atoms and matter, is small,

|α| � 1 . (101)

To understand the structure of the atomÄmatter coupling α, we may model the
random variable ξ by the interaction of an atom with an ensemble of oscillators as

ξ(t) =
∑
ω

γω
(
bω e

−iωt + b†ω e
iωt
)
,

where bω and b†ω are Bose operators. Then the atom-matter coupling is

α =
∑
ω

γ2
ω

[
nω

(ω − Ω)2 + Γ2
+

1 + nω
(ω +Ω)2 + Γ2

]
,

with nω ≡ � b†ωbω �. If the coupling α is small, then γ∗1 ≈ γ1, ζ
∗ ≈ s0, and

d|u|2/dt ≈ dw/dt. Therefore, we obtain the equations

ds

dt
= −4 g γ2 w − γ1 (s− s0) ,

dw

dt
= −2 γ2 (1 − g s) w . (102)

For transient times, when t � γ−1
1 , Eqs. (102) can be solved explicitly,

giving

s = − γ0
gγ2

tanh
(
t− t0
τ0

)
+
1
g
, w =

γ2
0

4g2γ2
2

sech2

(
t− t0
τ0

)
, (103)

where the integration constants γ0 = τ−1
0 and t0 are deˇned by the initial condi-

tions u(0) = u0 and s(0) = s0. For the radiation width γ0, we get the equation

γ2
0 = Γ2

0 + 4g2γ2
2

(
|u0|2 − α0s

2
0

)
, (104)

where

Γ0 ≡ γ2(1− gs0) , γ0 ≡ 1
τ0
, α0 ≡ α(0) .

For the delay time, we ˇnd

t0 =
τ0
2
ln
∣∣∣∣γ0 − Γ0

γ0 + Γ0

∣∣∣∣ . (105)
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Introducing the critical coupling

αc ≡
(1− gs0)2
4g2s20

+
|u0|2
s20

, (106)

we may rewrite the radiation width as

γ0 = 2g |s0| γ2
√
αc − α0 . (107)

In the case of only one atom, we have to set g = 0. Then Eqs. (102) give

s = s0 , w = (|u0|2 − α0 s
2
0) e

−2γ2 t (g = 0) ,

which means that the light is localized. But for an ensemble of atoms the radiation
becomes possible.

To ˇnd out what happens at large times, when t → ∞, we need to analyse
the stationary solutions of Eqs. (102). There are two pairs of such solutions:

s∗1 = s0 , w∗
1 = 0 (108)

and

s∗2 =
1
g
, w∗

2 =
γ1(gs0 − 1)
4g2γ2

. (109)

The stability analysis [58] shows that the ˇxed point (108) is stable for gs0 < 1
and unstable for gs0 > 1, when the point (109) becomes stable. When gs0 < 1,
the stationary point (108) is a stable node, while that (109) is a saddle point. In
the interval 1 < gs0 ≤ 1 + γ1/8γ2, the ˇxed point (108) is a saddle point, and
that (109) is a stable node. For gs0 > 1 + γ1/8γ2, the stationary solutions (108)
correspond again to a saddle point, while the ˇxed point (109) becomes a stable
focus. In the latter case, the pulsing regime of radiation is realized, with the
asymptotic period between pulses

Tp =
4π

|γ2
1 + 8(1− gs0)γ1γ2|1/2

. (110)

However, at ˇnite times the radiation pulses are not periodic, so that the charac-
teristic time (110) is an approximate period only for t→ ∞.

In this way, when a single atom cannot radiate because of the localization
of light, an ensemble of atoms can emit coherent radiation, provided that the
interaction between atoms is sufˇciently strong, so that gs0 > 1. This is why
such an effect can be called the collective liberation of light. However, this
liberation is not complete but only partial since s∗2 > 0.
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7. AMPLIFICATION BY NONRESONANT FIELDS

An essential enchancement of radiation can occur due to correlations between
radiators, which results in the emission of a coherent pulse. In order that these
correlations could be sufˇciently strong, it is usually required that the radiation
wavelength would be much larger than the mean distance between radiators. If
the latter is not the case, it is hardly probable that the self-organized coherence
can develop. How would it be possible to amplify the radiation intensity for
a system of radiators whose wavelength is smaller than or comparable with the
mean distance between them? This question is of high importance for short-wave
emission such as x-ray and γ-ray radiation. Coherent transient effects due to phase
modulation of recoilless γ radiation have been considered both theoretically and
experimentally [60Ä63]. A regenerated signal of gamma echo has been observed
[64], which is similar to photon echo in optics [65]. In the present section we
explore the conditions when stationary enchancement of short-wave radiation is
feasible, being due to external nonresonant ˇelds. Some preliminary results on
the problem have been reported [66Ä68], based on simpliˇed models. Here the
problem is considered more accurately, using the main Eqs. (68) to (70). The
latter, in the case of short-wave radiation, when the interaction of radiators can
be neglected, take the form

dui
dt

= −(iω0 + γ2)ui − isi 	d · 	E0i , (111)

dsi
dt

= 2i(u∗i 	d− ui 	d∗) · 	E0i − γ1(si − ζ) , (112)

d|ui|2
dt

= −2γ2|ui|2 − isi(u∗i 	d− ui 	d∗) · 	E0i . (113)

The initial conditions are ui(0) = u0 and si(0) = s0.
Assuming, as usual, the existence of small parameters

γ1
ω0

� 1 ,
γ2
ω0

� 1 ,
|	d · 	E0i|
ω0

� 1 , (114)

we see that ui has to be classiˇed as a fast solution while si and |ui|2, as slow
ones. With si being a quasi-invariant, Eq. (111) gives

ui(t) = e−(iω0+γ2) t

[
u0 − i si 	d ·

∫ t

0

	E0i(τ) e(iω0+γ2) τ dτ

]
.

Let the external ˇeld 	E0i = 	E0i(t) consist of two parts,

	E0i = 	E0 + 	E1e
i(�k·�ri−ωt) + 	E∗

1e
−(�k·�ri−ωt) , (115)
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one being a stationary nonresonant ˇeld 	E0, and another part is a pair of plane
waves, which are in quasiresonance with the transition frequency,

|∆|
ω0

� 1 , ∆ ≡ ω − ω0 . (116)

Then the solution of Eq. (111) writes

ui(t) = − si 	d · 	E0

ω0 − iγ2
+
si 	d · 	E1

∆+ iγ2
ei(

�k·�ri−ωt)+

+

(
u0 +

si 	d · 	E0

ω0 − iγ2
− si 	d · 	E1

∆+ iγ2
ei

�k·�ri

)
e−(iω0+γ2) t . (117)

Substituting this into the right-hand side of Eq. (112) and averaging over time as

lim
τ→∞

1
τ

∫ τ

0

f(s, t) dt ,

we come to the equation

dsi
dt

= −γ∗1 (si − ζ∗) , (118)

with

γ∗1 ≡ γ1 + 4γ2

(
|	d · 	E0|2
ω2

0 + γ
2
0

+
|	d · 	E1|2
∆2 + γ2

2

)
, ζ∗ ≡ γ1

γ∗1
ζ .

The solution to Eq. (118) is

si(t) = s0 e−γ∗
1 t + ζ∗

(
1− e−γ∗

1 t
)
. (119)

Calculating the correlation function

u∗i (t)uj(t) = s
2(t)

(
|	d · 	E0|2
ω2

0 + γ
2
2

+
|	d · 	E1|2
∆2 + γ2

2

e−i �k·�rij

)
,

where, for simplicity, we set si = s, we ˇnd the incoherent and coherent radiation
intensities (84) and (85), respectively, as

Iinc(	n, t) =
3N
16π

ω0 γ |	n× 	ed|2 [1 + s(t)] ,

Icoh(	n, t) =
3N2

8π
ω0 γ |	n× 	ed|2 s2(t) ×
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×
[
F (k0 	n)

|	d · 	E0|2
ω2

0 + γ
2
2

+ F (k0 	n− 	k) |	d · 	E1|2
∆2 + γ2

2

]
, (120)

where 	n ≡ 	r/r and the form factor is

F (	k) ≡ 1
N2

N∑
i�=j

ei
�k·�rij =

∣∣∣∣∣ 1N
N∑
i=1

ei
�k·�ri

∣∣∣∣∣
2

. (121)

As is seen from expressions (120) and (121), the maxima of coherent radiation
occur in the directions satisfying the condition(

k0 	n− 	k
)
· 	ri = 2πni (ni = 0, 1, 2, . . .) . (122)

This corresponds either to forward scattering, when all ni = 0, and the periodicity
of matter is not required, or to the scattering in the Bragg directions, for which
the strict space periodicity of radiators is needed. The enhancement of coherent
radiation in the directions deˇned by condition (122) is called the Borrmann effect
[69,70], which for the case of γ-rays is sometimes termed the KaganÄAfanasiev
effect [71,72].

The total radiation intensities (87) and (88) are

Iinc(t) =
1
2
Nω0γ [1 + s(t)] ,

Icoh(t) = N2 ϕ ω0 γ s
2(t)

(
|	d · 	E0|2
ω2

0 + γ
2
2

+
|	d · 	E1|2
∆2 + γ2

2

)
, (123)

where the shape factor is

ϕ ≡ 3
8π

∫
|	n× 	ed|2 F (k0 	n− 	k) dΩ(	n) . (124)

The value of the latter strongly depends on the shape of the considered sample.
Thus, for pencil-like or disk-like shapes [29], one has

ϕ =




3λ
8L ,

λ
2πL � 1 , R

L � 1

3
8

(
λ
πR

)2
, λ

2πR � 1 , L
R � 1 ,

where R and L are the radius and length of a cylindrical sample, and λ ≡
≡ 2π/k, k ≡ |	k| = ω/c.

Consider the stationary limit t→ ∞, keeping in mind the situation typical of
Méosbauer experiments, when the alternating ˇeld is weak,

|	d · 	E1|2
γ1γ2

� 1 , (125)
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and let us set, for simplicity,
ζ = −1 (126)

which means that there is no additional pumping except through the given ˇeld
(115). Then Eq. (119) reduces to

lim
t→∞

si(t) = −1 + 4γ2
γ1

(
|	d · 	E0|2
ω2

0

+
|	d · 	E1|2
∆2 + γ2

2

)
.

For the coherence coefˇcient, deˇned in Eq. (90), we get

lim
t→∞

Ccoh(t) = N
ϕγ1
2γ2

. (127)

The role of the nonresonant ˇeld 	E0 can be characterized by the switching
factor [24]

S(E0, t) ≡
I(t)

limE0→0 I(t)
(128)

and its stationary limit
S(E0) ≡ lim

t→∞
S(E0, t) . (129)

For our case, we obtain

S(E0) = 1 +
∆2 + γ2

2

ω2
0

∣∣∣∣∣
	d · 	E0

	d · 	E1

∣∣∣∣∣
2

. (130)

The switching factors (128) and (129) show how the radiation intensity is am-
pliˇed when a nonresonant ˇeld 	E0 is switched on, as compared to the situation
when 	E0 = 0. As is seen from expression (130), the ampliˇcation can be quite
noticeable only if |	d · 	E0| � |	d · 	E1|, so that to compensate the smallness of the
parameters |∆|/ω0 and γ2/ω0.

8. MéOSSBAUER MAGNETIC ANOMALY

Stationary ˇelds, electric or magnetic, can be due not to external sources but
can arise in a sample as a result of phase transitions [73,74]. If an ensemble of
radiators is incorporated into matter exhibiting a phase transition accompanied by
the appearance of a constant ˇeld, the latter may invuence some radiation char-
acteristics. An interesting example of this kind is given by the gamma radiation
of Méossbauer nuclei placed into magnetic materials. This example is especially
intriguing because of long-standing controversy related to its interpretation.
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There exists a number of experiments demonstrating the so-called magnetic
anomaly of the Méossbauer effect in materials undergoing magnetic phase transi-
tion. This anomaly consists in an essential increase, up to 50%, of the area under
the Méossbauer spectrum below the temperature of magnetic transition, as com-
pared to the spectrum area in paramagnetic state above the transition temperature.
A detailed discussion of these experiments can be found in the book [75] and
review [76]. The controversy related to this anomaly concerns the explanation of
the cause of the latter.

The area of the Méossbauer spectrum, for Méossbauer nuclei in a solid sample,
is given by the integral

Aabs = fM
∫ +∞

−∞
σabs(ω) dω , (131)

in which
fM = exp(−k2

0r
2
0) (132)

is the Méossbauer factor, k0 = ω0/c, r0 is the mean-square deviation of the
nucleus from a lattice site,

σabs(ω) =
σ0Γ2

abs

(ω − ω0)2 + Γ2
abs

(133)

is the absorption cross-section, Γabs is the absorption half-width,

σ0 =
2π(1 + 2I1)

k2
0(1 + 2I0)(1 + αe)

(134)

is the cross-section of resonant absorption, I0 and I1 are the nuclear spins of
the ground-state and excited levels, and αe is the electron conversion coefˇcient.
After integrating Eq. (131), we have the spectrum area

Aabs = πfMσ0Γabs . (135)

It is important to emphasize that the Méossbauer anomaly, we consider here,
has been observed only in the so-called absorption geometry, when absorbing
Méossbauer nuclei are placed inside magnetic matter which is irradiated by an
external source. Contrary to this, in the experiments with the so-called source
geometry, when a radioactive source is incorporated into the magnetic matter,
but absorbing Méossbauer nuclei are outside this matter, no magnetic anomaly
has been observed [77Ä79]. Therefore it is clear that the considered Méossbauer
anomaly is directly related to the action on Méossbauer nuclei of an effective
magnetic ˇeld appearing below the critical point. But what is the origin of this
anomaly?
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Historically, the ˇrst suggestion was to ascribe the anomaly in the temperature
behaviour of the spectrum area (135) to the invuence of the appearing magnetic
order on the Méossbauer factor (132). A number of citations having to do with
this suggestion are listed in Refs. 75,76. This assumption implies that the mean-
square deviation r0 deˇning the Méossbauer factor (132) is essentially invuenced
by arising magnetic order. The course of reasoning is as follows. Méossbauer
nuclei doped into a solid are characterized by the same mean-square deviation
as the particles forming the solid sample. The latter can be described by the
Hamiltonian

Ĥm =
∑
i

	pi
2

2m
+
1
2

∑
i�=j

Φ(Rij)−
∑
i�=j

I(Rij) 	Si · 	Sj , (136)

in which Φ(Rij) is a potential of direct pair interactions while I(Rij) is that of

exchange interactions, 	Si is a spin operator, and Rij ≡ |	Rij |, with 	Rij = 	Ri− 	Rj .
The indices of summation in Eq. (136) run as i = 1, 2, . . . , N0, with N0 being
the number of lattice sites. Introduce the deviation from a lattice site,

	ui ≡ 	Ri − 	ai , (137)

deˇned so that
	ai = < 	Ri > , < 	ui > = 0 . (138)

Taking into account that |	ui| is small as compared to the interparticle distance,
one expands the interaction potential in powers of uαi up to the second order,
which results in the Hamiltonian

Ĥm = U0 + Ĥp + Ĥs + Ĥsp + Ĥ ′ , (139)

whose terms are explained below: the constant part of the lattice energy

U0 =
1
2

∑
i�=j

Φ(aij) ; aij ≡ |	aij | , 	aij ≡ 	ai − 	aj , (140)

the phonon term

Ĥp =
∑
i

	pi
2

2m
+
1
2

∑
i�=j

∑
αβ

Φαβ
ij uαi u

β
j , (141)

in which Φαβ
ij ≡ ∂2Φ(aij)/∂aαi ∂a

β
j , the spin Hamiltonian

Ĥs = −
∑
i�=j

I(aij) Sij ; Sij ≡ 	Si · 	Sj , (142)
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the term responsible for spinÄphonon interactions,

Ĥsp = −
∑
i�=j

∑
αβ

Iαβij uαi u
β
j Sij , (143)

where Iαβij = ∂2I(aij)/∂aαi ∂a
β
j , and the term

Ĥ ′ = −
∑
i

∑
α

uαi


1 + 1

2

∑
β

uβi
∂

∂aβi


 Fα

i (144)

related to the striction energy, where the striction force acting on the site i is
given by the components

Fα
i ≡ − ∂

∂aαi

∑
j

[Φ(aij)− 2I(aij)Sij ] .

The correct deˇnition of the lattice sites in Eq. (138) presupposes that they serve
as equilibrium positions for particles. This implies that the striction energy is to
be zero on average,

< Ĥ ′ > = 0 . (145)

Then one invokes a kind of the semiclassical approximation

< uαi Sij > = < uαi >< Sij > = 0 , < uαi u
β
j Sij > = < uαi u

β
j >< Sij > ,

decoupling the phonon and spin degrees of freedom, which suggests to present
the operator term in the spinÄphonon interaction (143) as

uαi u
β
j Sij = < u

α
i u

β
j > Sij + uαi u

β
j < Sij > − < uαi u

β
j > < Sij > .

(146)
Thus, the matter Hamiltonian (139) can be reduced to

Ĥm = U0 + Ĥp + Ĥs , (147)

with the renormalized terms

U0 = U0 +
∑
i�=j

∑
αβ

Iαβij < uαi u
β
j > < Sij > ,

Ĥp =
∑
i

	pi
2

2m
+
1
2

∑
i�=j

∑
αβ

Dαβ
ij uαi u

β
j , Ĥs = −

∑
i�=j

Jij Sij ,
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in which the striction energy, because of condition (145), is omitted and the
renormalized interactions are

Dαβ
ij ≡ Φαβ

ij − 2Iαβij < Sij > , Jij ≡ I(aij) +
∑
αβ

Iαβij < uαi u
β
j > .

The renormalized dynamical matrix Dαβ
ij deˇnes the effective phonon spectrum

ωks through the eigenvalue problem

1
m

∑
j

∑
β

Dαβ
ij e−

�k·�aij eβks = ω
2
ks e

α
ks ,

where 	eks is a polarization vector; the index s, labelling polarizations. The
spectrum and polarization vectors are assumed to be even functions of the wave
vector, so that ωks = ω−ks and 	eks = 	e−ks. Polarization vectors form a complete
orthonormal basis with the properties

	eks · 	eks′ = δss′ ,
∑
s

eαks e
β
ks = δαβ .

Expanding the deviation and momentum as

	ui =
∑
ks

	eks√
2mN0ωks

(
bks + b

†
−ks

)
ei

�k·�ai ,

	pi = −i
∑
ks

√
mωks

2N0
	eks

(
bks − b†−ks

)
ei

�k·�ai ,

one transforms the renormalized phonon Hamiltonian to the standard form

Ĥp =
∑
ks

(
b†ks bks +

1
2

)
.

After this, it is straightforward to calculate the correlators

< uαi u
β
j > =

δij
2N0

∑
ks

eαks e
β
ks

m ωks
coth

ωks

2T
,

in which T is temperature. Thus, one gets the mean-square deviation from the
equation

r20 ≡ 1
3

∑
α

< uαi u
α
i > =

1
6mN0

∑
ks

1
ωks

coth
ωks

2T
. (148)
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In this way, the invuence of magnetic order on the mean-square deviation comes
from its invuence on the phonon spectrum.

However, the magnitude of the spinÄphonon interaction, renormalizing the
dynamical matrix, is rather small, as compared to the magnitude of direct inter-
actions [76], so that |Iαβij /Φ

αβ
ij | ∼ 10−3. Hence, magnetic order cannot invuence

much phonon frequencies, as well as the sound velocity

cs ≡ lim
k→0

ωks

k
= − lim

k→0

∑
j

∑
αβ

Dαβ
ij

(	k · 	aij)2
2mk2

eαks e
β
ks . (149)

This conclusion is in agreement with all known experiments where phonon char-
acteristics have been examined by means of neutron scattering, soundÄvelocity
measurements, elastic and thermal investigations. The onset of magnetic order
can change the Méossbauer factor not more than by 1%, which cannot explain the
observed Méossbauer anomaly of the spectrum area (135).

Another explanation was advanced by Babikova et al. [78], supposing that
magnetic order can invuence the electron conversion coefˇcient αe in the cross-
section (134). A noticeable decrease of the conversion coefˇcient could lead to
the increase of the cross-section (134), and, consequently, to the increase of the
spectrum area (135). The decrease of the conversion coefˇcient could be due to
the suppression of the conversion channel in favour of the γ-radiation channel
whose weight could be increased by the enhancement of the γ-radiation caused
by the arising magnetic order [80].

To estimate the invuence of an effective magnetic ˇeld, appearing in magnets,
on the radiation intensity of Méossbauer nuclei, we have to consider the switching
factor (130) that in our case, takes the form

S(H0) = 1 +
γ2
2

ω2
0

∣∣∣∣∣	µ · 	H0

	µ · 	H1

∣∣∣∣∣
2

.

For the characteristic Méossbauer nucleus 57Fe, we have ω0 = 1.44 × 104 eV
and γ2 = γ1 = 0.67 × 10−8 eV, which can be transformed to the frequency
units as ω0 ∼ 1019s−1 and γ2 ∼ γ1 ∼ 107s−1. The corresponding wavelength
is λ ∼ 10−8 cm. Let us take for the effective magnetic ˇeld H0 ∼ 105 G and
for the alternating source ˇeld H1 ∼ 10−5 G. The transition magnetic dipole
µ0 ∼ 0.1µn, where µn is the nuclear magneton, hence µ0 ∼ 10−13 eV/G.
This gives µ0H0 ∼ 107s−1 and µ0H1 ∼ 10−3s−1. From here we obtain
γ2
2H

2
0/ω

2
0H

2
1 ∼ 10−4, which tells us that the switching factor S(H0) changes

too little. Therefore, although the arising magnetic order does enhance the radi-
ation of Méossbauer nuclei, this enhancement is not sufˇcient for causing such a
drastic increase of the spectrum area.
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The last quantity that could be blamed to be responsible for the Méossbauer
magnetic anomaly is the absorption width Γabs. The latter can be presented as
the sum

Γabs = γ2 + γ∗2 (150)

of the homogeneous line width γ2 and of the inhomogeneous line width γ∗2 . The
inhomogeneous width can be due to the variation of local magnetic ˇelds resulting
in the random shift of the Méossbauer transition frequency [81]. Returning to
Section 3, we see that, really, an external magnetic ˇeld shifts the transition
frequency as ω0 + (	µ22 − 	µ11) · 	H0. Therefore, the inhomogeneous width can be
of order γ∗2 ∼ (	µ22 − 	µ11) · 	H0 or γ∗2 ∼ µ0H0. From here, γ∗2 ∼ 107s−1, that
is, γ∗2 ∼ γ2. In this way, the anomalous increase of the Méossbauer spectrum
area (135) below the magnetic transition temperature can be explained by the
increase of the absorption width (150) caused by the increasing inhomogeneous
width γ∗2 ∼ µ0H0.

9. PROBLEM OF PATTERN SELECTION

Nonequilibrium cooperative phenomena are often described by nonlinear dif-
ferential or integro-differential equations in partial derivatives. The solutions to
such equations are in many cases nonuniform in space exhibiting the formation
of different spatial structures. It happens that a given set of equations possesses
several solutions corresponding to different spatial patterns [13]. In such a case,
the question arises which of these solutions, and respectively patterns, to prefer?
The problem of pattern selection has no general solution [13]. A possible way of
selecting spatial structures, by minimizing the average energy, was delineated in
subsection 2.5. Here we advance another method of pattern selection.

Assume that the considered differential equations in partial derivatives can
be reduced to a d-dimensional system of ordinary equations; the dimensionality
d may equal inˇnity. Suppose also that admissible patterns are parametrized by
a multiparameter β. Let the state of the dynamical system be deˇned by the set

y(t) = {yi(t) = yi(β, t)| i = 1, 2, . . . , d} (151)

of solutions to the system of differential equations

d

dt
y(t) = v(y, t) . (152)

For different parameters β there are different sets (151) corresponding to different
spatial structures. All admissible values of β form a manifold B = {β}. Each
particular value of β can be considered as a realization of the random variable



1164 YUKALOV V.I., YUKALOVA E.P.

from the manifold B. The classiˇcation of the states (151) can be done by
deˇning a probability measure on B.

To introduce the probability distribution p(β, t) of patterns at time t, we
resort to the ideas of statistical mechanics [82], where a probability p can be
connected with entropy S by the relation p ∼ e−S . The entropy at time t may be
expressed as

S(t) ≡ ln |∆Φ(t)| (153)

through the elementary phase volume

∆Φ(t) ≡
∏
i

δ yi(t) . (154)

Let us count the entropy from its initial value S(0), thus, considering the entropy
variation

∆S(t) ≡ S(t)− S(0) . (155)

Then the probability distribution p ∼ e−∆S, normalized by the condition∫
p(β, t) dβ = 1

takes the form

p(β, t) =
e−∆S(β,t)

Z(t)
, (156)

where the normalization factor is

Z(t) =
∫
e−∆S(β,t) dβ .

The entropy variation (155) writes

∆S(t) = ln
∣∣∣∣∆Φ(t)∆Φ(0)

∣∣∣∣ , (157)

where the dependence on β, for brevity, is omitted. Deˇne the multiplier matrix
[83]

M(t) = [Mij(t)] , Mij(t) ≡
δyi(t)
δyj(0)

, (158)

for which at the initial time one has

Mij(0) ≡
δyi(0)
δyj(0)

= δij . (159)

The variation of the state (151) gives

δy(t) =M(t) δy(0) , (160)
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which yields for the elementary phase volume (154)

∆Φ(t) =
∏
i

∑
j

Mij(t) δyj(0) .

Hence, the entropy variation (157) is

∆S(t) = ln

∣∣∣∣∣∣
∏
i

∑
j

Mij(t)Mji(0)

∣∣∣∣∣∣ .
With condition (159), this results in

∆S(t) = ln

∣∣∣∣∣
∏
i

Mii(t)

∣∣∣∣∣ =
∑
i

ln |Mii(t)| . (161)

Taking the variational derivative of equation (152), we get the equation

d

dt
M(t) = J(y, t)M(t) (162)

for the multiplier matrix (158), where

J(y, t) = [Jij(y, t)] , Jij(y, t) ≡
δvi(y, t)
δyj(t)

, (163)

is the Jacobian matrix. Substituting the entropy variation (161) into Eq. (156),
we get

p(β, t) =
∏

i |Mii(β, t)|−1

Z(t)
, (164)

with

Z(t) =
∫ ∏

i

|Mii(β, t)|−1 dβ .

Expression (164) deˇnes the probability distribution of patterns labelled by a
multiparameter β. This expression naturally connects the notion of probability
and the notion of stability. Really, the multipliers are smaller by modulus for
more stable solutions and, respectively, patterns, for which the probability is
higher.

Another form of the distribution (164) can be derived as follows. Introduce
the matrix

L(t) = [Lij(t)] , Lij(t) ≡ ln |Mij(t)| . (165)

Then the entropy variation (161) becomes

∆S(t) = Tr L(t) . (166)
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Since the trace of a matrix does not depend on its representations, we may perform
intermediate transformations of Eq. (166) using one particular representation and
returning at the end to the form independent of representations. To this end, let
us consider a representation when the multiplier matrix is diagonal. Because of
Eq. (162) with the initial condition (159), the matrix M is diagonal if and only
if the Jacobian matrix is also diagonal. Then from the evolution equation (162)
it follows that

Mii(t) = exp
{∫ t

0

Jii(y(t′), t′) dt′
}
.

Hence

Lii(t) =
∫ t

0

Λi(t′) dt′ , Λi(t) ≡ Re Jii(t) ,

from where

Tr L(t) =
∫ t

0

Λ(t′) dt′ , Λ(t) ≡
∑
i

Λi(t) .

We assume that the state (151) is formed of real functions, so that the velocity
ˇeld in the evolution equation (152) is also real. Then the eigenvalues of the
Jacobian matrix (163) are either real or, if complex, come in complex conjugate
pairs. Therefore ∑

i

Re Jii(y, t) =
∑
i

Jii(y, t) = Tr J(y, t) .

For the entropy variation (166) we obtain

∆S(t) =
∫ t

0

Λ(t′) dt′ , (167)

where
Λ(t) = Tr J(y, t) (168)

is called [84] the contraction rate. The latter is given by the form independent
of representations of the Jacobian matrix (163). With the entropy variance (167),
the probability distribution (156) becomes

p(β, t) =
1
Z(t)

exp
{
−
∫ t

0

Λ(β, t′) dt′
}
, (169)

where the contraction rate is deˇned in Eq. (168) and

Z(t) =
∫
exp
{
−
∫ t

0

Λ(β, t′) dt′
}
dβ .
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The most probable pattern at a time t corresponds to the maximum of the distri-
bution (169),

abs max
β

p(β, t) → β(t) . (170)

One may also deˇne the average pattern at t as corresponding to

β(t) ≡
∫
β p(β, t) dβ .

The most probable and average patterns, in general, do not coincide, although
this may happen, especially with increasing time. To illustrate the latter, consider
a particular case when the contraction rate Λ(β, t) = Λ(β) does not depend on
time. Then, as t→ ∞, we have

Z(t) =
∫
e−Λ(β) t dβ 


√
2π

Λ′′(β0)t
exp {−Λ(β0) t} ,

where β0 is the point of the minimum of Λ(β), so that

d

dβ
Λ(β) = 0 , Λ′′(β) ≡ d2

dβ2
Λ(β) > 0 (β = β0) .

In the distribution

p(β, t) 

√
Λ′′(β0)
2π

t exp {−[Λ(β)− Λ(β0)] t}

one may expand Λ(β) near β = β0, which gives

p(β, t) 
 1√
2πσ(t)

exp
{
− (β − β0)2

2σ2(t)

}
, σ(t) ≡ 1√

Λ′′(β0) t
.

From here one ˇnds
lim
t→∞

p(β, t) = δ(β − β0) .

In this way, if differential equations describing a nonequilibrium process
have several solutions corresponding to different spatial patterns, the latter can
be characterized by the probability distribution (169), with the contraction rate
(168). In the case when the multiplier matrix (158) can be calculated, one may
use the expression (164) of the probability distribution. If all patterns correspond
to stable solutions, it is sufˇcient to analyse only the beginning of the process of
pattern formation. Then for the entropy variation (167) we may write

∆S(β, t) 
 Λ(β, 0) t (t→ 0) .

Consequently, the most probable pattern, deˇned by the maximum of the proba-
bility distribution (169), that is, by the minimum of the entropy variation (167),
is now characterized by the minimum of the contraction rate Λ(β, 0) at the initial
time.
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10. TURBULENT PHOTON FILAMENTATION

Spatial structures can appear in radiating systems if the radiation wavelength
is much shorter than the system characteristic sizes [13]. For instance, elec-
tric ˇeld in laser cavities can exhibit a state which bears some analogy with a
supervuid vortex [85]. The MaxwellÄBloch equations for slowly varying ˇeld
amplitudes have been shown to be analogous to hydrodynamic equations for com-
pressible viscous vuid [86]. The Fresnel number for optical systems plays the
role similar to the Reynolds number for vuids. In the same way as when increas-
ing the Reynolds number, the vuid becomes turbulent, there can appear optical
turbulence when increasing the Fresnel number.

Spatial structures emerge from an initially homogeneous state with a break of
space-translational symmetry. For small Fresnel numbers F ≤ 5, such structures
correspond to the empty-cavity GaussÄLaguerre modes imposed by the cavity
geometry. These transverse structures can be described by expanding ˇelds over
the modal GaussÄLaguerre functions [87Ä92], which results in reasonable agree-
ment with experiments for CO2 and Na2 lasers. For large Fresnel numbers
F > 10, the appearing structures are very different from those associated with
empty-cavity modes. The modal expansion is no longer relevant at large F , and
the boundary conditions have little or no importance. The laser medium looks
like divided in a large amount of parallel independently oscillating uncorrelated
ˇlaments [93Ä100] the number of ˇlaments being proportional to F , contrary to
the case of small Fresnel numbers when the number of bright spots is proportional
to F 2. This ˇlamentation was observed in Dye and CO2 lasers, as well as in
other resonance media, even without resonators [101Ä105]. The same type of
patterns arises in active nonlinear media, such as photorefractive Bi12SiO20 crys-
tal pumped by a laser [106Ä109]. In the latter media there are also two types of
pattern formation: for small Fresnel numbers, the symmetry is imposed through
the boundary, while for large Fresnel numbers, the symmetry is imposed by the
bulk parameters. In the case of large F , there occurs a kind of self-organization
with spontaneous spatial symmetry breaking [110]. It is possible to easily notice
a qualitative transition in the behaviour of photorefractive media as well as in that
of lasers: In low-F regime there are a few modes of regular arrangement of bright
spots corresponding to the peaks of the GaussÄLaguerre functions in cylindrical
geometry, the number of modes being proportional to F 2. And in the high-F
regime there are many modes spatially uncorrelated with each other, which is
typical for spatiotemporal chaos, the number of the chaotic ˇlaments being pro-
portional to F . Short-range spatial correlation is characteristic for turbulence, this
is why one calls the similar phenomenon in optics the optical turbulence.

The theory of self-organized photon ˇlamentation in high-Fresnel-number
resonant media was suggested in Refs. 33,111Ä116, where the consideration was
based on simpliˇed models and only the stationary regime was analysed. The
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choice of ˇlament radii was done by means of the variational principle, as is
described in subsection 2.5. Here we present a more general and elaborate theory
based on the evolution equations (68) to (70), which includes the description of
temporal behaviour, and for deˇning the characteristics of ˇlaments we employ
the method of pattern selection developed in Sec. 9.

First, it is convenient to pass in Eqs. (68) to (70) to continuous representation
replacing the sums by integrals according to the rule

N∑
i=1

=
∫
ρ(	r) d	r ,

where ρ(	r) is the spatial density of radiators. Wishing to return to the localized

representation, one makes the replacement ρ(	r) =
∑N

i=1 δ(	r − 	ri). In the case
when the structure of matter is of no importance, it can be treated as uniform
on average setting ρ(	r) = ρ ≡ N/V . Cooperative optical phenomena are often
considered in this representation of uniform medium [117]. Let us stress that the
uniformity of matter in no case requires the uniformity of ˇelds or polarization.
The solutions to Eqs. (68) to (70) can correspond to highly nonuniform structures.

Introduce the notation

f(	r, t) ≡ f0(	r, t) + frad(	r, t) (171)

for an effective ˇeld acting on a radiator with the transition dipole 	d. This ˇeld
consists of the term

f0(	r, t) ≡ −i 	d · 	E0(	r, t) (172)

due to an external electric ˇeld and of the term

frad(	r, t) ≡ k0 < 	d · 	Arad(	r, t) > (173)

responsible for the action of other radiators. Taking into account Eq. (65), we
have

frad(	r, t) = − 3
4
iγρ

∫ [
ϕ(	r − 	r ′) u(	r ′, t)− 	ed

2 ϕ∗(	r − 	r ′) u∗(	r ′, t)
]
d	r ′ ,

(174)
where the continuous representation is used, and

ϕ(	r) ≡ eik0|�r|

k0|	r|
, γ ≡ 4

3
k3
0 d

2
0 .

Then Eqs. (68) to (70) acquire the form

du

dt
= −(iω0 + γ2)u+ sf ,

ds

dt
= −2(u∗f + f∗u)− γ1(s− ζ) ,
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d|u|2
dt

= −2γ2|u|2 + s(u∗f + f∗u) . (175)

Notice that from the latter two equations one has

d

dt

(
s2 + 4|u|2

)
= −2γ1s(s− ζ)− 8γ2|u|2 .

We consider a sample of the cylindrical shape typical of lasers. The seed
laser ˇeld deˇning the cylinder axis is given by the sum of two running waves,

	E0(	r, t) = 	E1 e
i(kz−ωt) + 	E∗

1 e
−i(kz−ωt) , (176)

which selects a longitudinal mode. The radius, R, and length, L, of the cylinder
are such that the following inequalities are valid:

a

λ
� 1 ,

λ

R
� 1 ,

R

L
� 1 , (177)

where a is the mean distance between radiators and λ, wavelength. There are
also the standard small parameters

γ1
ω0

� 1 ,
γ2
ω0

� 1 ,
|∆|
ω0

� 1 , (178)

with ∆ ≡ ω − ω0 being detuning.
The solutions to Eqs. (175) are not necessarily uniform in the whole volume

V = πR2L of the sample, but may have noticeable values only inside narrow
regions of ˇlamentary form, while being almost zero outside these ˇlaments.
Consider one such ˇlament, and let us surround it by a cylinder of radius b
so that the magnitude of solutions is an order smaller at the surface of this
enveloping cylinder than at its axis. If the proˇle of a ˇlament is close to the
Gaussian exp(−r2/2r2f ), with rf being the ˇlament radius, then

b =
√
2 ln 10 rf . (179)

In what follows we assume this relation between the radius b of an enveloping
cylinder and the radius rf of a ˇlament.

Suppose that there are Nf ˇlaments in the volume of the sample, the axis of
each ˇlament being centered at a point {xn, yn}, with n = 1, 2, . . . , Nf . Let us
present the solutions to Eqs. (175) as expansions over enveloping cylinders,

u(	r, t) =
Nf∑
n=1

un(	r, t) Θn(x, y) eikz , s(	r, t) =
Nf∑
n=1

sn(	r, t) Θn(x, y) ,

(180)
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where
Θn(x, y) ≡ Θ

(
b−
√
(x− xn)2 + (y − yn)2

)
is a unitÄstep function. The ˇlaments are located randomly in the cross-section
of the sample, but so that their enveloping cylinders do not intersect with each
other. The interaction between ˇlaments is small, which follows from Eq. (174).
This is why they do not form a regular lattice but are distributed randomly.

The function ϕ(	r) in Eq. (174) oscillates at the distance λ, and the solutions
un and sn essentially change in the radial direction in the interval b. Assuming
that

λ

b
� 1 , (181)

we may say that, in the radial direction, the function ϕ(	r) is fastly varying in
space, as compared to the slow variation of un and sn. For the latter, we deˇne
the averages

u(t) ≡ 1
Vn

∫
Vn

un(	r, t) d	r , s(t) ≡ 1
Vn

∫
Vn

sn(	r, t) d	r (182)

over the corresponding enveloping cylinder of the volume Vn ≡ πb2L, where in
the left-hand side of Eq. (182) we, for short, do not write the index n.

The seed ˇeld (176) is needed mainly for selecting a longitudinal mode with
cylindrical symmetry, but the amplitude of this ˇeld is small, so that

|	d · 	E1|
γ2

� 1 . (183)

The excitation of radiators is accomplished by means of pumping characterized
by the pumping parameter ζ in Eqs. (175).

Deˇning the effective coupling parameters

g ≡ 3γρ
4γ2Vn

∫
Vn

sin[k0|	r − 	r ′| − k(z − z′)]
k0|	r − 	r ′| d	r d	r ′ , (184)

g′ ≡ 3γρ
4γ2Vn

∫
Vn

cos[k0|	r − 	r ′| − k(z − z′)]
k0|	r − 	r ′| d	r d	r ′ , (185)

and the collective frequency and width, respectively,

Ω ≡ ω0 + g′γ2s , Γ ≡ γ2(1 − gs) , (186)

for functions (182) we obtain the equations

du

dt
= −(iΩ+ Γ)u− is	d · 	E1e

−iωt ,
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ds

dt
= −4gγ2|u|2 − γ1(s− ζ)− 4Im

(
u∗ 	d · 	E1 e

−iωt
)
, (187)

d|u|2
dt

= −2Γ|u|2 + 2s Im
(
u∗ 	d · 	E1 e

−iωt
)
.

Because of the inequalities (178) and (183), the solution u in Eqs. (187) is fast,
while s and |u|2 are slow in time. Using the scale separation approach, we ˇnd

u(t) = u0 e
−(iΩ+Γ)t +

s 	d · 	E1

ω − Ω+ iΓ

[
e−iωt − e−(iΩ+Γ)t

]
. (188)

Introduce the parameter

α ≡ lim
τ→∞

Im
τΓs

∫ τ

0

u∗(t) 	d · 	E1 e
−iωt dt , (189)

characterizing the coupling of radiators with the seed ˇeld. This, with Eq. (188),
gives

α =
|	d · 	E1|2

(ω − Ω)2 + Γ2
. (190)

The latter, according to inequality (183), is small,

|α| � 1 . (191)

Finally, deˇning the function

w ≡ |u|2 − αs2 , (192)

we obtain the equations

ds

dt
= −4gγ2w − γ1(s− ζ) ,

dw

dt
= −2γ2(1− gs) w . (193)

The behaviour of solutions to Eqs. (193) essentially depends on the values
of the coupling parameters (184) and (185). To evaluate the latter, we may
notice that their integrands diminish and fastly oscillate at the distance of the
wavelength λ. If condition (181) holds, we may neglect boundary effects in the
integrals (184) and (185) writing approximately∫

Vn

f(	r − 	r ′) d	r d	r ′ ∼= Vn
∫
Vn

f(	r) d	r .

Then parameter (184) reduces to

g =
3πγρ
2γ2

∫ b

0

r dr

∫ L/2

−L/2

sin(k0
√
r2 + z2 − kz)

k0
√
r2 + z2

dz ,
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where r is the radial variable. Because of the quasiresonance condition |∆| � ω0,
we have k0 
 k. With the change of the variable x ≡ k(

√
r2 + z2 − z), we get

g =
3πγρ
2γ2k

∫ b

0

r dr

∫ kL

kr2/L

sinx
x

dx .

In this expression, one can replace kL→ ∞, thus obtaining

g =
3πγρ
2γ2k

∫ b

0

[
π

2
− Si

(
kr2

L

)]
r dr ,

where the integral sine appears,

Si(x) ≡
∫ x

0

sin t
t
dt =

π

2
+ si(x) , si(x) ≡

∫ x

∞

sin t
t
dt .

Introducing the dimensionless quantity

β ≡ kb2

L
=
2πb2

λL
, (194)

we come to the coupling parameter

g = g(β) =
3πγρL
4γ2k2

∫ β

0

[π
2
− Si(x)

]
dx . (195)

This can be integrated explicitly by means of the property∫
Si(x) dx = x Si(x) + cosx ,

which results in

g(β) =
3πγρL
4γ2k2

{
β
[π
2
− Si(β)

]
+ 1− cosβ

}
. (196)

For the coupling parameter (185), one similarly ˇnds

g′ = g′(β) = − 3πγρL
4γ2k2

∫ β

0

Ci(x) dx , (197)

where the integral cosine occurs,

Ci(x) ≡
∫ x

∞

cos t
t

dt .
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Integrating ∫
Ci(x) dx = x Ci(x) − sinx ,

we ˇnally get

g′(β) =
3πγρL
4γ2k2

[sinβ − β Ci(β)] . (198)

To better understand the properties of the coupling parameters, we consider two
limiting cases. When x� 1, then

Si(x) 
 x− x3

18
, Ci(x) 
 γE + lnx− x2

4
,

where γE = 0.577216 being the Euler constant. From here

g(x) 
 3πγρL
4γ2k2

(
π

2
x− 1

2
x2

)
, g′(x) 
 3πγρL

4γ2k2
x | lnx| .

In the opposite case, when x� 1, using

Si(x) 
 π

2
− cosx

x
− sinx

x2
, Ci(x) 
 sinx

x
− cosx

x2
,

we ˇnd

g(x) 
 3πγρL
4γ2k2

(
1 +

sinx
x

)
, g′(x) 
 3πγρL

4γ2k2

(cosx
x

)
.

These asymptotic expressions help to analyse the dependence of the coupling
parameters on the variable (194) changing in the interval

0 < β ≤ 2F
(
F ≡ πR2

λL

)
. (199)

The stability analysis of Eqs. (193), similarly to that given in Ref. 58, shows
that, for gζ < 1, the solutions tend to the stationary stable point s∗1 = ζ, w

∗
1 = 0,

while for gζ > 1, the stable ˇxed point is

s∗2 =
1
g
, w∗

2 =
γ1 (gζ − 1)
4g2γ2

.

In this way, for all β from the interval (199), except the sole case when gζ = 1,
there exists a stable ˇxed point, that is, almost all solutions are stable, indepen-
dently of the value of β. Following the method of pattern selection from Sec. 9,
we can equip the solutions labelled by β with the probabilistic weights (169).
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The most probable, among all stable solutions, is that providing the minimum of
the initial contraction rate, which for this case is

Λ(β, 0) = −γ1 − 2γ2 (1 − gs0) . (200)

The minimum of this rate requires that

dg

dβ
= 0 , s0

d2g

dβ2
> 0 . (201)

For s0 > 0, one needs the minimum of g, which gives β = 4.9. From Eq. (194),
one has b = 0.88

√
λL. And the relation (179) yields

rf = 0.41
√
λL (s0 > 0) . (202)

When s0 < 0, conditions (201) imply the maximum of g, for which β = 1.92, b =
0.55

√
λL, and the ˇlament radius is

rf = 0.26
√
λL (s0 < 0) . (203)

This is practically the same value as found for the ˇlaments radius in Refs. 33,111Ä
115 by using the variational principle of subsection 2.5. When the system of ra-
diators is not inverted at the initial time and becomes excited by means of a pulse
characterized by the pumping parameter ζ, one has to consider the ˇlament radius
(203) as corresponding to the most probable pattern. The number of ˇlaments
can be deˇned from the normalization condition

1
V

∫
s(	r, t) d	r = ζ , (204)

assuming that the population difference equals +1 inside each ˇlament of radius
rf and −1 outside of the ˇlaments. Then the number of ˇlaments is

Nf =
1
2
(1 + ζ)

(
R

rf

)2

. (205)

The most probable ˇlament radius (203) and the number of ˇlaments (205) are
in good agreement with the values observed in experiments [93Ä99,101Ä105].
The considered phenomenon of ˇlamentation can be termed turbulent since the
ˇlaments are chaotically distributed in space and for sufˇciently strong pumping,
when gζ > 1 + γ1/8γ2, each ˇlament is aperiodically vashing in time. The
turbulent photon ˇlamentation is a self-organized phenomenon due to the bulk
properties of interacting radiators. It practically does not depend on boundary
conditions and exists in both types of lasers, the resonatorÄcavity lasers, such
as CO2 and Dye lasers [93Ä99], as well as in the resonatorless dischargeÄtube
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lasers, such as lasers on Ne, Tl, Pb, N2, and N+
2 vapors [101Ä105]. The turbulent

ˇlamentation is also principally nonlinear phenomenon. Thus, in low-Fresnel-
number lasers (F ≤ 5) the number of light spots is proportional to F 2. The
same dependence of the number of coherent rays on F is typical of the initial
linearized stage of supervuorescence [118]. However, for high-F lasers (F � 10)
the number of ˇlaments is proportional to F , which is in agreement with formula
(205) giving Nf ∼ F .

11. SUPERRADIANT SPIN RELAXATION

When the initial state of a spin system is strongly nonequilibrium, different
kinds of spin relaxation can occur. If there are no transverse external ˇelds acting
on spins, they relax to an equilibrium state by an exponential law with a longitu-
dinal relaxation time T1. When the motion of spins is triggered by a transverse
magnetic ˇeld, the relaxation is again exponential but with a transverse relaxation
time T2 that is usually much shorter than T1. A rather special relaxation regime
arises, if the spin system is coupled to a resonator. This can be done by inserting
the sample into a coil connected with a resonance electric circuit. Because of
the action of resonator feedback ˇeld, the motion of spins can become highly
coherent resulting in their ultrafast relaxation during a characteristic collective
relaxation time much shorter than T2 [119]. This latter type of collective spin
relaxation from a strongly nonequilibrium state in the presence of coupling with
a resonator is the most difˇcult to realize experimentally and to describe theoret-
ically. Experimental difˇculties have been overcome in a series of observations
of this phenomenon for a system of nuclear spins inside different paramagnetic
materials [120Ä127]. The collective relaxation time of this ultrafast coherent
process is inversely proportional to the number of spins, N , and the intensity of
magnetodipole radiation is proportional to N2, in the same way as cooperative
radiation time and radiation intensity of N resonant atoms depend on this number
in optic superradiance [1,29,30,42,45,59]. This is why the process of collective
coherent relaxation of spins has been called superradiant spin relaxation or, for
short, spin superradiance. In the case of spin systems, what is usually measured
is not the radiation intensity itself, which is rather weak, but the power of cur-
rent induced in the resonant circuit [128]. The enhancement of generated pulses
by using resonators is, actually, well known in laser optics and is important for
realizing superradiance of Rydberg atoms [129] and recombination superradiance
in electron-hole or electron-positron plasmas [130]. Resonators can be employed
for modifying radiated pulses in optical superradiance [131]. Note also the usage
of resonators for amplifying the nuclear spin echo signals in magnets [132,133].
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The appearance of strong correlations between spins is due to the resonator
feedback ˇeld, but not to the photon exchange as it happens for atomic systems.
Hence, various quantum effects existing in the interaction of electromagnetic ˇeld
with atoms [32,134Ä137] seem to be absent in the case of spin systems. Therefore
it looked natural to try, for the theoretical description of relaxation in a spin system
coupled with a resonator, to invoke the classical Bloch equations complimented
by the Kirchhoff equation for the resonant electric circuit [1,119,138Ä140]. How-
ever, these equations can provide a description of coherent spin relaxation only
when the latter is triggered by a coherent pulse, similarly to the semiclassical
Bloch Ä Maxwell equations in optics [1,141,142]. The phenomenon of the self-
organized coherent spin relaxation cannot be described by the Bloch Ä Kirchhoff
equations. Then, what initiates spin motion leading to the appearance of purely
self-organized spin superradiance? This problem of the origin of pure spin su-
perradiance was posed by Bloembergen and Pound [119]. They also noticed that
the thermal Nyquist noise of resonator cannot be a mechanism triggering the mo-
tion of spins, since the thermal relaxation time is proportional to the number of
spins in the sample and, thus, the thermal damping is to be negligibly small for
macroscopic samples. Nevertheless, this notice was forgotten by the following re-
searchers who assumed that it is just the thermal noise of resonator which triggers
the spin motion.

To resolve this controversy and to discover the genuine mechanisms originat-
ing the spin motion, it was necessary to turn to microscopic models. The system
of nuclear spins is characterized [143] by the Hamiltonian

Ĥ =
1
2

∑
i�=j

Hij − µn
∑
i

	B · 	Ii , (206)

in which spins interact through the dipole potential

Hij =
µ2
n

r3ij

[
	Ii · 	Ij − 3

(
	Ii · 	nij

)(
	Ij · 	nij

)]
,

where µn is the nuclear magnetic moment, 	Ii is a nuclear spin operator, rij =
= |	rij |, 	rij = 	ri − 	rj , 	nij = 	rij/rij . The total magnetic ˇeld

	B = H0 	ez +H 	ex

contains an external magnetic ˇeld H0 and a resonator feedback ˇeld H deˇned
by the Kirchhoff equation.

The temporal behaviour of a ˇnite number of spins, with 27 ≤ N ≤ 343,
was analysed numerically by computer simulations [144-149]. From various cases
studied, we present here some that give the general qualitative understanding of
the whole picture. In Figs. 1Ä4, Kcoh ≡ Pcoh/Pinc is a coherence coefˇcient,
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Fig. 1. Coherence coefˇcient Kcoh, current power P , and spin polarization pz as functions
of time for two different coupling parameters deˇned in Eq. (207), g1 (solid line) and g2

(dashed line), with the relation g1/g2 = 10

Fig. 2. The same as in Fig. 1 for two different Zeeman frequencies, ω01 (solid line) and
ω02 (dashed line), related by the ratio ω01/ω02 = 5
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Fig. 3. The same functions as in Fig. 1 for different initial polarizations, pz1(0) (solid
line) and pz2(0) (dashed line), with the relation pz1/pz2(0) = 2

Fig. 4. The same functions as in Fig. 1 for different initial transverse polarizations, px1(0)
(solid line) and px2(0) (dashed line), with the relation px1/px2(0) = 0.5

being the ratio of the coherent part of the current power P to its incoherent
part, and pz is the negative spin polarization. In Figs. 5Ä11, Ccoh ≡ Icoh/Iinc
is the coherence coefˇcient of the average magnetodipole radiation deˇned as
in Eq. (90), with respect to the total radiation intensity I . The current power
and radiation intensity are given in dimensionless units and time is measured in
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Fig. 5. Coherence coefˇcient Ccoh, radiation intensivity I , and spin polarization pz versus
time for pz(0) = 0.48 and different parameters: ω0 = 200, g = 25 (solid line); ω0 = 40,
g = 25 (dashed line); and ω0 = 40, g = 2.5 (solid line with crosses)

units of T2. In the ˇgure captions, pz(0) and px(0) mean the corresponding
polarization components at the initial time, ω0 is the Zeeman frequency, ω is
the natural frequency of the resonant electric circuit and also a frequency of an
alternating magnetic ˇeld, if any, the amplitude of the latter being denoted by h0.
The quantity

g ≡ π2η
ρnµ

2
nω0

�Γ2ω
(207)

is the effective coupling parameter, in which η is a ˇlling factor; ρn, nuclear
density; and Γ2 = T−1

2 is a line width. Computer simulations proved that pure
spin superradiance does exist with no thermal noise involved.

However, computer simulations can provide only a qualitative picture, as
the number of spins considered in such simulations is incomparably smaller than
what one has in real macroscopic samples. Moreover, these simulations give
no analytical formulas, making it difˇcult, if possible, to classify all relaxation
regimes occurring when varying the numerous parameters of the system. Simpli-
ˇed models [150] can also provide only a qualitative understanding.
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Fig. 6. Coherence coefˇcient Ccoh, radiation intensivity I , and spin polarization pz as
functions of time in the case of switchedÄoff resonatorÄspin coupling (g = 0). The varied
parameters are: ω0 = 200, px(0) = 0.48 (solid line); ω0 = 20, px(0) = 0.48 (dashed
line); and ω0 = 200, px(0) = 0.20 (solid line with crosses)

Fig. 7. The same as in Fig. 6 for px(0) = 0.48 and for different Zeeman frequencies:
ω0 = 1000 (solid line); ω0 = 200 (dashed line); ω0 = 50 (solid line with crosses); and
ω0 = 200 with switched-off dipole interaction (solid line with triangles)
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Fig. 8. The same as in Fig. 6 for px(0) = 0.48 but in the presence of an alternating
magnetic ˇeld with the frequency ω = ω0 and different amplitudes: h01 (solid line); h02

(dashed line); where h01/h02 = 10; and h03 = 0 (solid line with crosses)

Fig. 9. The same as in Fig. 8 but for px(0) = −0.48 and different amplitudes of the
alternating ˇeld: h01 (solid line); h02 (dashed line); and h03 (solid line with crosses),
where the amplitude relations are h01/h02 = 0.25 and h01/h03 = 0.1
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Fig. 10. The same as in Fig. 8 for a varying relative detuning from the resonance
δ ≡ (ω − ω0)/ω0 taking the values: δ = 0 (solid line); δ = 0.025 (dashed line); and
δ = 0.25 (solid line with squares)

Fig. 11. Radiation intensivity I , coherence coefˇcient Ccoh, and spin polarization pz

versus time, in the absence of alternating external ˇelds and with a weak coupling with a
resonator, g ∼ 1
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An analytical solution of the evolution equations corresponding to the mi-
croscopic Hamiltonian (206) and a complete analysis of different relaxation
regimes of nonequilibrium nuclear magnets coupled with a resonator has been
done [25,26,151-158] by employing the scale separation approach. The evolution
equations are written for the averages

u ≡ 1
N

∑
i

< S−
i > , s ≡ 1

N

∑
i

< Sz
i > , (208)

where S−
i = Sx

i − iSy
i . Presenting local vuctuating ˇelds through stochastic

variables ξ0 and ξ, one comes [25,26] to the evolution equations

du

dt
= i (ω0 − ξ0 + iΓ2) u− i(γ3h+ ξ) s ,

ds

dt
=
i

2
(γ3h+ ξ) u∗ −

i

2
(γ3h+ ξ∗) u− Γ1(s− ζ) , (209)

d

dt
|u|2 = −2Γ2|u|2 − i (γ3h+ ξ) su∗ + i (γ3h+ ξ∗) su ,

in which the resonator feedback ˇeld, h, in dimensionless units, satisˇes the
Kirchhoff equation

dh

dt
+ 2γ3h+ ω2

∫ t

0

h(t′) dt′ = −2κ d

dt
(u∗ + u) + γ3f , (210)

in which f is an electromotive force, γ3 is the resonator ringing width, and
κ ≡ πηρnµ

2
n/�γ3. The random local ˇelds are deˇned as Gaussian stochastic

variables with the stochastic averages

� ξ20 � =� |ξ|2 � = Γ2
∗ , (211)

where Γ∗ is the inhomogeneous dipole broadening. Because of the existence of
the small parameters

Γ1

ω0
� 1 ,

Γ2

ω0
� 1 ,

Γ∗
ω0

� 1 ,
γ3
ω0

� 1 ,
|∆|
ω0

� 1 , (212)

where ∆ ≡ ω − ω0, the functions u and h can be classiˇed as fast while s and
|u|2 as slow.

Solving Eqs. (209) and (210), it was shown [25,26,151] that the role of the
thermal Nyquist noise in starting the relaxation process is negligible. But the main
cause triggering the motion of spins, leading to coherent self-organization, is the
action of nonsecular dipole interactions. This gives the answer to the question
posed by Bloembergen and Pound [119]: what is the origin of self-organized
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coherent relaxation in spin systems? All possible regimes of nonlinear spin
dynamics have been analysed. When the nonresonant external pumping is absent,
that is ζ > 0, there are seven qualitatively different transient relaxation regimes:
free induction, collective induction, free relaxation, collective relaxation, weak
superradiance, pure superradiance, and triggered superradiance [25,26,151,155].

In the presence of pumping, realized, e.g., by means of dynamical nuclear
polarization directing nuclear spins against an external constant magnetic ˇeld,
one has ζ ≤ 0. Then, as was shown using phenomenological equations [139],
two stationary solutions can appear. In our approach, the behaviour of the system
is as follows [158]. When ζ ≤ 0, three dynamical regimes can be observed,
depending on the value of ζ with respect to the pump thresholds

ζ1 = −1
g
, ζ2 = −1

g

(
1 +

Γ1

8Γ2

)
. (213)

Analysing the equations for the slow variables s and w, where

w ≡ |u|2 − Γ2
∗
ω2

0

s2 , (214)

we ˇnd two ˇxed points

s∗1 = ζ , w∗
1 = 0 ; s∗2 = − 1

g
, w∗

2 = −Γ1(1 + gζ)
Γ2g2

. (215)

When ζ1 < ζ ≤ 0, the ˇrst ˇxed point is a stable node and the second one is
a saddle point. For ζ = ζ1, both points merge together, being neutrally stable.
After the bifurcation at ζ = ζ1, in the region ζ2 ≤ ζ < ζ1, the ˇrst ˇxed point
looses its stability becoming a saddle point while the second ˇxed point becomes
a stable node. Finally, when ζ < ζ2, the second ˇxed point turns into a stable
focus, and the ˇrst one continues to be a saddle point. In this way, there are three
qualitatively different lasting relaxation regimes induced by the pumping [158].
The ˇrst one is the incoherent monotonic relaxation to the ˇrst stationary solution
s∗1, w

∗
1 . The second regime is the coherent monotonic relaxation to the second

stationary solution s∗2, w
∗
2 , although the level of coherence may be rather low.

And the third case is the coherent pulsing relaxation to the second ˇxed point.
This unusual regime of pulsing relaxation was observed experimentally [159].
Here we present the results of numerical solution of the evolution equations for
the slow variables s = z(t) and w(t) deˇned in Eq. (214). Different cases of the
pulsing regime are clearly demonstrated in Figs. 12 to 18. In the corresponding
ˇgure captions we use the notation z0 = z(0), w0 = w(0), and γ ≡ γ1/γ2.
Everywhere in Figs. 12 to 17, the pump parameter is ζ = −0.5, and in Fig. 18
this parameter is varied. The coupling parameter (207) is always g = 10.
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Fig. 12. Phase portrait demonstrating a stable focus for the parameters z0 = −0.5, w0 =
0.001, g = 10, and γ = 0.1

Fig. 13. Pulsing regime of spin relaxation with the parameters z0 = −0.1, w0 = 10−6

and γ = 0.01 for the functions: (a) w(t); (b) z(t)
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Fig. 14. The time dependence of the functions: (a) w(t); (b) z(t), for the parameters
z0 = −0.5, w0 = 0.001, and γ = 1

Fig. 15. Dynamics of slow solutions: (a) w(t); (b) z(t), for the parameters z0 = −0.5,
w0 = 0.01, and γ = 0.1

Fig. 16. Evolution of slow solutions: (a) w(t); (b) z(t), for the parameters z0 = 0.5,
w0 = 0.01, and γ = 0.01
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Fig. 17. Temporal behaviour of the function w(t) for different sets of parameters: (a) z0 =
−0.1, w0 = 10−6, γ = 0.001; (b) z0 = −0.1, ω0 = 0.001, γ = 0.01; (c) z0 = −0.5,
w0 = 10−6, γ = 0.1; (d) z0 = −0.5, w0 = 0.001, γ = 0.01

Fig. 18. Function w(t) for z0 = 0.5, w0 = 0.5, γ = 1, and varying pump parameters:
ζ = −0.5 (solid line); ζ = −0.3 (dashed line)
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The problem of superradiant spin relaxation can be generalized to the case
of nuclei incorporated into a ferromagnetic matrix, where nuclear and electron
spins interact through hyperline forces. Some model studies of this case have
been undertaken [160Ä162], and a general microscopic theory has also been
developed [163]. The latter theory makes it possible to discover all feasible causes
triggering the process of self-organized coherent relaxation. The most important
such causes are the dipole hyperˇne interactions, dipole nuclear interactions, and
the transverse magnetocrystalline anisotropy.

12. NEGATIVE ELECTRIC CURRENT

The study of electric processes in semiconductors is important for describing
and modelling semiconductor devices [164]. One of the most difˇcult prob-
lems is the consideration of strongly nonequilibrium phenomena in essentially
nonuniform semiconductors. Nonequilibrium and nonuniform distributions of
charge carriers can be formed in several ways, for instance, by means of exter-
nal irradiation [165,166]. Transport properties of semiconductors with essentially
nonuniform distribution of charge carriers can be rather speciˇc. For example,
in a sample, biased with an external constant voltage, the resulting electric cur-
rent may turn against the latter displaying the transient effect of negative electric
current [3,166Ä168].

Transport properties of semiconductors are usually described by the semi-
classical drift-diffusion equations [164]. In what follows a plane device, of area
A and length L is considered, which is biased with a constant voltage V0. It is
convenient to pass to dimensionless quantities, measuring the space variable x in
units of L, time in units of the transit time

τ0 ≡ L2

µV0
, µ ≡ min{|µi|} ,

where µi is a mobility of the i-type carriers. And the characteristic quantities

ρ0 ≡ Q0

AL
, Q0 ≡ εAE0 , E0 ≡ V0

L
,

j0 ≡ Q0

Aτ0
, D0 ≡ µV0 , ξ0 ≡ ρ0

τ0
,

are employed for measuring other physical values which are used below.
The drift-diffusion equations consist of the continuity equations

∂ρi
∂t

+ µi
∂

∂x
(ρiE)−Di

∂2ρi
∂x2

+
ρi
τi
= ξi , (216)
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for each type of charge carriers, and of the Poisson equation

∂E

∂x
= 4π

∑
i

ρi (217)

for the electric ˇeld E(x, t). Here ρi(x, t) is a charge density; µi, Di, and
τi are mobility, diffusion coefˇcient, and relaxation time, respectively; ξi is a
generationÄrecombination noise [169]. The sample is biased with an external
constant voltage, which in our dimensionless notation implies that∫ 1

0

E(x, t) dx = 1 . (218)

At the initial time, the distribution of charge carriers

ρi(x, 0) = fi(x) (219)

is assumed to be nonuniform.
The total electric current through the semiconductor sample is

J(t) ≡
∫ 1

0

j(x, t) dx , (220)

where the density of current

j =
∑
i

(
µiE −Di

∂

∂x

)
ρi +

1
4π

∂E

∂t
. (221)

Because of the voltage integral (218), one has∫ 1

0

∂

∂t
E(x, t) dx = 0 . (222)

It is also possible to show that

lim
τ→∞

� 1
τ

∫ τ

0

∂

∂x
E(x, t) dt� = 0 . (223)

This means that the function E can be considered as slow on average in time
and in space. Then, treating E as a quasi-invariant, one may ˇnd the solutions to
Eqs. (216) and (217) in order to analyse their general space-time behaviour and
to ˇnd conditions when the effect of negative electric current could arise. Such
negative current can appear only when the initial charge distribution is essentially
nonuniform. For example, if this initial charge distribution forms a narrow layer
located at the point x = a, then the total current (220) becomes negative for
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a transient interval of time in the vicinity of t = 0, if one of the following
conditions holds true:

a <
1
2
− 1
4πQ

(
Q >

1
2π

)
, or a >

1
2
+

1
4π|Q|

(
Q < − 1

2π

)
, (224)

where

Q ≡
∑
i

Qi , Qi ≡
∫ 1

0

ρi(x, 0) dx .

The effect of the negative electric current can be employed for various purposes,
as is discussed in Refs. 3, 168. For instance, when the initial charge layer is
formed by an ion beam irradiating the semiconductor sample, the location a
corresponds to the ion mean free path. In this case, by measuring the negative
current J(0), one can deˇne this mean free path

a =
1
2
− 1
4πQ

[
1− J(0)∑

i µiQi

]
. (225)

This formula is valid for both positive and negative values of Q.
Equations (216) and (217) have also been solved numerically [3,168], which

conˇrmed the appearance of the negative electric current. Two cases were
analysed, with one layer of charge carriers and with two such layers. Here
we present the results of calculations for the double-layer case. The initial charge
distributions (219) are given by the Gaussians

fi(x) =
Qi

Zi
exp
{
− (x− ai)2

2bi

}
,

Fig. 19. Electric current through the semiconductor surfaces in the case of a = 0.1,
Q2 = −1, γ = 1 and different mobilities: µ2 = −10 (solid line); µ2 = −5 (dashed line);
µ2 = −3 (short-dashed line). (a) Left-surface current J(0, t); (b) Right-surface current
J(1, t)
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Fig. 20. Left-surface current J(0, t) (solid line), right-surface current J(1, t) (dashed line),
and the total current J(t) (short-dashed line) for a = 0.25, Q2 = −0.1, µ2 = −10 and
different relaxation parameters: (a) γ = 1; (b) γ = 10; (c) γ = 25

in which 0 ≤ ai ≤ 1 and

Qi =
∫ 1

0

fi(x) dx , Zi =
∫ 1

0

exp
{
− (x − ai)2

2bi

}
dx .

The positive charge carriers, with µ1 = 1 and Q1 = 1, form the left layer
centered at a1 = a, while the negative charge carriers form the layer centered at
a2 = 1−a. We keep in mind the relation D2 = 3D1 for the diffusion coefˇcients,
typical for holes and electrons, and we set D1 = 10−3. For short, we use the
notation τ−1

1 = τ−1
2 = γ and b1 = b2 = b. The generationÄrecombination noise is

neglected, which is admissible at the initial stage of the process. As the boundary
conditions, we accept the absence of diffusion through the semiconductor surface,
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Fig. 21. Total electric current J(t) for a = 0.25, Q2 = −0.1, µ2 = −10 and varying
relaxation parameters: γ = 1 (solid line); γ = 10 (dashed line); γ = 25 (short-dashed
line)

Fig. 22. Electric current through semiconductor for the parameters a = 0.1, Q2 = −1,
γ = 1 and different mobilities: µ2 = −10 (solid line); µ2 = −5 (dashed line); µ2 = −3
(short-dashed line)

which implies the Neumann boundary condition

∂

∂x
ρi(x, t) = 0 (x = 0, x = 1) .

In Figs. 19 to 24, we present the total current (220) as well as the electric
current through the left surface, J(0, t) ≡ j(0, t) and through the right surface,
J(1, t) ≡ j(1, t), deˇned by the current (221) at x = 0 or x = 1, respectively.
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Fig. 23. Electric current J(t) as a function of time for a = 0.1, µ2 = −3, γ = 1 and
different initial charges: Q2 = 0 (solid line); Q2 = −0.25 (dashed line); Q2 = −0.5
(short-dashed line); Q2 = −0.75 (dotted line); Q2 = −1 (dashed-dotted line)

Fig. 24. Electric current J(t) for Q2 = −1, µ2 = −3, γ = 1, and different locations of
initial charge layers: a = 0.05 (solid line); a = 0.1 (dashed line); a = 0.15 (short-dashed
line); a = 0.2 (dotted line); a = 0.25 (dashed-dotted line)

13. MAGNETIC SEMICONFINEMENT OF ATOMS

Dynamics of neutral atoms in nonuniform magnetic ˇelds concerns prob-
lems of current experimental and theoretical interest. By means of such ˇelds,
atoms can be conˇned inside magnetic traps, which allows to accomplish vari-
ous experiments with the systems of trapped atoms. Recently, Bose Ä Einstein
condensation has been attained in a dilute gas of trapped atoms of 87Rb [170],
7Li [171], Na [172], and H↓ [173]. The details on theory and experiment can be
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found in reviews [174Ä176]. The Bose Ä Einstein condensate is believed to form,
at least partially, a coherent state. If it would be possible to construct a device
emitting a coherent atomic beam, this would be analogous to a laser radiating a
coherent photon ray. This is why one may call the device, emitting a coherent
atomic beam, an atom laser [177Ä184]. An output coupler, coherently extracting
condensed atoms from a trap, was demonstrated recently [185Ä187]. But in these
demonstrations, the atoms, when escaping from a trap, vy out more or less in
all directions, with anisotropy formed only by the gravitational force. While the
very ˇrst condition on a laser is that its output is highly directional, with the
possibility of varying the beam direction [183].

A mechanism for creating well-collimated beams of neutral atoms was ad-
vanced in Refs. 188Ä192. This mechanism suggests an output coupler that extracts
trapped atoms in the form of a directed beam.

The motion of neutral atoms in magnetic ˇelds can be described by the
semiclassical equations for the quantum-mechanical average of the real-space
coordinate 	r = {rα}, where α = x, y, z, and for the average 	S = {Sα} of the
spin operator [193Ä195]. The ˇrst equation writes

m
d2rα
dt2

= µ0
	S · ∂

	B

∂rα
+mgα + fα , (226)

where m and µ0 are mass and magnetic moment of an atom; 	B is a magnetic
ˇeld; gα is a component of the standard gravitational acceleration; and fα is a
collision force component. The equation for the average spin is

�
d	S

dt
= µ0

	S × 	B . (227)

The total magnetic ˇeld
	B = 	B1 + 	B2 ,

	B1 = B′
1 (x 	ex + y 	ey + λz 	ez) , 	B2 = B2 (hx 	ex + hy 	ey) , (228)

where |	h| = 1, consists of the quadrupole ˇeld 	B1, typical of quadrupole mag-
netic traps, and of a transverse ˇeld, e.g., of a rotating ˇeld [196,197]. In the
quadrupole ˇeld, λ is the anisotropy parameter.

It is convenient to pass to the dimensionless space variable, measuring the
components of 	r in units of the characteristic length

R0 ≡ B2

B′
1

. (229)

Introduce the characteristic frequencies by the relations

ω2
1 ≡ µ0B

′
1

mR0
, ω2 ≡ µ0B2

�
, ω ≡ max

t

∣∣∣∣∣d
	h

dt

∣∣∣∣∣ . (230)
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Also, we deˇne

δα ≡ gα
R0ω2

1

, γξα ≡ fα
mR0

, (231)

where γ is a collision rate and ξα can be treated as a random variable with the
stochastic averages

� ξα(t)� = 0 , � ξα(t) ξβ(t′) � = 2Dα δαβ δ(t− t′) ,

in which Dα is a diffusion rate. Then Eq. (226) can be written as the stochastic
differential equation

d2	r

dt2
= ω2

1

(
Sx 	ex + Sy 	ey + λSz 	ez + 	δ

)
+ γ	ξ , (232)

and Eq. (227) acquires the form

d	S

dt
= ω2 Â 	S , (233)

in which the antisymmetric matrix Â = [Aαβ ] has the elements

Aαβ = −Aβα , Aαα = 0 ,

A12 = λz , A23 = x+ hx , A31 = y + hy .

Assuming the occurrence of the small parameters∣∣∣∣ γω1

∣∣∣∣� 1 ,
∣∣∣∣ω1

ω2

∣∣∣∣� 1 ,
∣∣∣∣ ωω2

∣∣∣∣� 1 , (234)

we may classify the variables 	r and 	h as slow, compared to the fast spin variable
	S. Then Eq. (233) can be solved yielding

	S(t) =
3∑

i=1

ai 	bi(t) exp{βi(t)} , (235)

where
ai = 	S(0) ·	bi(0) ,

	bi(t) =
1√
Ci

[
(A12A23 − αiA31)	ex + (A12A31 + αiA23)	ey +

(
A2

12 + α
2
i

)
	ez
]
,

Ci =
(
A2

12 − |αi|2
)2
+
(
A2

12 + |αi|2
) (
A2

23 +A
2
31

)
,

α1,2 = ±iα, α3 = 0, α2 ≡ A2
12 +A

2
23 +A

2
31, βi(t) = ω2

∫ t

0

αi(t′) dt′.
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Substituting Eq. (235) into the right-hand side of Eq. (232) and averaging the
latter over time and over stochastic variables, we obtain

d2	r

dt2
= 	F + ω2

1
	δ, (236)

where

	F ≡ ω2
1a3 < b

x
3 	ex + b

y
3 	ey + λb

z
3 	ez >,

a3 =
(x + h0

x)S0
x + (y + h0

y)S0
y + λzS0

z

[(x+ h0
x)2 + (y + h0

y)2 + λ2z2]1/2
,

	b3 =
(x+ hx) 	ex + (y + hy) 	ey + λz 	ez
[(x+ hx)2 + (y + hy)2 + λ2z2]1/2

,

angle brackets imply time averaging and h0
α ≡ hα(0), S0

α ≡ Sα(0). For the
rotating transverse ˇeld, with

hx = cosωt , hy = sinωt , (237)

we ˇnd

	F =
ω2

1 [(1 + x)S0
x + yS0

y + λzS0
z ] (x 	ex + y 	ey + 2λ2z 	ez)

2[(1 + 2x+ x2 + y2 + λ2z2)(1 + x2 + y2 + λ2z2)]1/2
.

The motion of atoms, described by Eq. (236), essentially depends on the
initial state, which, as is known [198,199], can be prepared in an arbitrary way.
Suppose that atoms, after being laser cooled in a magneto-optical trap [200], are
loaded into a magnetic trap where they are further cooled by evaporative cooling
down to sufˇciently low temperatures, so that there is a portion of atoms with
low velocities, which are located close to the trap center. If the initial spin
condition for these atoms is such that S0

x < 0 and Sy = Sz = 0, then the atoms
are conˇned inside the trap moving in an approximately harmonic potential. The
gradient of the quadrupole ˇeld supplies the levitating force to support atoms
against gravity. The combination of the magnetic ˇeld and gravity produces
a very nearly harmonic conˇning potential within the trap volume in all three
dimensions [201].

The semiconˇning regime of motion [188Ä192] can be realized by preparing
for the spin variable nonadiabatic initial conditions

S0
x = S

0
y = 0 , S0

z ≡ S �= 0 . (238)
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Such conditions can be arranged in several ways. One possibility could be to
conˇne atoms in a trap, where all atoms are polarized having their spins in the z
direction, as, e.g., in the trap of Ref. 201, being a quadrupole trap with a bias ˇeld
along the z axis. Then the longitudinal bias ˇeld is quickly switched off, and at
the same time, a transverse ˇeld is switched on, which would correspond to the
sudden change of potential [202]. Another way could be to prepare spin polarized
atoms in one trap and quickly load them into another trap with the required ˇeld
conˇguration. Atoms can be prepared practically 100% polarized [203], with
the spinÄspin relaxation time reaching 100 s [204]. The possibility of realizing
two ways of transferring atoms from one trap to another, by means of sudden
transfer as opposed to adiabatic transfer, is discussed in Ref. 205. The third way
of organizing the nonadiabatic initial conditions (238) could be by acting on the
trapped atoms with a short pulse of strong magnetic ˇeld, polarizing atomic spins
in the desired way.

With the initial conditions (238), the motion of atoms becomes axially re-
stricted from one side, depending on the sign of λS. Atoms vy out of the trap
predominantly in one direction, forming a well-collimated beam [188Ä192]. This
mechanism can be used for atom lasers. Another possibility could be to study the
dynamics of binary mixtures of Bose systems, where the effect of conical strati-
ˇcation [206] can arise. The mixtures of two condensates have been realized for
rubidium [207] and sodium [208], and the dynamics of two rubidium condensates
was observed in Ref. 209.

When solving equation (236) for the realistic case of a ˇnite trap, one should
take into account the trap shape factor, which can be written in the Gaussian form

ϕ(	r) = exp
(
− x2 + y2

R2
− z2

L2

)
,

where R and L are the trap radius and length. The relation between the latter can
be quite different for different traps, starting from almost spherical traps, where
R ≈ L, to needle-shape traps, with R/L ∼ 10−3, as for Ioffe Ä Pritchard magnetic
traps [210]. Accepting the initial spin conditions (238), and using the notation

f(	r) ≡ ϕ(	r)
[(1 + 2x+ x2 + y2 + λ2z2)(1 + x2 + y2 + λ2z2)]1/2

,

from Eq. (236) we obtain

d2x

dt2
= ω2

1

(
λ

2
S f z x+ δx

)
,

d2z

dt2
= ω2

1

(
λ3S f z2 + δz

)
, (239)
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where the equation for y, being similar to that for x, is not written down. Note
that instead of the Gaussian shape factor for the trap, one could opt for

ϕ(	r) = 1−Θ(x−R) Θ(y −R) Θ
(
|z| − 1

2
L

)
,

with Θ(·) being the unit-step function.
Equations (239) were analysed both analytically and numerically [188Ä192].

Their solutions display the semiconˇned regime of motion. Taking into account
random pair collisions in Eq. (232) shows that atomic collisions do not disturb the
semiconˇned motion provided that temperature T is sufˇciently low, satisfying
the condition

kBT�ρ2a2
s

m2ω3
1

� 1 , (240)

in which ρ is the density of atoms and as, their scattering length. The semi-
conˇned regime of motion makes it possible to form well-collimated beams on
neutral atoms by means of only magnetic ˇelds.

14. NUCLEAR MATTER LASING

The natural question that arises after talking about atom lasers is whether
there can be produced matter waves corresponding to other Bose particles, which
could be employed for lasing. One such possibility is related to the creation of
a large number of pions in hadronic, nuclear, and heavy-ion collisions. If the
density of pions appearing in the course of these collisions is sufˇciently high,
then correlations between pions can result in the formation of coherent state and
in the feasibility of realizing a pion laser [211]. Pions are not the sole type of
Bose particles arising in nuclear matter under extreme conditions characteristic
of ˇreballs produced in high-energy collisions [212,213]. There are plenty of
reviews devoted to the state of nuclear matter at extreme conditions, including
the region of deconˇnement transition. Here we cite only some recent of such
reviews [214Ä217].

The very ˇrst necessary condition that is required for lasing is to be able
to generate Bose particles with sufˇciently high density. Therefore, in order
to answer the question what kind of Bose particles appearing in nuclear matter
under extreme conditions could be used for lasing, one has, ˇrst of all, to ˇnd
out what are these Bose particles and under what conditions their density is
maximal. In this section, we give a very brief account of an analysis based on the
multichannel model of nuclear matter [217Ä221]. The main idea in constructing
this model goes back to the Weinberg approach for describing composite particles
[222Ä224], with effective Hamiltonians that are assumed to be a result of the
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Fig. 25. Relative energy density as a function of temperature in MeV for the SU(3) gluonÄ
glueball mixture of different glueball radii: 0 (line 1); 0.5 fm (line 2); 0.7 fm (line 3);
0.8 fm (line 4); 1 fm (line 5)

Fig. 26. Relative enthalpy for the gluonÄglueball mixture as a function of temperature
reduced to the deconˇnement temperature, in the case of the glueball radius 0.82 fm,
compared with the lattice numerical calculations

Fock ÄTani transformation [225]. Now we shall not plunge into the details of the
multichannel model, which can be found in Refs. 217,219, but we shall present
some ˇgures and will formulate the conclusion of an analysis [221] with regard
to the most probable candidates for nuclear matter lasing.

When rising temperature or density, nuclear matter exhibits a transition from
hadron state to quarkÄgluon state. This transition is often assumed to be a sharp
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Fig. 27. Relative speciˇc heat for the gluonÄglueball mixture, for the glueball radius
0.82 fm, as a function of temperature in MeV

Fig. 28. Glueball channel probability versus temperature in MeV for the glueball radii as
in Fig. 25

ˇrst-order transition. Lattice numerical simulations for the quarkless SU(3) gauge
model show that deconˇnement is really a ˇrst-order phase transition [226], which
is in agreement with the multichannel model. Figures 25 to 27 illustrate the be-
haviour of some thermodynamic characteristics, normalized to the corresponding
Stefan ÄBoltzmann limits, for the case of the SU(3) gluonÄglueball mixture.
Figure 28 shows the related glueball channel probability. The sharpness on the
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Fig. 29. Nucleon channel probability as a function of relative baryon density

Fig. 30. Dibaryon channel probability versus relative baryon density

deconˇnement transition essentially depends on the interactions between particles
or on their radii, when the composite particles are treated as bags [227].

In the case of realistic nuclear matter, deconˇnement is rather a gradual
crossover but not a genuine phase transition [217]. Then all thermodynamic
characteristics change continuously, without jumps. This concerns as well the
channel probabilities. Thus, in Figs. 29, 30 the channel probabilities of nucleons
and dibaryons are shown as functions of baryon density normalized to the normal
baryon density of nuclear matter n0B = 0.167 fm−3. The possible appearance
of dibaryons is of special interest since they, being bosons, can form a Bose
condensate [217,228Ä230].
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Summarizing the results of the analysis [221], three types of Bose particles
can appear in nuclear matter in large quantities: pions, dibaryons, and gluons.
The maximum of the pion channel probability, reaching wπ = 0.6, occurs in
the vicinity of the deconˇnement transition at T ≈ 160 MeV and low baryon
densities nB < n0B . Dibaryons can appear mainly at low temperatures T <
20 MeV and relatively high baryon densities nB ∼ 10 n0B , where their channel
probability w6 ≈ 0.7. Large amount of gluons emerges only at high temperatures
T > 160 MeV. In addition, one should keep in mind that gluons cannot be
observed as free particles.

Talking about possible pion, dibaryon, or gluon lasing from nuclear matter,
we have touched here just one necessary condition, trying to ˇnd out when these
Bose particles can appear in large quantities. To realize such a lasing in reality
will, certainly, require to solve a number of other problems. But, anyway, to
understand the conditions when this lasing could be plausible in principle is the
necessary ˇrst step.

15. CONCLUSION

We have described a general method for treating strongly nonequilibrium
processes in statistical systems. This method is called the Scale Separation
Approach since its basic idea is to try to separate different characteristic scales
of time and space variables. The idea itself is, of course, not new and we
have employed some known techniques. What is original in our approach is:
(i) The combination of several methods and their adjustment to the problems
of nonequilibrium statistical mechanics. (ii) The generalization of the averaging
method to stochastic and partial differential equations. (iii) Probabilistic solution
of the problem of pattern selection.

The scale separation approach has been shown to be very useful for describing
cooperative phenomena in the interaction of radiation with matter. To emphasize
the generality of the approach, it is illustrated here by several different physical
examples, whose common feature is that the related evolution equations are non-
linear differential or integro-differential stochastic equations. Such equations, as
is known, are difˇcult to solve. The scale separation approach makes it possible
to ˇnd accurate approximate solutions. The accuracy of these solutions has been
conˇrmed by numerical calculations and by comparison with experiment, when
available. Using this approach, several interesting physical problems have been
solved and new effects are predicted. Among the most interesting applications
we would like to emphasize the following.

Collective Liberation of Light happens when en ensemble of resonant atoms
is doped into a medium with polariton band gap. If the transition frequency of an
atom is inside this prohibited gap, then atomic spontaneous emission is strongly
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suppressed, which is termed localization of light. Although spontaneous emission
of a single atom is prohibited, a collective of such atoms can radiate due to
their coherent interactions. As a result of this coherent radiation, light becomes
partially liberated. We have advanced dynamical theory of this light liberation
for the realistic situation when the radiation wavelength is smaller than the linear
sizes of the sample (see Sec. 6).

Méossbauer Magnetic Anomaly has puzzled researches for many years. This
anomaly consists in a strong increase of the area under the Méossbauer spectrum,
below the temperature of magnetic phase transition. Several explanations of this
anomaly have been suggested. We have thoroughly analysed this phenomenon and
concluded that previously suggested mechanisms cannot explain this anomaly but
that its origin is rather in the increase of inhomogeneous broadening of Méossbauer
nuclei, which is due to the arising magnetic ˇeld (see Sec. 8).

Turbulent Photon Filamentation in resonant media is an intriguing example
of self-organization in a strongly nonequilibrium system, whose dynamical theory
was absent. We have developed such a theory, based on the probabilistic ap-
proach to pattern selection, and showed that it gives agreement with experiment
(see Sec. 10).

Superradiant Spin Relaxation occurs in a system of spins coherently inter-
acting with each other through resonator feedback ˇeld. This ultrafast coherent
relaxation is similar to superradiance in optical systems, because of which the
term spin superradiance was coined. Contrary to its optical counterpart, the ori-
gin of purely self-organized spin superradiance has not been understood for about
40 years, after Bloembergen and Pound posed this problem in 1954. We have
developed a theory of nonlinear spin dynamics, based on a microscopic Hamil-
tonian, elucidated the origin of pure spin superradiance, and described all main
regimes of spin relaxation, without pumping as well as in the presence of the
latter (see Sec. 11).

Negative Electric Current is a rather unusual effect, when electric current
vows against an applied voltage. This is a transient effect that can occur in
nonuniform semiconductors. We have predicted this effect and suggested its
theory (see Sec. 12).

Magnetic Semiconˇnement of Atoms is another effect we predict. This effect
can serve as a mechanism for creating well-collimated beams of neutral atoms by
means of magnetic ˇelds. It can be used to form coherent beams of Bose atoms
from atom lasers. We have presented a theory of this effect (see Sec. 13).

The possibility of treating nonequilibrium processes in nonlinear systems
of quite different nature has become possible owing to the Scale Separation
Approach, which provides accurate approximate solutions to complicated systems
of differential and integro-differential equations.
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