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Many-body systems of composite hadrons are characterized by processes that involve the si-
multaneous presence of hadrons and their constituents. We brieKy review several methods that have
been devised to study such systems and present a novel method that is based on the ideas of mapping
between physical and ideal Fock spaces. The method, known as the FockÄTani representation, was
invented years ago in the context of atomic physics problems and was recently extended to hadronic
physics. Starting with the Fock-space representation of single-hadron states, a change of representation
is implemented by a unitary transformation such that composites are redescribed by elementary Bose
and Fermi ˇeld operators in an extended Fock space. When the unitary transformation is applied to the
microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation
are obtained. The use of the method in connection with the linked-cluster formalism to describe short-
range correlations and quark deconˇnement effects in nuclear matter is discussed. As an application
of the method, an effective nucleonÄnucleon interaction is derived from a constituent quark model,
and used to obtain the equation of state of nuclear matter in the HartreeÄFock approximation.
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1. INTRODUCTION

One of the most central problems of contemporary particle and nuclear
physics is the description of the interactions among hadrons and the properties
of high temperature and/or density hadronic matter in terms of quark and gluon
degrees of freedom. The mathematical description of such systems is complicated
due to the simultaneous presence of composites (hadrons) and constituents (quarks
and gluons). The early studies of the hadronÄhadron interaction using quark mod-
els employ cluster techniques such as adiabatic methods [1] and resonating group
or generator coordinate methods [2]. More recently Barnes and Swanson [3] in-
troduced a formalism based on the concepts of constituent interchange and quark
line diagrams, known as the ®quark Born diagram¯ formalism. This method is
similar to the ®constituent exchange¯ mechanisms proposed by Gunion, Brodsky
and Blankenbecler [4] many years ago for high-energy hadron scattering. Also
recently, Blaschke and Réopke [5] considered a thermodynamic Green's function
approach for mesonÄmeson scattering in a constituent quark model. Thermody-
namic Green's functions have been used to study many-body problems in many
areas of physics and seem appropriate for the study of quark-nuclear physics
problems.

A different approach to the problem is the use of mapping representations,
in which composites are redescribed by elementary particles. There exists an
extensive literature on the subject; in nuclear physics mapping representations
are mainly used in the study of collective oscillations of the nucleus. Examples
of such mappings include the HolsteinÄPrimakoff representation [6], the boson
expansion of Belyaev and Zelevinskii [7] and the Marumori mapping [8]. A good
review on these can be found in Ref. 9. Although such techniques are available
for a long time, only recently there have been made attempts to extend them to
treat hadronÄhadron interactions in the context of quark models. References 10Ä
15 are examples of extensions of such techniques to quark models. Here we
discuss in some detail the FockÄTani representation, which was originally de-
veloped for atomic physics applications and recently was extended to hadronic
physics problems [16Ä18]. It was invented independently by Girardeau [19] and
Vorob'ev and Khomkin [20]. It has been continuously improved during the last
two decades, and has been used with success by Girardeau and collaborators in
several areas of atomic physics [21Ä23]. Like many other mapping formalisms,
the method is based on a change of representation by introducing ˇctitious el-
ementary hadrons in close correspondence to the real hadrons. The change of
representation is implemented by means of a unitary transformation such that the
composite hadrons are redescribed by elementary-particle ˇeld operators. The
unitary transformation is a generalization of a transformation employed by S.
Tani [24] in 1960 to study single-particle scattering by a potential with a bound
state. In the new representation the microscopic interquark forces change, they
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become weaker, in the sense they cannot bind the quarks into hadrons, they de-
scribe only truly scattering processes. In the new representation, in addition to
the modiˇed interquark forces, one obtains effective interactions describing all
possible processes between hadrons and their constituents. In the new representa-
tion all ˇeld operators representing quarks, antiquarks, gluons and hadrons satisfy
canonical commutation relations and therefore the traditional methods of quantum
ˇeld theory can be readily applied.

The use of the FockÄTani representation for studying hadronic interactions
at the quarkÄgluon level shares some similarities with the program outlined by
Weinberg in the last section of his 1979 paper on effective Lagrangians [25].
Weinberg makes the suggestion of using the ®quasiparticle¯ approach [26] for
making perturbative calculations in QCD at low energies. The quasiparticle
approach is a formalism developed by Weinberg in the 60's to deal with potentials
that are too strong to allow the use of perturbation theory. In the quasiparticle
approach the bound states of the theory are redescribed by ˇctitious elementary
particles and, in order not to change the physics of the problem, the original
potential is modiˇed in such a way that the new potential does not produce the
elementary particles as bound states of the theory. With such a modiˇcation the
potential becomes sufˇciently weak that scattering amplitudes can be calculated
perturbatively. Weinberg imagines the possibility of implementing a quasiparticle
approach to QCD. The program would start by weakening the forces of QCD with
the introduction of an infrared cut-off. In order to preserve the physical content
of the theory, the bound states (hadrons) are introduced as ˇctitious elementary
particles which should be described by an effective chirally invariant Lagrangian.
The parameters of the effective Lagrangian would have to be functions of the cut-
off, deˇned by differential equations which guarantee the cut-off independence
of the S-matrix, with the boundary condition that for higher enough energies
one recovers pure QCD, where there is no cut-off. The program would work in
practice if the solutions of the equations could be continued at low energies to
cut-off values sufˇciently small that perturbation theory could be employed.

A major complication for the applications of many-body techniques to sys-
tems containing composite particles is the absence of a good understanding of
the low-energy regime of quantum chromodynamics (QCD). The phenomena of
conˇnement of quarks and gluons and the formation of the hadron bound states
in QCD requires the use of effective models, which in many cases are over-
simpliˇcations of reality. The techniques mentioned above invariably employ
nonrelativistic quark models, or semi-relativistic ones. Obviously for the study
of high temperature and/or density hadronic matter, relativity seems to be essen-
tial. On the other hand, for the study of low-energy hadronÄhadron scattering, or
even to low-temperature and/or density nuclear matter, the use of nonrelativistic
or semirelativistic models might still be of interest for obtaining insight into the
problem.
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In the present paper we discuss the application of the FockÄTani represen-
tation to study the properties of nuclear matter in terms of composite nucleons.
We start in Section 2 with a brief discussion on quark models and possible
connections to some aspects to QCD. In particular, for low-energy applications,
the connection of the constituent quark model to the dynamical chiral symmetry
breaking in QCD is discussed. In order to make contact with other composite-
particle formalisms commonly used in this context, we brieKy review in Section 3
the resonating group method (RGM), the quark-Born diagram (QBD) method and
thermodynamic Green's function formalisms. In Section 4 we present in some
detail the basic ideas and methods of the FockÄTani representation. Section 5
presents the derivation of an effective nucleonÄnucleon interaction from a micro-
scopic quark model. In Section 6 we discuss the use of a linked-cluster formalism
in the FockÄTani representation for the problem of nuclear matter and the onset of
quark deconˇnement. We also present one application of the effective nucleonÄ
nucleon interaction derived in Section 5 to the calculation of the equation of
state of cold nuclear matter. Conclusions and future perspectives are presented in
Section 7.

2. QCD, CHIRAL SYMMETRY AND THE QUARK MODEL

There is a widespread belief that there exists an intermediate energy region in
which it makes sense to describe the strong interactions in terms of an effective
ˇeld theory of constituent quarks subject to weak color forces that become strong
only at large separations and keep the quarks conˇned. The u and d constituent
quarks have a mass of m ∼ 300 MeV, which are believed to be the result of
the spontaneous breakdown of the SU(2) ⊗ SU(2) chiral symmetry. If this is
so, the Goldstone bosons of the spontaneous symmetry breakdown (pions in the
case of u and d quarks only) must be included among the degrees of freedom
of the effective theory. The lowest order terms of the Lagrangian of such an
effective ˇeld theory were written down by Manohar and Georgi [27]. Many
of the successes of the simple nonrelativistic quark model can be understood in
this framework with a chiral symmetry breaking scale ΛχSB ∼ 1 GeV, which is
signiˇcantly larger than the conˇnement scale Λconf . This scenario of weakly
interacting constituent quarks has recently been shown [28] to provide a nice
interpretation of lattice calculations. Also it has been shown recently that the
Manohar and Georgi model can be derived from QCD models of the NambuÄ
Jona-Lasinio type and QCD effective action calculations [29].

The use of the FockÄTani representation in connection with an effective
quarkÄgluon Lagrangian involves a two-step process, as in Weinberg's program
outlined in the Introduction. In the ˇrst step the QCD forces are weakened
by the introduction of an infrared cut-off Λ, which we choose to be Λconf <
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Λ < ΛχSB , and the QCD Lagrangian is replaced by an effective Lagrangian,
as for example the one of Manohar and Georgi. In the next step, ˇctitious
elementary particles with the quantum numbers of hadrons are introduced and
their effective interactions are derived from the microscopic effective quarkÄgluon
Lagrangian through the FockÄTani unitary transformation. The parameters of the
resulting effective hadronic interactions are functions of those of the quarkÄgluon
Lagrangian. The program will be completed, in the sense of Weinberg's program,
when the cut-off independence of the S-matrix elements is enforced. Of course,
this is the most difˇcult part of the entire program and not much progress can be
made without a better understanding of the underlying mechanisms which govern
the conˇnement and dynamical chiral symmetry breaking phenomena of QCD.
While such an understanding is not reached, progress in the study of the hadronic
interactions at the quarkÄgluon level can be made by ˇxing the parameters of the
effective quarkÄgluon theory experimentally.

As discussed previously, since the effects of dynamical chiral symmetry
breaking are included in the constituent quark mass the interquark forces become
weaker in the effective theory. This allows one to identify the low-lying hadrons
with nonrelativistic bound states of the constituent quarks. The quarks are presum-
ably bound by the conˇning QCD interactions, along with effects of multiquark
and multigluon operators that appear in high orders of 1/Λconf in the effective
Lagrangian. Calculations of matrix elements of strong and electroweak couplings
of quarks are performed using perturbation theory or large Nc expansion tech-
niques, where Nc is the number of colors. For the calculation of matrix elements
involving hadrons, such as the calculation of baryon magnetic moments and the
GA/GV ratio in β-decay, the usual nonrelativistic quark-model wave functions
are used for the hadron bound states. The nonrelativistic wave functions are
obtained by solving the Schréodinger equation for three quarks (baryons) or a
quarkÄantiquark pair (mesons) using a phenomenological conˇning interaction.

For future purposes, let us consider just the pionÄquark interaction piece of
the Manohar and Georgi model. At tree level, it is the standard pseudovector
coupling

Hπq =
1
fπ
ψ̄γ5t

aα·∇πaψ, (1)

where ta = 1/2 τa. This leads to an effective nonrelativistic quarkÄquark inter-
action of the form

Vπq = −
(

1
fπ

)2

ta(1)ta(2)
σ(1)·qσ(2)·q

q2 +m2
π

. (2)

This effective quarkÄquark interaction will be used to study the short-range part
of the nucleonÄnucleon interaction obtained via mapping to the FockÄTani repre-
sentation. This will be discussed in Section 5.
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Before proceeding to the next section, let us introduce some notations. A
meson state composed of one quark and one antiquark can be written in terms of
constituent quark and antiquark creation operators q† and q̄† as

|α〉 =M †
α|0〉, (3)

where |0〉 is the vacuum state for the constituent quarks, deˇned by

qµ|0〉 = q̄ν |0〉 = 0, (4)

M †
α is the meson creation operator

M †
α = Φµν

α q†µq̄
†
ν , (5)

and Φµν
α is the Fock-space meson amplitude. The index α identiˇes the quantum

numbers of the meson, α = {spatial, spin, isospin}. The indices µ and ν denote
the spatial, spin, Kavor, and color quantum numbers of the quarks. A summation
over a repeated index is implied. It is convenient to work with Φ orthonormalized

〈α|β〉 = Φ∗µν
α Φµν

β = δαβ . (6)

The quark and antiquark operators satisfy canonical anticommutation rela-
tions, {

qµ, q
†
ν

}
=
{
q̄µ, q̄

†
ν

}
= δµν ,

{qµ, qν} = {q̄µ, q̄ν} = {qµ, q̄ν} =
{
qµ, q̄

†
ν

}
= 0. (7)

Using these quark anticommutation relations and the normalization condition of
Eq. (6), one can easily show that the meson operators satisfy the following
commutation relations

[Mα,M
†
β] = δαβ −∆αβ ,

[Mα,Mβ] = 0, (8)

where
∆αβ = Φ∗µν

α Φµσ
β q̄†σ q̄ν +Φ∗µν

α Φρν
β q†ρqµ. (9)

In addition, one has

[qµ,M †
α] = δµµ′Φµ′ν

α q̄†ν , [q̄ν ,M †
α] = −δνν′Φµν′

α q†µ,

[qµ,Mα] = [q̄ν ,Mα] = 0. (10)

The single-composite baryon creation operator, B†
α, is written in terms of

three constituent-quark creation operators as

B†
α =

1√
3!
Ψµ1µ2µ3
α q†µ1

q†µ2
q†µ3

. (11)
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Ψµ1µ2µ3
α is the Fock-space baryon amplitude, where the index α identiˇes the

quantum numbers of the baryon, and µ those of the quarks. As for the mesons,
it is convenient to take the Fock-space amplitude orthonormalized

〈α|β〉 = Ψ∗µ1µ2µ3
α Ψµ1µ2µ3

β = δαβ . (12)

Using the quark anticommutation relations, Eq. (7), and the normalization condi-
tion above, it can easily be shown that the baryon operators satisfy the following
noncanonical anticommutation relations

{Bα, B
†
β} = δαβ −∆αβ , {Bα, Bβ} = 0, (13)

where

∆αβ = 3Ψ∗µ1µ2µ3
α Ψµ1µ2ν3

β q†ν3qµ3 −
3
2
Ψ∗µ1µ2µ3
α Ψµ1ν2ν3

β q†ν3q
†
ν2qµ2qµ3 . (14)

In addition,

{qµ, B†
α} =

√
3
2
Ψµµ2µ3
α q†µ2

q†µ3
, {qµ, Bα} = 0. (15)

The bound state amplitudes Φµν
α and Ψ∗µ1µ2µ3

α are obtained from a micro-
scopic quark Hamiltonian. The commonly-used quark-model Hamiltonians can
be written generically as

H = T (µ) q†µqµ + T (ν) q̄†ν q̄ν + Vqq̄(µν;σρ)q†µ q̄
†
ν q̄ρqσ +

+
1
2
Vqq(µν;σρ)q†µq

†
νqρqσ +

1
2
Vq̄q̄(µν;σρ)q̄†µ q̄

†
ν q̄ρq̄σ, (16)

where the convention of a summation over repeated indices is again assumed.
Strong decays and baryonÄmeson couplings are described by terms involving
annihilation terms such as q̄†q†q†q, which we do not write explicitly.

From Eq. (16), the equation of motion for the single meson state, in free
space, is given by

H (µν;µ′ν′) Φµ′ν′

α =

=
{
δµ[µ′]δν[ν′] [T (µ) + T (ν)] + Vqq̄ (µν;µ′ν′)

}
Φµ′ν′

α = E[α]Φ
µν
[α] , (17)

where Eα is the total energy of the meson. Here we are using the convention that
there is no sum over repeated indices inside square brackets. A similar equation
follows for the baryon amplitude.

The composite nature of the mesons and baryons is manifest in the terms
∆αβ in Eqs. (8) and (13). Because of these terms, the usual ˇeld theoretic
techniques, such as the Green's function method, Wick's theorem, etc., cannot be
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directly applied to such operators. In the same way, the fact that the commutators
[qµ,M †

α] and [q̄ν ,M †
α], and the anticommutator {qµ, B†

α} are not equal to zero,
is a manifestation of the lack of kinematic independence of the hadron operators
from the quark and antiquark operators. The point is that the hadron operators
Mα, M †

α, Bα and B†
α are not convenient dynamical variables to be used.

Of course, as will be shown in the next section for the case of the Blaschke
and Réopke approach, the traditional methods can be directly applied to the micro-
scopic degrees of freedom. But then, the hadron degrees of freedom will appear
as poles of Green's functions and their role as independent degrees of freedom
is difˇcult to assess. The aim of changing representation is precisely to isolate
the hadronic degree of freedom from the microscopic ones, and transfer the com-
plicated interactions among the hadrons themselves and with their constituents to
effective interactions.

We next brieKy review the traditional methods RGM, QBD and Green's
functions. We make contact between these and the FockÄTani representation in
Section 4.

3. THE RESONATING GROUP, GREEN'S FUNCTIONS AND
QUARK-BORN-DIAGRAMS

Let us consider, for simplicity, the scattering of two composite mesons.
The baryonÄbaryon and baryonÄmeson cases follow similar path. In a RGM
calculation, the two-cluster state is introduced by writing

|Λ〉 = 1√
2
ψαβ
Λ M †

αM
†
β|0〉, (18)

where ψαβ
Λ is the ansatz wave function for the meson pair; it describes the c.m.

and relative motions of the two-meson clusters. The M †'s are the meson creation
operators as deˇned in Eq. (5). Λ identiˇes the set of quantum numbers of the
two-cluster state. Using the commutation relation of the meson operators, Eq. (8),
the normalization condition for the ψαβ

Λ is obtained to be

〈Λ|Λ′〉 = ψ∗αβ
Λ N(αβ;α′β′)ψα′β′

Λ′ = δΛ′Λ, (19)

where N(αβ;α′β′) is the ®normalization kernel¯,

N(αβ;α′β′) = δαα′δββ′ −NE(αβ;α′β′) = δαα′δββ′ −Φ∗µν
α Φ∗ρσ

β Φµσ
β′ Φρν

α′ . (20)

The exchange kernel, NE(αβ;α′β′), comes from the noncanonical part of the
meson commutation relation of Eq. (8), and it reKects the Pauli principle among
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the quarks and antiquarks in the clusters α and β. The equation of motion for
ψαβ
Λ is determined by means of the variational principle

δ〈Λ|(H − EΛ)|Λ〉 = 0, (21)

where H is the quarkÄantiquark Hamiltonian given by Eq. (16). Eq. (21) leads
to the RGM equation,

[HRGM (αβ; γδ)− EΛN(αβ; γδ)]ψγδ
Λ = 0, (22)

with
HRGM (αβ; γδ) = TRGM (αβ; γδ) + Vmm(αβ; γδ), (23)

where the kinetic term TRGM (αβ; γδ) is given by

TRGM (αβ; γδ) = δβδΦ∗µν
α H(µν;µ′ν′)Φµ′ν′

γ + δαγΦ
∗µν
β H(µν;µ′ν′)Φµ′ν′

δ , (24)

and the potential term Vmm(αβ; γδ) can be written as a sum of three contributions

Vmm(αβ; γδ) = V dir
mm(αβ; γδ) + V exc

mm(αβ; γδ) + V int
mm(αβ; γδ), (25)

where each of these is given by

V dir
mm(αβ; γδ) = 2Φ∗µσ

α Φ∗ρν
β Vqq̄(µν;µ′ν′)Φρν′

δ Φµ′σ
γ +

+Φ∗µσ
α Φ∗ρν

β Vqq(µρ;µ′ρ′)Φρ′ν
δ Φµ′σ

γ +Φ∗µσ
α Φ∗ρν

β Vq̄q̄(σν;σ′ν′)Φρν′

δ Φµσ′

γ , (26)

V exc
mm(αβ; γδ) = −1

2

[
Φ∗µν
α Φ∗ρσ

β Vqq̄(µν;µ′ν′)Φµ′σ
δ Φρν′

γ +

+Φ∗ρσ
α Φ∗µν

β Vqq̄(µν;µ′ν′)Φρν′

δ Φµ′σ
γ +Φ∗µσ

α Φ∗ρν
β Vqq̄(µν;µ′ν′)Φµ′ν′

δ Φρσ
γ +

+Φ∗ρν
α Φ∗µσ

β Vqq̄(µν;µ′ν′)Φρσ
δ Φµ′ν′

γ + 2Φ∗µσ
α Φ∗ρν

β Vqq(µρ;µ′ρ′)Φµ′ν
δ Φρ′σ

γ +

+ 2Φ∗µσ
α Φ∗ρν

β Vq̄q̄(σν;σ′ν′)Φµν′

δ Φρσ′

γ

]
, (27)

V int
mm(αβ; γδ) = −1

2

[
Φ∗µν
α Φ∗ρσ

β H(µν;µ′ν′)Φµ′σ
δ Φρν′

γ +

+Φ∗ρσ
α Φ∗µν

β H(µν;µ′ν′)Φρν′

δ Φµ′σ
γ +Φ∗µσ

α Φ∗ρν
β H(µν;µ′ν′)Φµ′ν′

δ Φρσ
γ +

+ Φ∗ρν
α Φ∗µσ

β H(µν;µ′ν′)Φρσ
δ Φµ′ν′

γ

]
. (28)

The two-meson wave function is not normalized in the usual quantum me-
chanical way, because of the presence of normalization kernel in Eq. (19). It is
common practice [2] to introduce a ®renormalized¯ wave function deˇned as

ψ̄αβ
Λ ≡ N

1
2 (αβ;α′β′)ψα′β′

Λ , (29)
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where N1/2 is the square root of the RGM normalization kernel. This clearly
leads to

ψ̄∗αβ
Λ′ ψ̄αβ

Λ = δΛ′Λ. (30)

In terms of the renormalized wave function, the RGM equation can be rewritten as[
H̄RGM (αβ; γδ)− EΛδαγδβδ

]
ψ̄γδ
Λ = 0, (31)

where the ®renormalized¯ RGM Hamiltonian is

H̄RGM (αβ; γδ) ≡ N− 1
2 (αβ;α′β′)HRGM (α′β′; γ′δ′)N− 1

2 (γ′δ′; γδ). (32)

Now, let us expand N− 1
2 in Eq. (32) as

N− 1
2 = (1−NE)

− 1
2 = 1 +

1
2
NE +

3
8
N2
E + · · · , (33)

where NE is the exchange kernel deˇned in Eq. (20). Now, if only the ˇrst order
term is retained, then the lowest order correction to the RGM Hamiltonian is

H̄RGM (αβ; γδ) = TRGM (αβ; γδ) + V dir
mm(αβ; γδ) + V exc

mm(αβ; γδ)−

−1
2

{
Φ∗µν
α Φ∗ρσ

β [H(µν;µ′ν′)−H(µν;λτ)∆(λτ ;µ′ν′)] Φµ′σ
δ Φρν′

γ +

+ (α ↔ β; γ ↔ δ)}−

−1
2

{
Φ∗µσ
α Φ∗ρν

β [H(µν;µ′ν′)−∆(µν;λτ)H(λτ ;µ′ν′)] Φµ′ν′

δ Φρσ
γ +

+ (α ↔ β; γ ↔ δ)} . (34)

If the Φ's are chosen to be the eigenstates of the microscopic quark Hamiltonian,
Eq. (17), the intra-exchange term V int

mm is obviously canceled. This cancellation
is the main effect of the renormalization of the wave function, higher order terms
in the expansion give small corrections. This can be explicitly demonstrated in a
simple example.

We consider mesonÄmeson scattering, where the quark and the antiquark have
equal masses, mq, and use an harmonic potential for the microscopic interaction.
The Fock-space amplitude is then a gaussian whose width b is related to the r.m.s.
radius of the meson by < r2 > =

√
3/2 b. The total energy of a single meson

is [18]

E(P ) =
P 2

4mq
+ 2mq +

3
mqb2

+
4C
3
, (35)

where C is the spring constant.
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The evaluation of normalization kernel and its square root can be done ana-
lytically. The results are [18],

N(αβ; γδ) = δ(3)(P α − P γ)δ(3)(P β − P δ)−
1
6
NE(P αP β ;P γP δ), (36)

N− 1
2 (αβ; γδ) = δαγδβδδ

(3)(P α−P γ)δ(3)(P β −P δ)+CNNE(P αP β ;P γP δ),
(37)

where

NE(P αP β ;P γP δ) = δ(3)(P α + P β − P γ − P δ)
(
b2

2π

)3/2

×

× exp

{
−b2

4

[
P 2

α +
P 2

γ

2
+

P 2
δ

2
− P α·(P γ + P δ)

]}
(38)

with

CN =
ω

2
lim
k→∞

k∑
m=1

(ω
2

)m−1
(

m∏
n=1

2n− 1
n

)
, (39)

with ω = 1/6. The partial sums C(k),

C(k) =
k∑

m=1

(ω
2

)m−1
(

m∏
n=1

2n− 1
n

)
, (40)

Fig. 1. The partial sums C(k) of
Eq. (39)

are plotted in Fig. 1 below. It is seen that the
series is rapidly convergent, for k ≥ ≥ 2, the
C(k)'s have almost reached their asymptotic
value, C(∞) ∼ 1.145. The meaning of this is
that retention of only the ˇrst term in Eq. (33)
is a very good approximation to the exchange
kernel.

One can also show [18], by solving the
full RGM equation exactly, that the effect of
the higher order terms in Eq. (33) is less than
5% on the effective mesonÄmeson potentials.
Obviously, these results are for a microscopic
harmonic interaction. For other types of inter-
actions, Fock-space amplitudes Φ will not be
a gaussian, and a check on the rate of conver-
gence of the expansion in Eq. (33) is advisable.

We next consider the thermodynamic
Green's function method of Blaschke and
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Réopke [5]. In order to simplify the discussion
these authors considered a static quarkÄantiquark potential Vqq̄ which operates
within color neutral pairs only. Therefore, only ladder diagrams contribute. The
starting point is the single-quark Green's function (we follow Ref. 5, which uses
the notations of Ref. 30)

G(µ, z) =
1

z − Eµ
, (41)

where, as above, µ represents collectively the spatial, spin, Kavor, and color
quantum numbers of the quarks and Eµ is the energy of the quark. The two-
quark Green's function, which contains information on the meson bound-states,
is the solution of the equation represented in Fig. 2.

Fig. 2. Equation for the two-particle Green's function in the ladder approximation

The equation for GL
2 is

GL
2 (µν, µ

′ν′,Ω2) = G0
2(µ, ν,Ω2)

[
δµµ′δνν′ + V (µν, σρ)GL

2 (σρ, µ
′ν′,Ω2)

]
,
(42)

where L indicates ladder approximation. Here the notation of sum over repeated
indices is used (wherever clarity demands, a summation will be explicitly indi-
cated), and G0

2(µ, ν,Ω2) is the free two-quark Green's function

G0
2(µ, ν,Ω2) =

∑
n

G(µ, zn)G(ν,Ω2 − zn) =
1− f(Eµ)− f(Eν)

Ω2 − Eµ − Eν
. (43)

The FermiÄDirac distributions can be neglected at low densities.
Let, as above, Φµν

α ≡< µν|α > denote the solution of the two-quark equation
of motion with energy Eα. Obviously,

G2 =
∑
α

|α > Gmeson(α,Ω2) < α|, (44)
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where the summation is over the discrete and continuum states and Gmeson(α,Ω2)
is the meson propagator,

Gmeson(α,Ω2) =
1

Ω2 − Eα
. (45)

Again, in the low density limit, where one expects that the quarks remain conˇned
into the mesons, the summation is only over discrete states (bound meson states).

The effective mesonÄmeson potential can be identiˇed by considering the
four-quark T4-matrix or, equivalently, the four-quark Green's function G4. The
Green's function G4 is obtained from the T4-matrix by the usual amputation
procedure, as explained in Ref. 30. A typical diagram that contributes to GL

4

(where L again means ladder approximation) is shown in Fig. 3 below.

Fig. 3. A typical contribution to GL
4

This particular diagram is represented by

GI
2+2G

0−1
4 GII

2+2G
0−1
4 GI

2+2G
0−1
4 GII

2+2G
0−1
4 GI

2+2G
0−1
4 G̃0

4. (46)

Here, GI
2+2 and GII

2+2 are the two possible two-meson interactions

GI
2+2(µνσρ, µ

′ν′σ′ρ′,Ω4) =

=
Φ∗µν
α1

Φ∗σρ
α2

Φσ′ρ′

α′
2

Φµ′ν′

α′
1

Ω4 − Eα1 − Eα2

− δµµ′ δνν′ δσσ′ δρρ′

Ω4 − Eµ − Eν − Eσ − Eρ
, (47)

and
GII
2+2(µνσρ, µ

′ν′σ′ρ′,Ω4) = GI
2+2(σνµρ, σ

′ν′µ′ρ′,Ω4), (48)

and G0−1
4 describes the amputation of the four free quark propagators represented

by the crosses in Fig. 3. Neglecting FermiÄDirac occupation probabilities, G0−1
4

is given by

G0−1
4 (µνσρ, µ′ν′σ′ρ′,Ω4) = δµµ′δνν′δσσ′δρρ′ (Ω4 − Eµ − Eν − Eσ − Eρ) .

(49)
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G̃0−1
4 is the antisymmetrized form of G0

4

G̃0
4(µνσρ, µ

′ν′σ′ρ′,Ω4) =

=
δµµ′δνν′δσσ′δρρ′ − δµσ′δνν′δσν′δρρ′ − δµµ′δνρ′δσσ′δρν′ + δµσ′δνρ′δσµ′δρν′

Ω4 − Eµ − Eν − Eσ − Eρ
.

(50)
Introducing the pair-Kip potential

U2+2(µνσρ, µ′ν′σ′ρ′,Ω4) = − (Ω4 − Eµ − Eν − Eσ − Eρ) δµσ′δνν′δσµ′δρρ′ ,
(51)

represented in Fig.4, all the sequences as in Eq. (46) can be broken up as

GL
4 = GI

4 +GII
4 − G̃0

4, (52)

GI
4 = G̃0

4 +GI
2+2 U2+2G

I
4, (53)

GII
4 = G̃0

4 +GII
2+2 U2+2G

II
4 . (54)

Fig. 4. The pair-Kip potential deˇned in Eq. (51)

Let us consider Eq. (53). For the repeated sequence of this, GI
2+2 U2+2, it is

not difˇcult to show [5] that

GI
2+2(µνσρ, µ

′′ν′′σ′′ρ′′,Ω)U2+2(µ′′ν′′σ′′ρ′′, µ′ν′σ′ρ′,Ω) =

= −
Φ∗µν
α1

Φ∗σρ
α2

Φσ′′ρ′′

α′
2

Φµ′′ν′′

α′
1

Ω4 − Eα1 − Eα2

×

×
[
Vqq̄(µ′′ρ′′, µ′ρ′)δν′′ν′δσ′′σ′ + Vqq̄(σ′′ν′′, σ′ν′)δµ′′µ′δρ′′ρ′

]
. (55)

From the iteration of this, GI
2+2 U2+2G

I
2+2 U2+2, one can read off the effective

mesonÄmeson potential

GI
2+2 U2+2G

I
2+2 U2+2 ∼

∑
αβ···

Φµν
α Φσρ

β G2,meson(α, β,Ω4)×

×Vmm(αβ, γδ)G2,meson(γ, δ,Ω4)Φ∗µ′′ν′′

γ Φσ′′ρ′′

δ · · · (56)
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with
Vmm(αβ, γδ) = −Φ∗µν

α Φ∗σρ
β ×

×
[
Vqq̄(µρ, µ′ρ′)δνν′δσσ′ + Vqq̄(σν, σ′ν′)δµµ′δρρ′

]
Φ∗µ′ρ′

γ Φ∗σ′ν′

δ , (57)

and

G2,meson =
1

Ω4 − Eα1 − Eα2

. (58)

This last equation is obtained with the neglect of BoseÄEinstein occupation factors.
Notice that the effective mesonÄmeson potential in Eq. (57) is precisely equal

(after reshufKing indices) to 1/2 of the second line of Eq. (27). However, notice
also that the ˇrst line of Eq. (27) has the same quark indices as Eq. (57), but
the interaction indices are contracted with the indices of the mesons in the ˇnal
states. We come back to this point in Section 4.

The expression of Blaschke and Réopke is identical to the expression obtained
by Barnes and Swanson using the Quark-Born-Diagram method [3]. As mentioned
in the Introduction, the QBD is similar to the ®constituent exchange¯ of Gunion,
Brodsky and Blankenbecler [4] for high-energy hadron scattering. For high-energy
processes, there is strong experimental evidence for the ®exchange force¯ from
large momentum transfer processes [31]. For low-energy processes, the situation
is not so clear in view of the model dependence of the microscopic interactions,
whose connection to QCD is not yet understood, as discussed in Section 2.

The way to obtain the effective hadronÄhadron interaction in the QBD method
is as follows. Initially a generic scattering diagram with initial and ˇnal hadronÄ
hadron states is drawn. Then initial and ˇnal quark lines are connected in all
possible ways consistent with Kavor conservation. The next step consists in in-
serting interaction lines (e.g., one-gluon-exchange interactions) between all pairs
of initial quarks in different initial baryons. Naturally many diagrams are trivially
zero because of color symmetry, and the potential can be read-off immediately.
Care must be exercised with combinatorial factors, i.e., the number of ways that
quark lines can be connected. Although the applications of Barnes, Swanson and
collaborators [3] for scattering cross sections were done in the Born approxima-
tion, there is no reason for not using the effective potential in an integral equation
for obtaining the scattering amplitude.

In the next section we discuss the FockÄTani method and discuss further
comparisons with the methods discussed here.

4. THE FOCKÄTANI REPRESENTATION
AND EFFECTIVE HADRON HAMILTONIANS

In this section we summarize the basic features of the FockÄTani represen-
tation. We use a simple example to explain the formalism, but it should become
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clear that the applicability of the method is not restricted to this example. For the
purposes of illustration, we consider the representation for mesons, considered as
a bound-state of a quark and an antiquark as in Section 2. The Hamiltonian is
taken as in Eq. (16). We note that a great variety of quark-model Hamiltonians
used in the literature can be written in such a form. However, at this point of the
discussion we have not included in Eq. (16) terms such as pair-creation, which
are of the form q̄†q†q†q, as discussed in Section 2. However, it will become clear
from the discussion in the next sections such terms are treated without difˇculties.

The change to the FT representation is implemented by means of a unitary
transformation U , such that a single composite meson state |α〉 = M †

α|0〉 is
transformed into a single ideal-meson state |α) = m†

α|0) ≡ U−1|α〉, where U is
of the general form

U = exp(−π/2F ), F =
∑
α

(
m†

αOα −O†
αmα

)
. (59)

The m†
α and mα are the ideal-meson creation and annihilation operators and the

O†
α and Oα operators are functionals of the M †

α, Mα and ∆αβ . By deˇnition,
the m's and O's satisfy canonical commutation relations

[mα,m
†
β] = [Oα, O

†
β ] = δαβ ,

[mα,mβ] = [m†
α,m

†
β ] = [Oα, Oβ ] = [O†

α, O
†
β ] = 0, (60)

and, by deˇnition, the m† andm commute with the quark and antiquark operators.
The operator U acts on an enlarged Fock space I, which is the graded direct

product of F and an ideal state space M, the space with the new degrees of
freedom described by the ideal meson operators m†

α and mα. The vacuum state
of M is denoted by |0〉M and so, the vacuum state of I is

|0) = |0〉 × |0〉M. (61)

In I the physical states, |ψ〉, constitute a subspace I0 isomorphic to F and satisfy
the constraint equation

mα|ψ〉 = 0. (62)

Now, the new degrees of freedom acquire physical content when the unitary
operator U transforms the physical states |ψ〉 of I0 to states |ψ) = U−1|ψ〉. The
image states |ψ) span the FT space FFT = U−1I0, and satisfy the transformed
constraint equation

U−1mαU |ψ) = Oα|ψ) = 0. (63)

Although the physical content of the Fock spaces F and FFT is the same,
the mathematical representation of states and operators in FFT involves only
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canonical ˇeld operators. A more detailed discussion of these and other formal
aspects of the mapping procedure can be found in [18].

The operators O†
α and Oα are constructed by an iterative procedure as a

power series in the Φ's
Oα =

∑
n

O(n)
α , (64)

where n identiˇes the power of Φ in the expansion. The expansion starts at zeroth
order with

O(0)
α = Mα. (65)

The construction of the higher order terms O(n)
α , n ≥ 1, involves addition of a

series of counterterms such that commutation relations of O† and O are satisˇed
order by order. Since at zeroth order one has

[O(0)
α , O

(0)†
β ] = δαβ −∆αβ , (66)

and ∆αβ is of second order [see Eq. (9)], one has that

O(1)
α = 0. (67)

The next nonzero term is then of order n = 2. It is not difˇcult to show that
the second order counterterm that has to be added to O

(0)
α to cancel the ∆αβ in

[O(0)
α , O

(0)†
β ] is equal to

1
2
∆αβMβ. (68)

Then, up to n = 2,

Oα = Bα +
1
2
∆αβBβ , (69)

and one obtains

[Oα, O
†
β ] = δαβ − 1

2
[∆αγ ,Mβ]Mγ − 1

2
M †[Mα,∆γβ ] =

= δαβ +O(Φ3). (70)

A third order counterterm has to be added such that the O(Φ3) piece cancels,
and so on to higher orders. However, for our purposes here one needs Oα up to
n = 3 only

Oα =Mα +
1
2
∆αβMβ − 1

2
M †

β [∆βγ ,Mα]Mγ . (71)

The transformation of the Hamiltonian is made by transforming initially the
quark and antiquark operators. Since the O operators are given by a power series,
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the transformed quark operators are also obtained as a power series, which can
be obtained by expanding the exponential in Eq. (59) to the desired order or,
equivalently, by means of the ®equation of motion¯ technique [19, 21]. Up to
third order, one obtains [18]

q
(0)
µ = qµ, q̄

(0)
ν = q̄ν ,

q
(1)
µ = Φµν1

α q̄†ν1 (mα −Mα) , q̄
(1)
ν = Φµ1ν

α q†µ1
(Mα −mα) ,

q
(2)
µ = − 1

2Φ
∗µ2ν1
α Φµν1

β

(
m†

αmβ +M †
αMβ + 2M †

αmβ

)
qµ2 ,

q̄
(2)
ν = − 1

2Φ
∗µ1ν2
α Φµ1ν

β

(
m†

αmβ +M †
αMβ + 2M †

αmβ

)
q̄ν2 ,

q
(3)
µ = 1

2Φ
∗ρσ
α

[
Φµσ
β Φρσ1

γ q̄†σ1

(
−m†

αmβmγ −M †
αmβMγ +m†

αmβMγ+

+M †
αMβMγ

)
+Φµν1

α

(
Φρσ1
β q̄†ν1 q̄

†
σ1
q̄σ +Φρ1σ

β q̄†ν1q
†
ρ1
qρ

)
(mβ − 2Mβ)

]
,

q̄
(3)
ν = − 1

2Φ
∗ρσ
α

[
Φρν
β Φρ1σ

γ q†ρ1

(
−m†

αmβmγ −M †
αmβMγ +m†

αmβMγ+

+M †
αMβMγ

)
+Φµ1ν

α

(
Φρσ1
β q†µ1

q̄†σ1
q̄σ +Φµ1ν

α Φρ1σ
β q†µ1

q†ρ1
qρ

)
(mβ − 2Mβ)

]
.

(72)
The transformation of the microscopic Hamiltonian is obtained by

using the transformed quark operators of Eq. (72) in Eq. (16). This is

done by considering all possible combinations of the form T (µ)q(n)†µ q
(m)
µ ,

Vqq(µν;σρ)q
(n)†
µ q

(m)†
ν q

(k)
ρ q

(l)
σ , etc., where n,m, k, l = 1, 2, 3. One obtains that

the general structure of the transformed Hamiltonian is

HFT = Hq +Hm +Hmq, (73)

where the subindices identify the operator content of each term. The quark Hamil-
tonian Hq has an identical structure to the one of the microscopic quark Hamil-
tonian of Eq. (16), except that the term corresponding to the quarkÄantiquark
interaction is modiˇed to

Vqq̄(µν;σρ) →
[
Vqq̄(µν;σρ) −∆(µν;µ′ν′)H(µ′ν′;σρ)−H(µν;σ′ρ′)×

×∆(σ′ρ′;σρ) + ∆(µν;µ′ν′)H(µ′ν′;σ′ρ′)∆(σ′ρ′;σρ)
]
q†µq̄

†
ν q̄ρqσ, (74)

where∆(µν;µ′ν′) = Φµν
α Φ∗µ′ν′

α is the ®bound state kernelª. When Φ is an eigen-
state of the microscopic Hamiltonian, Eq. (17), the quarkÄantiquark interaction is
then modiˇed to

Vqq̄(µν;σρ) → [Vqq̄(µν;σρ) − EαΦµν
α Φ∗σρ

α ] q†µq̄
†
ν q̄ρqσ. (75)
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It is not difˇcult to show (see Appendix C of Ref. 21) that this modiˇed interaction
does not produce the quarkÄantiquark bound states. This feature leads to the same
effect of curing the bound state divergences of the Born series as in Weinberg's
quasiparticle method [26] discussed in the Introduction: the modiˇed quarkÄ
antiquark interaction is unable to form mesons, the mesons are redescribed by the
Hm part of the effective Hamiltonian.

Hmq describes quarkÄmeson processes as meson breakup into a quarkÄ
antiquark pair, mesonÄquark scattering, mesonÄmeson total breakup into two
quarkÄantiquark pairs, etc. In models where quarks are truly conˇned, these
terms contribute to free-space mesonÄmeson processes as intermediate states only.
However, in high temperature and/or density systems hadrons and quarks can co-
exist and the breakup and recombination processes can play important role.

The term involving only ideal meson operators has a component that repre-
sents an effective mesonÄmeson interaction. This mesonÄmeson interaction is of
the general form

Hm = Eαm
†
αmα +

1
2
Vmm(αβ; γδ)m†

αm
†
βmδmγ , (76)

where the effective mesonÄmeson potential Vmm can be divided into a sum of
direct, exchange, and intra-exchange parts, as given by Eqs. (25)-(28). The
higher order terms by Φ which are neglected from these expression give rise to
many-meson (higher than two-meson) forces, and also introduce orthogonality
corrections. The orthogonality corrections are precisely of the same nature of
the higher-order terms of the expansion of the square-root of the normalization
kernel of the RG method, Eq. (33). As seen in the last section, the cancella-
tion of the intra-exchange terms in lowest order is the dominant effect of the
orthogonalization terms and higher order corrections are in general small.

The technique can be applied in a straightforward way to baryon bound
states of three constituent quarks as in Eq. (11). For a Hamiltonian as given in
Eq.(16), the effective baryonÄbaryon Hamiltonian consistent with the lowest-order
orthogonality corrections is [18]

Hb = Ψ∗µνλ
α H(µν;σρ)Ψσρλ

β b†αbβ +
1
2
Vbb(αβ; δγ) b†αb

†
βbγbδ, (77)

where bα and b†α are the ideal baryon operators, and Vbb is the effective baryonÄ
baryon potential. Vbb is given as a sum of ˇve terms

Vbb(αβ; γδ) =
5∑

n=1

Vn(αβ; γδ), (78)

where the Vn's are given in terms of the baryon amplitudes Ψ as
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V1(αβ; γδ) = +9Vqq(µν;σρ)Ψ∗µµ2µ3
α Ψ∗νν2ν3

β Ψρν2ν3
γ Ψσµ2µ3

δ ,

V2(αβ; γδ) = −36Vqq(µν;σρ)Ψ∗µµ2µ3
α Ψ∗νν2ν3

β Ψρν2µ3
γ Ψσµ2ν3

δ ,

V3(αβ; γδ) = −9Vqq(µν;σρ)Ψ∗µµ2µ3
α Ψ∗νν2ν3

β Ψσν2ν3
γ Ψρµ2µ3

δ ,

V4(αβ; γδ) = −18Vqq(µν;σρ)Ψ∗µ1µν
α Ψ∗ν1ν2ν3

β Ψν1ν2ρ
γ Ψµ1σν3

δ ,

V5(αβ; γδ) = −18Vqq(µν;σρ)Ψ∗µµ2µ3
α Ψ∗ν1ν2ν

β Ψν1ν2µ3
γ Ψσµ2ρ

δ . (79)

Fig. 5. Graphical representa-
tion of V1

In the next two ˇgures we show a graphi-
cal representation of the different contributions Vn,
n=1, · · · , 5 to Vbb. The qualitative difference be-
tween V1 and the V2 · · · 5 is that the latter in-
volve quark interchange between the two colliding
nucleons.

Note that this effective baryonÄbaryon interac-
tion is completely general, it depends only on the
fact that the baryons are three-quark bound-states,
and that quarks interact through two-body forces.
The method however can handle more complicated Fock-space amplitudes and
more complicated microscopic interactions. The necessary extension of the for-
malism to the more general situation can be found in Ref. 17.

Fig. 6. Graphical representation of V2 · · ·V5

One particularly important property of the effective hadronÄhadron interac-
tions in the FockÄTani representation is that they lead to scattering T -matrices
that are post-prior symmetrical [32]. That is, the scattering matrix is symmetric
under exchange of initial and ˇnal states. The lack of this symmetry is of no
importance for the case of ®symmetric¯ initial and ˇnal states, as in processes
like π+ π → π+ π. However, it is of importance [18] for asymmetric cases like
J/Ψ+ π → D-mesons [33]. The different position of the quarkÄantiquark inter-
action and the factors of 1/2 in the effective mesonÄmeson interaction of Blaschke
and Réopke as compared to the corresponding FockÄTani (or RGM) interaction
are the cause [18] of the breaking of the post-prior symmetry in the calculation
of the charmonium dissociation in Ref. 33.
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In the next section we specialize to the case of the nucleonÄnucleon (NN)
interaction, and obtain an effective NN interaction which will be used in Section 5
in a nuclear matter calculation.

5. SHORT-RANGE PART OF THE NN INTERACTION
FROM QUARK-PION EXCHANGE

The nucleonÄnucleon interaction exhibits a strongly repulsive short-distance
core which is attributed to the exchange of the ω-meson (and ρ-exchange). Since
nucleons have a radii of about 0.8 fm and the range of the meson exchange force
is 1/mω ≈ 0.2 fm, it is natural to expect that the nucleon substructure will play
a role at such short distances. The replacement of vector-meson exchange as the
main source of the short-range part of the NN interaction is one of our main
motivations in this section. Motivated by the Manohar and Georgi model for
the low-energy structure of the nucleon, we consider the lowest-order three-level
one-pion exchange between constituent quarks, as given in Eq. (2). We then
apply the FockÄTani transformation to this interaction and obtain an effective NN
potential, and compare this potential to the short-range part of the Bonn potential.

For later convenience, we start rewriting Eq. (2) as

Vπq = −
(

1
fπ

)2

ta(1)ta(2)
σ(1)·qσ(2)·q

q2 +m2
π

=

= −
(

1
fπ

)2

ta(1)ta(2)
1
3

[
σ(1)·σ(2) q2

q2 +m2
π

+
S12

q2 +m2
π

]
=

= −
(

1
fπ

)2

ta(1)ta(2)
1
3

[
σ(1)·σ(2) − σ(1)·σ(2) m2

π

q2 +m2
π

+
S12

q2 +m2
π

]
. (80)

This shows clearly the usual pieces of the OPE interaction, a short-range spin-
spin interaction (a delta function in coordinate space) and long-range spin-spin
and tensor interactions.

The Fock-space amplitude Ψ for the nucleon can be written as

Ψµ1µ2µ3
α =

εc1c2c3√
3!

χm1m2m3
λ√

18
δ(p − k1 − k2 − k3)Φ(k1,k2,k3), (81)

where p is the c.m. momentum of the nucleon, the Φ is the momentum-dependent
amplitude, the εc1c2c3 is the color antisymmetric tensor and χm1m2m3

λ is the
ClebschÄGordan coefˇcient of spin-isospin, where m1 = {s1, f1} · · · denote the
spin-Kavor of a quark.
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Using this in the expression for the effective NN interaction given in Eq. (79),
one obtains

VNN =
1
2

∫
dQ dQ′ dp dp′

(2π)3
δ(Q′ − Q) 〈λ1λ2|VNN (σ, τ ,p′,p)|λ3λ4〉×

×b†λ1
(p′ + Q′/2) b†λ2

(−p′ + Q′/2) bλ4(−p + Q/2) bλ3(p + Q/2), (82)

with

VNN (σ, τ ,p′,p) =
5∑

n=1

Oij
n (σ, τ )u

ij
n (σ, τ ,p

′,p), (83)

where the On contain the spin-isospin dependence; and un, the momentum de-
pendence of the potential. The spin-isospin factors can be written as the product

On = znCn Λn, (84)

where zn is the overall numerical factor (including the sign) in front of each of
the Vn in Eqs. (79), Cn is the result of the summation over the color indices, and
Λn is the result of the summation over the spin-Kavor indices of the quarks.

Inspection of Eq. (79) reveals that

z1 = +9, z2 = −36, z3 = −9, z4 = z5 = −18. (85)

The color coefˇcients are given by C1 = 1 and Ci = 1/3 for i = 2, 3, 4, 5. The
spin-Kavor coefˇcients are most easily evaluated making use of the ®substitution
rules¯ of Holinde [34] and Liu, Swift, Thomas and Holinde [35]. These are rules
to transcribe spin-Kavor operators at the quark level to the nucleon level. The spin-

Kavor dependence of the quark-pion interaction is of the form τ
(1)
q ·τ (2)

q σ
(1)i
q σ

(2)j
q

and the substitution rules lead to

Λij
1 =

25
81

τ
(1)
N ·τ (2)

N σ
(1)i
N σ

(2)j
N ,

Λij
2 =

1
36

{
δij

[
25
3

+
1
9

(
1 + 18σ(1)

N ·σ(2)
N

)
τ
(1)
N ·τ (2)

N

]
+

+
1
3

(
1 +

7
3
τ
(1)
N ·τ (2)

N

)
σ
(1)i
N σ

(1)j
N

}
,

Λij
3 =

1
36

{
δij

[
27− 3σ(1)

N ·σ(2)
N −

(
1− 25

9
σ
(1)
N ·σ(2)

N

)
τ
(1)
N ·τ (2)

N

]
+

+

(
6− 50

9
τ
(1)
N ·τ (2)

N

)
σ
(1)i
N σ

(2)j
N

}
,
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Λij
4 =

1
36

{
δij

[
15 +

1
3

(
1 + 10σ(1)

N ·σ(2)
N

)
τ
(1)
N ·τ (2)

N

]
+

+

(
1− 5

9
τ
(1)
N ·τ (2)

N

)
σ
(1)i
N σ

(2)j
N

}
,

Λij
5 = Λij

4 . (86)

The momentum-dependent functions uij cannot in general be evaluated in
closed form because of the multidimensional integrals over the quark momenta.
However, for a Fock-space amplitude Φ(k1,k2,k3) of gaussian form

Φ(k1,k2,k3) =
(
3b4

π2

)3/4

exp

−b2

6

3∑
i<j

(ki − kj)2

 , (87)

where b is the r.m.s. radius of the nucleon, almost all the integrals over the quark
coordinates can be performed analytically.

The most important contribution to the NN potential at short distances comes,
as expected, from the delta-function piece of the quarkÄpion interaction. This
component of the NN potential can be calculated in a closed form. The result is

VNN = −1
3

1
4f2π

[
25
9

τ
(1)
N ·τ (2)

N σ
(1)
N ·σ(2)

N v1(p′,p)−

−1
3

(
25 +

1
3

τ
(1)
N ·τ (2)

N +
1
3

σ
(1)
N ·σ(2)

N +
61
9

τ
(1)
N ·τ (2)

N σ
(1)
N ·σ(2)

N

)
v2(p′,p)−

−1
4

(
27− τ

(1)
N ·τ (2)

N − σ
(1)
N ·σ(2)

N +
25
27

τ
(1)
N ·τ (2)

N σ
(1)
N ·σ(2)

N

)
v3(p′,p)−

−1
6

(
45 + τ

(1)
N ·τ (2)

N + σ
(1)
N ·σ(2)

N +
85
9

τ
(1)
N ·τ (2)

N σ
(1)
N ·σ(2)

N

)
v4(p′,p)−

−1
6

(
45 + τ

(1)
N ·τ (2)

N + σ
(1)
N ·σ(2)

N +
85
9

τ
(1)
N ·τ (2)

N σ
(1)
N ·σ(2)

N

)
v5(p′,p)

]
, (88)

where

v1(p′,p) = e−b2/3 (p′−p)2 , (89)

v2(p′,p) =
(
3
4

)3/2

e−b2/6 (p′2+p2), (90)
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v3(p′,p) = e−b2/3 (p′−p)2 , (91)

v4(p′,p) =
(
12
11

)3/2

e−2b2/11 (p−p′)2−b2/33 (p′2+7p2), (92)

v5(p′,p) =
(
12
11

)3/2

e−2b2/11 (p−p′)2−b2/33 (p2+7p′2). (93)

In order to obtain insight on the range and strength of the potential, we make a
local approximation as suggested by Barnes, Capstick, Kovarik and Swanson (the
last reference in Ref. 3), and perform a Fourier transform to coordinate space.
The spin-Kavor part of the potential is of course unaffected by this, and the radial
part becomes

v1(r) = v3(r) =
(
3π
b2

)3/2

e−3/4 (r2/b2), (94)

v2(r) =
(
9π
b2

)3/2

e−3 (r2/b2), (95)

v4(r) = v5(r) =
(
9π
2b2

)3/2

e−33/32 (r2/b2). (96)

Fig. 7. The quarkÄπ (solid) and ω + ρ
(dashed) Bonn potentials

This potential is obviously of short
range, because we are considering only
the δ-function part of the pionÄquark in-
teraction. Also, the quark-exchange con-
tributions are typically of the order of
the nucleon size. In Fig. 7 the quarkÄ
pion exchange potential of Eq. (96), for
b = 0.6 fm, is compared with the one-
boson-exchange Bonn potential for ω and ρ
exchanges. These are the main sources of
repulsion in the NN interaction. Because of
the Yukawa form of the meson-exchange
potentials, we have multiplied the poten-
tials by r2. In this way, we obtain a better
understanding of the relevant contributions
to observables. The corresponding expres-
sions of the Bonn potential are given by
Eqs. (A-19) and (A-28) of Ref. 36. The
parameters are given in Table A.3 of the
same reference.

It is seen that the two potentials have roughly the same ranges, but have
very different strengths (volume). Note however that in order to have a better
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assessment of the ranges of the potentials (for distances larger than 1 fm), for
consistency a gaussian form factor for the vector-mesons should be used, instead
of the dipole form factor of Ref 36.

In the next section, when we consider the nuclear matter problem, we will
show that although the quarkÄpion exchange interaction provides a large frac-
tion of the required repulsion to stabilize nuclear matter against collapse, extra
repulsion is needed to saturate nuclear matter at the right density.

6. FOCKÄTANI REPRESENTATION FOR NUCLEAR MATTER

In the limit that the quark cores of the nucleons do not overlap, effects from
the Pauli principle at the quark level can be neglected, and the anticommutation
relations of creation and annihilation operators of composite nucleons are simply
the ones of elementary particles, as discussed previously. For ˇeld operators that
satisfy canonical (anti)commutation relations, the coupled-cluster expansion (or
eS-formalism) is a very powerful formalism for treating many-body problems.
This is a formalism that treats short-range correlations induced by strong short-
range repulsion, as is the case of the NN interaction, and allows for systematic
improvement as the density of the system increases [37, 38]. This formalism
seems to be particularly appropriate also for the case of composite nucleons when
used in connection with the FockÄTani representation.

The idea is to implement the eS-formalism in the ideal space. In the FockÄ
Tani space FFT , the Hamiltonian can be split as

HFT = Hq +Hb +Hm +Hbm +Hqb +Hqm , (97)

where each component has obvious meaning. When the Hamiltonian is truncated
to involve only ideal nucleons, in analogy with the point nucleon case, the wave
function of nuclear matter can be written as

|Ψ >= eS |Φ >, (98)

where |Φ > is a Fermi-gas state of ideal nucleon states

|Φ >= lim
N→∞

b†α1
b†α2

· · · b†αN
|0), (99)

and S is the operator that creates ideal nucleon particle-hole states on the top of
the ideal Fermi-gas state

S =
∑
n>1

sn, (100)

with

sn =
1

(n!)2
∑
α>kF

∑
β<kF

sn(α1 · · ·αn;β1 · · ·βn) b†α1
· · · b†αn

bβ1 · · · bβn . (101)
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The form of the functions sn(α1 · · ·αn;β1 · · ·βn) are in general chosen such as
to minimize the energy density of nuclear matter [37, 38]. Explicit ideal meson
degrees can be incorporated with no extra conceptual difˇculties, again using the
analogy with point hadrons [39].

With increasing density, the terms Hqb and Hqm of the effective Hamiltonian
in FFT cannot be neglected. These terms describe the possibility of hadrons
breaking up into quarks that can propagate outside the conˇning region within
hadrons. The incorporation of such effects within the eS-formalism seems to
be very natural. The functions sn can be generalized such as to describe the
deconˇning effects.

One interesting term present in Hqb of Eq. (97) is [18]

Vbinary−break =
3
4
Ψρν2µ3
α Ψσν2ν3

β Vqq(µν;σρ) q†µq
†
νq

†
µ2
q†µ3

q†ν2q
†
ν3bαbβ . (102)

This describes a process in which two nucleons collide and break up into six
quarks. At high densities, such processes are expected to play an important
role in the description of the equation of state of nuclear matter. Within the
eS-formalism, such processes can be taken into account by a term in the exponent
S of the form

Sbinary−break =
∑
β<kF

∑
µ1···µ6

s(µ1 · · ·µ6;β1β2) q†µ6
q†µ5

q†µ4
q†µ3

q†µ2
q†µ1

bβ2bβ1.

(103)
Other terms of the effective Hamiltonian, such as single-hadron breakup [18], can
similarly be taken into account.

There are no numerical results of applications of this formalism. Of course,
one technical problem is the large amount of algebraic manipulations necessary
to obtain the relevant variational equations to be solved numerically. Another
problem is the apparent necessity for a relativistic quark model, since it seems
that a nonrelativistic model of the type used in the previous sections would not
perform well in the high-density regime of nuclear matter.

To ˇnalize, let us consider the HartreeÄFock approximation to the nuclear
matter equation of state using the present formalism. This amounts to retaining
only the part of the effective Hamiltonian that involves the ideal nucleon operators,
and to neglecting the (interesting) correlations between nucleons, i.e., S = 0 in
Eq. (98). We consider here a quark-meson-coupling model with constituent
quarks [40], on the lines of the GuichonÄSaitoÄThomas model [41]. Ref. 40
considers a semi-relativistic quark model, where the massive constituent quarks
are conˇned by a phenomenological nonrelativistic harmonic potential and interact
via exchange of mesons. The meson exchanges are treated in a similar fashion to
the traditional derivation of the one-gluon interaction [43], but the kinetic energy
and the quark-meson interactions are taken to be relativistic.
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The pion and a ˇctitious σ meson are coupled directly to the constituent
quarks, as in the GuichonÄSaitoÄThomas model, but the ω meson is coupled to
the nucleon core. The very short range part of the NN interaction is described by
quarkÄpion exchange, while the ω meson is responsible for the outer part of the
repulsion, since it is coupled to the nucleon with the form factor provided by the
model. The rationale of such an idea is of course to replace the ω meson as the
main source of the NN repulsion, as discussed above.

The ®microscopic¯ quarkÄmeson Hamiltonian is obtained from the Lagrangian
density of the Walecka model [42]. In Ref. 40, the FockÄTani representation was
used to derive the effective NN interaction involving quarkÄpion exchanges of
Fig. 6. For the effective NN interaction of Fig. 5, the FockÄTani representa-
tion is of course not necessary. We present here only the contribution of the
NN interaction of Eqs. (82)Ä(93) to the energy density of symmetrical nuclear
matter [40]

Vexch
q =

1
3f2π

∫ kF

0

dp

(2π)3

∫ kF

0

dp′

(2π)3

[
54 + 8

(
3
4

)3/2

e−1/12 b2 (p−p′)2+

+120
(
12
11

)3/2

e−2/33 b2 (p−p′)2 − 44
3

e−1/3 b2 (p−p′)2−

−272
3

(
12
11

)3/2

e−8/33 b2 (p−p′)2

]
. (104)

The contributions from nonquark-exchange graphs can be written down without
difˇculty and are given explicitly in Ref. 40.

The interesting result obtained in Ref. 40 is that the quarkÄpion exchange
interaction does provide a large fraction of the required NN interaction to stabilize
nuclear matter. Moreover, it turns out that the value of the NNω coupling
constant g2ω, adjusted to obtain a binding energy per nucleon E/A − MN �
−15.75MeV at kF � 1.36 fm−1 is very close to the quark-model SU(6) symmetry
prediction g2ω/4π ≈ 9g2ρ/4π = 9 ×0.55. Note that this value is a much smaller
value than the ones used in one-boson-exchange models [36].

7. CONCLUSIONS AND FUTURE PERSPECTIVES

The traditional picture of the nucleus, which follows from a large body of
experiments in the last 60 years, is that of a system of nucleons whose properties
are not very different from free-space nucleons. This means that the explicit
dynamics of the color degree of freedom must be limited to very short distances.
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Therefore, any theoretical approach based on quark degrees of freedom that
is intended to study low-energy properties of nuclei, should minimally deviate
from, as well as contain in some limit, the traditional approach based on nucleon
degrees of freedom. In this sense, the effective Hamiltonian of the FockÄTani
representation has a well-deˇned limit, since it explicitly describes the interactions
among hadrons; quarkÄquark and quark-hadron interactions are treated separately
as ®residual¯ interactions that are expected to play an important role only at
higher densities/temperatures.

For higher densities and/or temperatures, the FockÄTani representation seems
particularly useful when used in connection with the linked-cluster (or eS) formal-
ism. The FockÄTani representation naturally leads to effective Hamiltonians that
describe processes that are expected to be present in the system at the transition
regime from a cold, low-density phase to a high density/temperature phase. The
wave function of the system at this regime is naturally given by the linked-cluster
formalism, where nucleonÄnucleon correlations and other deconˇning effects are
built on the top of a Fermi-gas of conˇned, color-singlet clusters of quarks.
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