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We develop a model of functioning of complex information systems in that information states
are coded by m-adic integers. An information state evolves by iterations of a discrete m-adic
dynamical system. The m-adic ultrametric on the space of information states describes the ability
of an information system to operate with associations. The main attention is paid to the collective
dynamics of families of associations.

The system of p-adic numbers Qp, constructed by K. Hensel in the 1890s, was
the ˇrst example of an inˇnite number ˇeld (i.e., a system of numbers where the
operations of addition, subtraction, multiplication and division are well deˇned)
which was different from a subˇeld of the ˇelds of real and complex numbers.
During much of the last 100 years p-adic numbers were considered only in pure
mathematics, but in recent years they have been extensively used in theoretical
physics (see, for example, the books [1] and [2] and the pioneer paper [3]), the
theory of probability [2] and investigations of chaos in dynamical systems [4].
In [4,5] p-adic dynamical systems were applied to the simulation of functioning
of complex information systems (in particular, cognitive systems). In this paper
we continue investigations started in [4,5]. There are no physical reasons to use
only prime numbers p as the basis for the description of a physical or information
model. Therefore, we use systems of the so-called m-adic numbers, where m > 1
is an arbitrary natural number, see, for example, [2].

1. m-Adic Hierarchic Chains for Coding of Information. The abbreviation
®I¯ will be used for information. The symbol τ will be used to denote an
I-system.

Let τ be an I-system. We shall use neurophysiologic terminology: ele-
mentary units for I-processing are called neurons, a ®thinking device¯ of τ is
called brain. In our model it is supposed that each neuron n has m > 1 levels
of excitement, α = 0, 1, ...,m − 1. Individual neuron has no I-meaning in this
model. Information is represented by chains of neurons, N = (n0, n1, ..., nM ).
Each chain of neurons N can (in principle) perform mM different I-states

x = (α0, α1, ..., αM−1), α ∈ {0, 1, ...,m− 1}, (1)
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corresponding to different levels of excitement for neurons in N . Denote the set
of all possible I-states by the symbol XI .

In our model each chain of neurons N has a hierarchic structure: neuron n0

is the most important, neuron n1 is less important neuron than n0,..., neuron nj is
less important neuron than n0, ..., nj−1. This hierarchy is based on the possibility
of a neuron to ignite other neurons in this chain: n0 can ignite all neurons
n1, ..., nk, ..., nM , n1 can ignite all neurons n2, ..., nk, ..., nM , and so on; but the
neuron nj cannot ignite any of the previous neurons n0, ..., nj−1. Moreover, the
process of igniting has the following structure. If nj has the highest level of
excitement, αj = m− 1, then increasing of αj to one unit induces the complete
relaxation of the neuron nj , αj → α′

j = 0, and increasing to one unit of the level
of excitement αj+1 of the next neuron in the chain,

αj+1 → α′
j+1 = αj+1 + 1 . (2)

If neuron nj+1 already was maximally excited, αj+1 = m−1, then transformation
(2) will automatically imply the change to one unit of the state of neuron nj+2

(and the complete relaxation of the neuron nj+1) and so on.∗

We shall use the abbreviation HCN for hierarchic chain of neurons. This
hierarchy is called a horizontal hierarchy in the I-performance in brain.

HCNs provide the basis for forming associations. Of course, a single HCN
is not able to form associations. Such an ability is a feature of an ensemble Bτ

of HCNs of τ. Let s ∈ {0, 1, ...,m− 1}. A set

As = {x = (α0, ..., αM ) ∈ XI : α0 = s} ⊂ XI

is called an association of the order 1. This association is represented by a
collection Bτ

s of all HCNs N = (n0, n1, ..., nM ) which have the state α0 = s for
neuron n0. Thus any association As of the order 1 is represented in the brain of
τ by some set Bτ

s of HCNs. Of course, if the set Bτ
s is empty the association

As does not present in the brain (at this instance of time). Associations of higher
orders are deˇned in the same way. Let s0, ..., sl−1 ∈ {0, 1, ...,m− 1}, l ≤ M.
The set

As0...sl
= {x = (α0, ..., αM ) ∈ XI : α0 = s0, ..., αl−1 = sl−1}

is called an association of the order l. Such an association is represented by a
set Bτ

s0...sl
⊂ Bτ of HCN. We remark that associations of the order M coincide

with I-states for HCN. We shall demonstrate that an I-system τ obtains large
advantages by working with associations of orders l 	 M.

∗In fact, transformation (2) is the addition with respect to mod m.
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Denote the set of all associations of order l by the symbol XA,l. We set
XA = ∪lXA,l. This is the set of all possible associations which can be formed
on the basis of the I-space XI .

Sets of associations J ⊂ XA also have an I-meaning. Such sets of associa-
tions will be called ideas of τ (of the order 1). Denote the set of all ideas by the
symbol XID

∗.
The hierarchy I-state → association → idea is called a vertical hierarchy in

the I-performance in the brain.
In our model ®hardware¯ of the brain of τ is given by an ensemble Bτ of

HCNs. For an HCN N ∈ Bτ , we set i(N ) = x, where x is the I-state of N . The
map i : Bτ → XI gives the correspondence between states of brain and I-states.
In general it may be that i(N1) = i(N2) for N1 �= N2. It is natural to assume
that in general the map i depends on the time parameter t : i = it. In particular,
if t is discrete, we obtain a sequence of maps it : t = 0, 1, 2, ...

2. Dynamical Evolution of Information. In this section shall we study
the simplest dynamics of I-states, associations and ideas. Such I-dynamics is
®ruled¯ by a function f : XI → XI which does not depend on time and random
Wuctuations. This ®process of thinking¯ has no memory: the previous I-state x
determines a new I-state y via the transformation y = f(x). In this model time
is discrete, t = 0, 1, 2, . . . , n, . . . ,K. Set

U τ
0 = io(Bτ ), U τ

1 = i1(Bτ ), . . . , U τ
n(Bτ ), . . . . (3)

A set U τ
n of I-states is called an I-universe of τ . This is the set of all I-states

which are generated by the ensemble Bτ of HCNs of τ at the instant of the time
t = n. We suppose that sets {U τ

n }∞n=0 of I-states can be obtained by iterations
of one ˇxed map f : XI → XI . Thus dynamics (3) of I-universe of τ is induced
by pointwise iterations:

xn+1 = f(xn). (4)

If x ∈ U τ
n , then y = f(x) ∈ U τ

n+1. Each x0 ∈ U τ
0 evolves via in I-trajectory:

x0, x1 = f(x0), x2 = f(x1) = f2(x0), . . . , xn+1 = f(xn) = fn(x0), . . . . Here
the symbol fn denotes nth iteration of f .

Suppose that, for each association A, its image B = f(A) = { y = f(x) :
x ∈ A } is again an association. Denote the class of all such maps f by the symbol
A(XI). If f ∈ A(XI), then dynamics (4) of I-states of τ induces dynamics of
associations

An+1 = f(An). (5)

∗In principle, it is possible to consider sets of ideas of the order 1 as new I-objects (ideas of
the order 2) and so on. However, we restrict our attention to dynamics of ideas of order 1.
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Starting with an association A0 (which is a subset of I-universe U τ
0 ) τ obtains a

sequence of associations: A0, A1 = f(A0), . . . , An+1 = f(An), . . . . Dynamics
of associations (5) induces dynamics of ideas: J ′=f(J)={Bτ=f(A) A∈J}.
Thus each idea evolves by iterations:

Jn+1 = f(Jn). (6)

Starting with an idea J0 τ obtains a sequence of ideas: J0, J1 = f(J0), . . . , Jn+1 =
f(Jn), . . . . In particular, by choosing J0 = U τ

0 we obtain dynamics of I-universe
(which is also an idea of τ ).

3. m-Adic Representation for Information States. It is surprising that
number systems which provide the adequate mathematical description of HCN
were developed long time ago by purely number theoretical reasons. These are
systems of the so-called m-adic numbers, m > 1 is a natural number. First we
note that in mathematical model it would be useful to consider inˇnite I-states:

x = (α0, α1, . . . , αM , . . . ), αj = 0, 1, . . . ,m− 1. (7)

Such an I-state x can be generated by an ideal inˇnite HCN N . Denote the set
of all vectors (7) by the symbol Zm. This is an ideal I-space, XI = Zm. On
this space we introduce a metric ρm corresponding to the hierarchic structure
between neurons in chain N having an I-state x: two I-states x and y are close
with respect to ρm if initial (sufˇciently long) segments of x and y coincide. If
x = (α0, . . . , αM , . . . ), y = (β0, . . . , βM . . . ), and α0 = β0, . . . , αk−1 = βk−1,
but αk �= βk, then ρm(x, y) = 1

mk . Such a metric is well know in number theory.
This is an ultrametric: the strong triangle inequality

ρm(x, y) ≤ max[ρm(x, z), ρm(x, y)] (8)

holds true. This inequality has the simple I-meaning. Let N ,M,L be HCNs
having I-states x, y, z, respectively. Denote by k(N ,M) (k(N ,L) and k(M,L))
length of an initial segment in chains N and M (N and L, M and L) such that
neurons in N and M have the same level of exciting. Then it is evident that

k(N ,M) ≥ min[k(N ,L), k(L,M)]. (9)

But this gives inequality (8). As in the every metric space, in (Zm, ρm) we
can introduce balls, Ur(a) = { x ∈ Zm : ρm(a, x) ≤ r } and spheres Sr(a) =
{ x ∈ Zm : ρm(a, x) = r } (with centre at a ∈ Zm of radius r > 0). There
is one to one correspondence between balls and associations. Let r = 1

pl and

a = (a0, a1, . . . , al−1, . . . ). The Ur(a) = { x = (x0, x1, . . . , xl−1, . . . ) : x0 =
a0, x1 = a1, . . . , xl−1 = al−1 } = Aa0a1...al−1 . The space of associations XA

coincides with the space of all balls. The space of ideas XID is the space which
elements are families of balls.
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I-dynamics on Zm is generated by maps f : Zm → Zm. We are interested in
maps which belong to the class A(Zm). They map a ball onto a ball: f(Ur(a)) =
Ur′(a′). To give examples of such maps, we use the standard algebraic structure
on Zm. We study mathematical models for p-adic numbers [4]. Let f(x) = xn,
n = 2, 3, 4, . . . . Then f belongs to the class A(Z�

m), where Z�
m = Zm \ {0}.

Hence associations are transformed into associations and each monomial map
generates dynamics of associations as well as ideas.

4. Stochastic Model. Deterministic I-model (3)Ä(6), does note provide the
right description of complex I-processes. It seems that a new I-state depends not
only on the previous I-state, but also on a choice of a new map f : XI → XI

(to perform a new iteration). What is a basis of such a game? The contemporary
level of neurophysiologic research is not sufˇcient to obtain the deˇnite answer to
this question. One of possibilities is that randomness of I-evolution of cognitive
systems has the same origin as randomness of evolution of quantum systems. Such
a viewpoint is very attractive (despite rather speculative character of cognitive
quantum arguments). However, in this paper we shall consider classical random
models which generalize the deterministic model of section.

Suppose that τ has N different I-processors π1, . . . , πN , with dynamical
functions fz, z = 1, 2, . . . , N . The τ uses different blocks for processing of an
I-state. At each instant of time t = 0, 1, . . . , τ chooses some processor πt and
performs a new iteration:

xn+1 = fz(xn). (10)

How does τ choose a sequence of processes πz1 , πz2 , . . . , πzn+1 , . . . ? The sim-
plest model is a model of the deterministic∗ choice:

zn+1 = g(zn). (11)

However, such a system τ will exhibit rather simple I-behaviour. A τ whose
choice mechanism is used ruled by a deterministic law (11) could not change its
thinking blocks depending on the previous I-state xn.

Higher level I-systems do not just perform ®algorithms¯ (11). Their choice
depends essentially on the previous I-state xn:

zn+1 = g(zn, xn). (12)

On the next level of complexity τ uses a random selection mechanism:

zn+1 = g(zn, xn, ω), (13)

∗However, we do not follow ideas of Turing. A choice function need not be a recursive
function. So it need not be performed by a Turing machine. Such a choice function can have a
hardware realization which totally differs from the hardware of ordinary computers.
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where ω is a ®choice parameter¯. This is a random evolution. Here the implicit
value g(z, x, ω) is not so important. I-dynamics of τ is statistical dynamics:

xn+1(ω) = fzn+1(xn(ω)). (14)

Here a value xn+1(ω) of a new I-state of τ depends on a choice of ω.
A chance parameter ω can also evolve with time: ω = θω, where θ : Ω → Ω

is a law of evolution and Ω is a space of chance parameters. Thus z evolves
as z0, z1 = g(z0, x0, ω), z2 = g(z1, x1, θ

2ω), z3 = g(z2, x2, θω), . . . . Finally we
have:

zn+1 = g(zn, xn, θ
n−1ω), (15)

xn+1 = fzn+1(xn). (16)

Roughly speaking τ does not try to ˇnd a ®right decision¯ for each triply (z, x, ω);
τ tries only to control its behaviour statistically. So statistical I-behaviour is deter-
mined by probabilities, namely conditional probabilities, P (xn+1 = y/previous),
to obtain at the next step an I-state y on the basis of information about previous
information states.

One of the distinguishing features of random dynamics (15), (16) is that such
a stochastic process is in general non-Markovian. We recall that a stochastic
process (chain) {xn(ω)}∞n=0 has a Markov property if

P (xn+1 = y|xn = k, xn−1 = v, . . . , x0 = λ) = P (xn+1 = y|xn = n). (17)

Here the probability of obtaining a new state xn+1 = y depends only on the
previous state xn = n of the system (and it does not depend on the evolution
x0 = λ, . . . , xn−1 = v). A detailed mathematical investigation demonstrated that
Markov property of random evolution (15), (16) depends strongly on the initial
I-state x0=λ and the structure of random evolution law θ. For some θ I-dynamics
is Markovian for any choice of x0 = λ. Such a cognitive system τ does not use
a memory on a long range evolution to create a new I-state xn+1 = y. Here the
previous I-state xn = k determines (but, of course, only statistically) the next
state xn+1 = y. Moreover, some θ (the so-called Bernoulli process) induces an
I-dynamics which does not have even one step memory: P (xn+1 = y|xn = n) =
P (y). Here the randomness of θ is so strong that stochastically destroys even one
step memory. However, the most interesting feature of dynamics (15), (16) is that,
for a wide class of θ, a τ can demonstrate Markovian as well as non-Markovian
behaviour depending on the initial I-state x0 = λ. Some I-states λ are proceeded
with one step memory, but other are proceeded with the long range memory. In
the latter case to determine xn+1 = y, τ uses all information which was collected
in the previous I-evolution, x0 = λ, x1 = q, . . . , xn−1 = v, xn = w. Another
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interesting feature of this model is that Markovness of I-evolution depends on
the base m of the coding system.

If, for each z, a map fz belongs to the class A(XI), then random I-dynamics
(15), (16) induces I-dynamics:

An+1 = fzn+1(An) (18)

of random associations An = An(ω). I-dynamics (18) induces automatically
I-dynamics Jn+1 = fzn+1(Jn) of random ideas, Jn = Jn(ω).
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