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HIGH ENERGY SCATTERING IN THE BRANE-WORLD
AND BLACK-HOLE PRODUCTION
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Black-hole production in the collision of ultra-relativistic particles in the brane-world approach
is considered. In particular, stability of the brane under collision with ultrarelativistic particles is
discussed. As a toy model we consider the 3-dimensional version of the Randall and Sundrum
solution and show that stability of the brane depends on a choice of continuation of the solution
across the horizon. In the unstable case black holes can be produced in the collision of a particle with
the brane.

1. INTRODUCTION

Main physical questions which are addressed in this letter are the following:
• Can two ultrarelativistic particles produce a black hole? If the answer is ®yes¯,
then the following question arises
• Is a black-hole production observable in theories with low scale gravity and
large extra dimensions?

The ˇrst question has been already discussed in the literature [1Ä4]. In a
series of papers, Amati, Ciafaloni and Veneziano and 't Hooft conjectured that
black holes occur in the collision of two light particles at planckian energies. It
was argued [1,2] that at extremely high energies interactions due to gravitational
waves will dominate all other quantum ˇeld theoretic interactions. In [4] the
following scenario for such a process was proposed. Each of the two ultra-
relativistic particles generates a gravitational wave (GW) and the gravitational
waves are considered as plane waves. Then these plane gravitational waves
collide and they produce a singularity or a black hole.

Particles → GW ∼ Plane GW → Black Holes. (1)

To realize this scenario analytically the ChandrasekharÄFerrariÄXanthopoulos
duality between the Kerr black hole solution and colliding plane gravitational
waves was used [4,5].

A typical parameter for such a process is the Schwarzschild radius RS of a
body mass m, which is equal to the energy of colliding particles in the centre-of-
mass frame. Since RS in the 4-dimensional case is of the order of M−1

Pl,4, these
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processes are out to be observable. However if we accept the brane-world scenario
[6] where the fundamental higher dimensional Planck scale M−1

Pl,4+n(n > 2) can
be in the TeV range, one can expect that such processes could lead to physical
consequences.

For this scenario we need a solution describing colliding plane gravitational
waves in higher dimensional space-time and we have to ˇnd a black-hole geometry
in the collision domain. As a background geometry we consider brane-world
geometry [7, 8] and the RS model [9] dealing with an inˇnite extra dimension.
In this model we live on a brane (domain wall) inside AdS space and four-
dimensional gravity is recovered on the brane. An analytical description of
colliding plane gravitational waves in n+ 4-dimensional space-time especially in
AdS background is unknown. We will consider as a toy example the collision
of particles in the 3-dimensional version of the AdS background. The solution
describing two colliding plane gravitational waves in the 3-dimensional AdS
space-time was found in [10,11].

We analyze how the presence of moving particle in\uences the brane stability.
We ˇnd that a brane in AdS3 due to gravitational interaction with a particle
becomes unstable and it can split on disjoint branes or totally disappears. This
takes place, of course, only in the case when a particle can be created. This case
corresponds to a special continuation of the RS solution across the horizon. In
this case due to the re\ection symmetry of the RS solution the brane in some
sense imitates the second particle and in accordance with [10, 11] a black hole
can be created.

One can expect a similar picture in the higher dimensional case. To support
this we use the one plane wave solution in AdSd proposed in [12Ä15] and argue
that to have a black hole production we have to use a solution that beyond the
horizon is pure AdS with no brane present. If this black hole is created, it is a
higher dimensional object. Phenomenological aspects of such objects have been
discussed in [16]. Black-hole formation due to gravitational collapse of matter
trapped on a brane has been studied recently in [17].

The paper is organized as following. In Section 2 we remind the scenario of
the black-hole creation from [4,5]. In Section 3 we discuss changes of geometry
of AdS3 in the presence of moving particles and the in\uence of these changes
on the brane. In Section 4 some comments about a possible generalization of
3-dimensional picture to higher dimensional cases are presented.

2. COLLIDING PLANE GRAVITATIONAL WAVES AND BLACK HOLES

Two main assumptions of mechanism of black-hole creation (1) are [4, 5]:
• The transition amplitude for the process of creation of black hole in the collision
of two particles is determined by the semiclassical transition amplitude for the
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process of creation of black hole in the collision of two gravitational waves.
• Gravitational waves produced by ultrarelativistic particles are considered as
plane waves.

Saying shortly, the mechanism (1) means that ultrarelativistic particles gen-
erate plane gravitational waves, then these plane gravitational waves collide and
produce a singularity or a black hole. This mechanism uses an idealized pic-
ture that plane gravitational waves already have been produced by ultrarelativistic
particles. This idealization is based on the fact that ultrarelativistic particles gen-
erate gravitational waves and any gravitational wave far away from sources can
be considered as a plane wave. We used this idealized picture because it is
difˇcult to perform calculations in the realistic situation. We assume that plane
waves already have been produced by ultrarelativistic particles and then consider
analytically the process of black hole formation when the waves collide.

We discuss the process of creation of black hole in the collision of two
plane waves in the semiclassical approximation. Note that black holes cannot be
incorporated into the theory if we consider quantum ˇeld theory in Minkowski
space-time.

There exists a well known class of plane-fronted gravitational waves with the
metric

ds2 = 2dudv + h(u,X, Y )du2 − dX2 − dY 2, (2)

where u and v are null coordinates. In particular the gravitational ˇeld of a particle
moving with the speed of light is given by the AichelburgÄSexl solution [22].
The metric has the form

ds2 = 2dudv + E log(X2 + Y 2)δ(u)du2 − dX2 − dY 2 (3)

and describes a shock wave. It is difˇcult to ˇnd a solution which describes
two sources, except the 3-dimensional case [10,11]. An approximate solution of
Einstein equation for two particles as the sum of one particle solutions describes
well the scattering amplitude for large impact parameter, but does not describe
nonlinear interaction of shock waves which is dominant in the region of small
impact parameter. To analyze nonlinear effects we took, instead of dealing with
shock wave, plane gravitational waves. In some respect one can consider plane
wave as an approximation to more complicated gravitational waves, in particular
shock waves. This solution in some sense can be interpreted as an approximation
for a solution of Einstein equation in the presence of two moving particles.

A particular class of plane waves is deˇned to be plane-fronted waves in
which the ˇeld components are the same at every point of the wave surface. This
condition requires that h(u,X, Y ) is a function with a quadratic dependence on
X and Y . One can then remove the dependence of h on X and Y altogether by
a coordinate change.
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Classical collision of plane gravitational waves has been the subject of nu-
merous investigations, see for example [18Ä21], and it has a remarkably rich
structure. In [4] was used the ChandrasekharÄFerrariÄXanthopoulos duality be-
tween colliding plane gravitational waves and the Kerr black hole solution.

Let us present a metric corresponding to the collisions of two plane waves
with zero impact parameter. In this case the colliding plane gravitational waves
produce in the interaction region a space-time that is isometric to the interior of
the Schwarzschild solution. The metric is given by

ds2 = 4m2[1 + sin(uθ(u)) + vθ(v)]dudv

−[1 − sin(uθ(u)) + vθ(v)][1 + sin(uθ(u)) + vθ(v)]−1dx2 (4)

−[1 + sin(uθ(u)) + vθ(v)]2 cos2(uθ(u)) − vθ(v))dy2,

where u < π/2, v < π/2, v + u < π/2.

Fig. 1. a) Plane coordinates, b) Kruskal coordinates

Figure 1,a illustrates this solution of the vacuum Einstein equations. The
background region I describes a region of space-time before the arrival of gravi-
tational waves and it is Minkowskian. Two plane waves propagate from opposite
directions along the z-axis. Regions II and III contain the approaching plane
waves. In the region IV the metric (4) is isomorphic to the Schwarzschild metric.
To see this one can make the following change of variables from the plane-waves
coordinates to the Schwarzschild coordinates, (u, v, x, y) → (t, r, θ, φ) deˇned by,

r = m[1 + sin(u + v)], t = x, θ = π/2 + u− v, φ = y/m, (5)

or to Kruskal coordinates τ, ζ, θ, φ

τ = −a(r) cosh t/4m, ζ = −a(r) sinh t/4m, a(r) = (1 − r/2m)1/2er/4m.
(6)
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Then one gets

ds2 =
32m3

r
e−r/2m(dτ2 − dζ2) − r2(dθ2 + sin2 θdφ2).

The section of the region IV bounded by x = 0, y = 0 corresponds to segment
in the Kruskal diagram and the section of the region IV by the plane x = x0,
y0 = 0 corresponds to the hatched region in the Kruskal diagram in Fig. 2. The
lines corresponding to r = 2m (horizon) apart from the point (τ = 0, ζ = 0)
correspond to the inˇnite value of x-plane wave coordinate.

Fig. 2. Penrose diagrams for AdS3 with a brane. A brane B is located in the region P1.
Diagrams a) and b) show the different continuations across the horizon H . a) there are no
branes in the region P2; b) there is a brane B in the region P2. Identiˇcations are shown
by ”/” and ”//”. R and R′ denote the removed regions

The above metric in the (u, v) plane can be extended beyond the event
horizon u + v = π/2 in one of two ways.

The ˇrst possibility, shown in Fig. 1 consists in re\ecting along the line
u + v = π/2. The second one involves in gluing to the horizon the whole
upper-half part of the Kruskal diagram.

Both extensions are solutions of Einstein equations. There is a priori nonzero
probability to get a ˇnite state corresponding to a black hole or two outgoing plane
waves. Calculations of the probabilities for these processes in the semiclassical
approximation are performed in [4].

3. BRANE-PARTICLE COLLISION IN AdS3

In this section we consider the solution of Einstein equations describing
interaction of brane and particle in the AdS3 space-time.
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To describe a moving particle in AdS3 it is convenient to use the global
coordinate system (τ, r, φ) and the matrix representation

x = x−11 + xaγa, detx = 1, (7)

where r is a radial coordinate 0 < r ≤ 1, 0 ≤ ϕ < 2π is an angular coordinate,
τ is a real time coordinate and

γ0 =
(

0 1
−1 0

)
, γ1 =

(
0 1
1 0

)
, γ2 =

(
1 0

0 − 1

)
. (8)

The metric is

ds2 =
1
2
Tr (x−1dx x−1dx) =

( 2
1 − r2

)2 (
dr2 + r2 dϕ2

)
−

(1 + r2

1 − r2

)2

dτ2.

(9)

AdS3 space can be considered as a Poincarbe disc evolving in time. To construct
a space-time containing a point particle according to [10, 11] one has to ˇx the
holonomy, say

u = 1 + tan ε (γ0 + γ1), 0 < ε < π/2, (10)

and ˇnd a curve w− in the τ -plane such that its image w+ under a spatial
isometry, uw+u−1 = w− lies in the same τ -plane. Then one has to cut out the
wedge between these lines and to identify the faces according to the isometry. A
world line of the particle is the set of ˇxed points of the isometry. The resulting
space-time manifold has a constant curvature everywhere except on the world
line. The curves w± are given by

2r
1 + r2

sin(ε± ϕ) = sin τ sin ε. (11)

Let us now consider the three-dimensional version of the Randall and Sun-
drum (RS) model [9] which deals with a brane located at y = 1, where y is one
of the sets of the Poincare coordinates describing AdS3. RS slice AdS along
the surface y = 1, remove the portion 0 < y < 1 and assume Z2 re\ection
symmetry at the boundary surface. In the global coordinate system (t, r, φ) the
2-dimensional surface y = 1 is described by the equation

cosφ =
1 − r2 − (1 + r2) sin τ

2r
. (12)

Let us note that there are several ways to analytically continue the RS solution
across the horizon (see [23] and references therein). Two obvious choices of
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Fig. 3. Three-dimensional picture of the brane. AdS3 is displayed as the interior of the
cylinder. The horizon H (the shared cut) divides AdS3 into two regions P1 and P2,
each of which is covered by a set of Poincare coordinates. a) and b) show the different
continuations across the horizon

Fig. 4. Brane positions on the Poincare disk in times −π/2 ≤ τ ≤ π/2: a) a = 1,
b) a � 1; c) a � 1

continuation are shown in Fig. 2. For the ˇrst continuation (Fig. 2,a) there is no
brane beyond the horizon. For the second one (Fig. 2,b) there is a brane beyond
the horizon.

In Fig. 4 the brane positions under the assumption of the global structure
presented in Figs. 2,a and 3,a are shown for different values of τ . We consider
here the brane positions for the time between τ = −π/2 and τ = π/2. We
see that the brane at the initial moment is just a point on the Poincare disk and
becomes a circle of 1/2 radius in the last moment.

One can consider the brane located at y = a

cosφ =
(1 − r2)a−1 − (1 + r2) sin τ

2r
. (13)

In the case of a �= 1 the brane positions between τ = −π/2 and τ = π/2 are
shown in Figs. 4,b and 4,c. For all values of a at the initial moment the brane is
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just a point on the Poincare disk. For a small enough it becomes a closed curve
located near the boundary of the Poincare disk in the last moment. For large a
and τ = π/2 the brane is a curve located near ϕ = π.

Let us consider the collision of the brane and the particle. We assume that
at the initial moment τ = −π/2 the particle is at the point ϕ = π, r = 1
(the case of the symmetric initial position of the particle and the brane). The
pictures of positions of the brane and the wedge in subsequent moments of time
−π/2 ≥ τ ≥ −π/2 are presented in Figs. 5 and 6. In dependence of holonomy
(10) characterizing the moving particle, there are two different cases. Both of
them schematically are presented in Figs. 5 and 6. In the ˇrst case the ®removing¯
part of the Poincare disk at the moment τ = τc is large enough to place there
the domain with y ≥ 1. Note that since the boundaries of wedge are unidentiˇed
(points A and A′ as well as B and B′ are identiˇed) the brane in Fig. 5 is in fact
connected. At the moment τ = τc the brane is totally in a region that we have
to cut out and the brane disappears. To have this picture we have to take ε near
to π/2. In the second case the brane does not disappear between τ = −π/2 and
τ = π/2. This picture takes place for ε near to 0.

Fig. 5. Brane positions on the Poincare disk with wedge cuts (ε = π/4) in times −π/2 ≤
τ ≤ π/2

A case of a nonsymmetric position of the particle and the brane in the initial
moment τ = −π/2 is presented in Fig. 7. Note that here at the moment t = π/4
the brane is composed of two pieces CA and B′D (point A is identiˇed with A′

but not with B′). At the moment τ = τ0 the word line of the particle crosses the
brane and the brane splits on three pieces. Later one of these pieces disappears.
Two pieces of the brane are pasted to one brane at the moment τ = π/2.
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Fig. 6. Brane positions on the Poincare disk with wedge cuts (ε = 1/12π) in times
−π/2 ≤ τ ≤ π/2

Fig. 7. Brane positions on the Poincare disk with wedge cuts (ε = 1/12π) in times
−π/2 ≤ τ ≤ π/2

The above consideration demonstrates that the brane conˇguration is unstable
under possible collisions with particles. Note that this consideration assumes the
global structure 2,a.

Let us now consider the second way of continuation across the horizon. The
global structure of space time is shown in Fig. 2,b. In this case one deals with
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further branes beyond the horizon and there is no timelike inˇnity in the space
time. Hence there is no ®place¯ from which a particle can start its evolution.
This shows a stability of the RS solution under assumption of many branes.

4. DISCUSSION AND CONCLUSION

In the 4-dimensional case the process of the black hole creation (1) takes
place for the impact parameter b smaller than the Schwarzschild radius of the
black hole with the mass equal to the energy of colliding particles in the centre-
of-mass frame. Analogously we expect that the same process dominates in the
n + 4-dimensional case for

b < RS,n+4, (14)

where RS,n+4 is the Schwarzschild radius of the 4 + n-dimensional black hole
with mass m. The mass m is equal to the energy of colliding particle in the
centre-of-mass frame. The Schwarzschild radius of the 4 + n-dimensional black
hole of mass m is given by [24]

RS,n+4 = cn+4 (κ4+nm)1/n+1, (15)

there c4+n = ( 8Γ((n+3)/2)
(n+2)πn+1/2 )1/n+1. Using that κ4+n ∼ Mn+2

Pl,4+n we have the

bound

b < cnM
−1
Pl,n+4 (

E

MPl,n+4
)1/n+1, (16)

where E is the energy of colliding particles in the centre-of-mass frame. There-
fore, if one adapts the scenario of [6] and ˇnds an analog of the metric (4), then
one can conclude that the black hole production takes place at the TeV scale. This
means that one has a very strong restriction according to which processes with
transverse momenta larger than R−1

S,n+4 should be completely absent. We see an
interesting feature of the bound (16). Since we expect that n is large enough, say
n = 6, the right-hand side of this inequality does not depend very much on the
energy of colliding particles.

Let us note once again that to realize (1) in higher dimensional case one
has to ˇnd a solution describing collision of gravitational waves. This is still an
open problem for n > 0. Moreover, within the framework of low scale quantum
gravity scenario one has to solve a problem of colliding waves in a particular
compactiˇed space. However, by analogy with the 3-dimensional case one can
expect that the role of the second plane wave can be played by the brane within
the RS scenario. The one plane wave in the AdSd background was found for
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d = 4 in [12,13,15] and for d > 4 in [14]. The metric has a simple form in plane
wave coordinates

ds2 =
dUdV − ηαβ(dZα + Uθ(U)HαγdZ

γ)(dZβ + Uθ(U)Hβγ′dZγ′
)

[1 − (UV − ηαβZαZβ + Uθ(U)G]2
, (17)

α, β = 1, ..d− 2.

This metric for negative values of U reproduces the pure AdSd metric. The plane
wave coordinate U is related with the global coordinates via

U =
tan ρ n1 − sec ρ sin τ

1 + sec ρ cos τ
, (18)

where n1 is the ˇrst component of d − 2-dimensional unit vector. This metric
describes a metric in the presence of a massless particle which moves along the
null geodesic U = 0 in AdSd background. In the Penrose diagram (see Fig. 2,a)
this looks like as the world line of the particle in the 3-dimensional case. This
consideration supports an analogy with the 3-dimensional case, although to be
sure a more detailed analysis is needed.

To summarize, in this letter we discussed the application of the mecha-
nism of the black hole production from colliding plane gravitational waves in
4-dimensional space-time to the TeV energy scattering in the n + 4-dimensional
space-time in the presence of a brane. We have shown that the brane could be
unstable in the presence of gravitational waves and the black hole can be formed.
It was shown that the brane is stable within the many branes version of the RS
solution in the 3-dimensional case. We also noted that a bound on transverse mo-
menta of completely absent processes does not essentially depend on the energy
of colliding particles.
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