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The evolution of the distribution-theoretical methods in perturbative quantum ˇeld theory is
reviewed starting from Bogoliubov's pioneering 1952 work. Discussed are applications to ultraviolet
renormalization, advanced perturbative calculations, and systematic perturbation theory with unstable
fundamental ˇelds.

I would like to review the origin and evolution of the idea that generalized
functions (distributions) play with respect to integrals of perturbative quantum
ˇeld theory (pQFT) a role similar to that of complex numbers with respect to
polynomials.

What makes this topic interesting and instructive is the apparent contradiction
between the proven power of the distribution-theoretical methods in pQFT (it
would be enough to mention the Bogoliubov R-operation) and the low awareness
of theorists of this powerful technique.

SOME HISTORY

Singular generalized functions had been emerging in various applications (re-
call Dirac's δ-function). Sobolev [1] found a systematic way to deˇne such gen-
eralized functions as linear functionals on suitably chosen spaces of test functions.
The most universally useful variant of the theory was suggested by Schwartz [2]
(the so-called distributions; I will use the term interchangeably with generalized
functions) who made a great effort to propagandize the simplicity and power of
the technique of distributions [3] as Gelfand and Shilov did [4]. There is nothing
inherently difˇcult in the idea of generalized function, and the theory can be
taught in an almost elementary fashion [5]. Distributions ought to be taught to
students early because of their wide usefulness (e.g. [3,4,5]).

As a side remark, I'd like to point out that the generalized functions deˇned
as linear functionals on test functions are much more sensible candidates for the
role of ®arbitrary functions¯ than the usual interpretation in terms of an arbitrary
correspondence between arguments and values. Any constructive mathematical
object must exist in the form of approximations expressible via ˇnite symbolic
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sequences. This holds true for continuous functions (approximations via linear
splines with rational nodes), and for generalized functions deˇned as linear func-
tionals Å but not for the conventional ®arbitrary¯ functions. Furthermore, if one
obtains the value of a function's argument from some measurements involving
say statistical errors, then all one can directly measure is an average of the func-
tion values Å which is immediately interpreted as an integral of the function
against a special test function which describes the distribution of errors. Thus
generalized functions as linear functionals directly correspond to the reality of
physical measurements of functional dependences.

From [7] one learns that Bogoliubov's teacher and collaborator for many years
N.M.Krylov was interested in generalized solutions of differential equations, so a
reasonable guess is that Bogoliubov and Krylov studied Sobolev's ideas soon upon
publication. As a result, Bogoliubov was heuristically prepared to accomplish the
conceptual breakthrough in regard of the problem of UV divergences in the early
50's [8] Å but was not yet familiar with the smooth technique of distributions
[2Ä5] to make a systematic use of it in formal proofs.

In a remarkable letter [8], Bogoliubov pointed out that (i) UV divergences re-
sult from an incorrect formal treatment of products of singular functions, (ii) such
products are not deˇned by physical principles at the points where the singular-
ities overlap, and (iii) a correct way to deˇne the amplitudes at such singular
points is via the procedure known as extension of functionals (which is a basic
tool of functional analysis, the simplest variant being the HahnÄBanach theorem).
So, Ref. 8 shed a scientiˇc light on the problem of UV renormalization and re-
duced it to a more or less straightforward working out of the formulas and proofs
for what became known as the R-operation [9]. However, despite the distinctly
functional-analytic ^avor of the reasoning in [8], the formal proofs in [9] were
completely within the limits of the ordinary integral calculus. This is explained
by the fact that a technique for handling multidimensional distributions was not
available then.

Anyhow, the monograph [10] summarized Bogoliubov's ˇndings, and the
theoretical community was presented with both a heuristic distribution-theoretical
derivation of the R-operation, and a formal proof of the ˇniteness of the result
in terms of the conventional integral calculus. The sad fact is, the derivation was
almost universally ignored even by mathematical physicists who ought to know
better. An exception was the work of Epstein and Glaser [11] who attempted
to formalize Bogoliubov's construction in a distribution-theoretical manner, but
the essential mechanism which trivializes the formula and the ˇniteness of the
R-operation was not clariˇed and remained buried in many details pertaining to
the operator speciˇcs of S-matrix, etc. Ref. 11 remained largely unknown to the
theoretical community.

On the other hand, the pro forma proof [9] (of no heuristic value whatsoever)
received considerable attention. It was corrected by Hepp [12], and improved via
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the forest formula [13] (rediscovered in [14]). The works [9, 12Ä14] created what
became known as the BPHZ theory. It is commonly treated as the theory of
UV renormalization, which identiˇcation Å I emphasize Å is incorrect because
the BPHZ formalism ignores the key ingredient of the discovery of R-operation,
namely, the distribution-theoretical argument of [8].

The heuristic arguments used to obtain breakthrough results such as the
R-operation are unquestionably more important than any artiˇcial proof, and
mathematical physicists ought to study and clarify such arguments in the ˇrst
place. But this did not happen in reality.

DIGRESSION ON SIMILARITY OF UV RENORMALIZATION
TO DIFFERENTIATION

A widely-spread attitude is that UV renormalization is an artiˇcial procedure
on top of ordinary integrals, a temporary prop, and it will go as soon as physicists
ˇnd a better formalism to describe the domain of very high energies. In partic-
ular, the limit Λ → ∞ (where Λ is the intermediate UV cut-off) is considered
unphysical and in need of eventual modiˇcation.

However, such an attitude has only psychological roots in an inadequate
mathematical education. Indeed, there is no principle which would restrict Nature
in Her choice of mathematical objects in terms of which to formulate Her laws.
In fact, the tremendous success of QED shouts at us to accept the objects of the
type ®integral+subtractions¯ as a whole Å i.e., as hybrid objects which possess
features of both ordinary integrals and generalized functions.

Furthermore, consider time derivatives in classical mechanics:
ẋ = lim∆t→0(∆x/∆t). Is not the limit ∆t → 0 as unphysical as Λ → ∞?
Is not the time derivative only a mathematical trick to allow a precise description
of the Solar System? Would not physics need to be modiˇed at small time scales?
Physics at small time scales does get modiˇed as quantum effects come into play.
However, not only the time derivatives are not eliminated but quantum mechanics
introduces spatial derivatives. And the transition to still smaller space-time scales
introduces UV renormalization which, although not exactly a differentiation, can
be regarded as an operation of the same general type; cf.: RG = limΛ→0 ZΛGΛ.
To summarize:

Classical mechanics ∂/∂t Quantum ˇeld theory ∂/∂t, ∂2/∂x2, R

Quantum mechanics ∂/∂t, ∂2/∂x2 Quantum gravity ∂/∂t, ∂2/∂x2, R, ...

The reality is, the deeper we go, the more numerous and various singular
operations we encounter. From this viewpoint, the popular ®super¯ theories that
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attempt to eliminate UV renormalization altogether are as bizarre as would be
an attempt to eliminate time derivatives from the classical mechanics (imagine a
theory with a superpartner for each planet, etc.)

In short, the UV renormalization is the sweeping of dust under the carpet to
no greater extent than the use of time derivatives in classical mechanics.

DISTRIBUTIONS TRIVIALIZE THE BOGOLIUBOVÄPARASYUK
THEOREM

I already mentioned Ref. 11 which attempted a mathematical clariˇcation of
Bogoliubov's construction of pQFT together with the R-operation. However, it
was limited in scope and addressed a rather speciˇc problem. In a more systematic
manner the problem had to be addressed in the context of the theory of asymptotic
operation (AO) to which I'll turn below (a review of the ˇrst, Euclidean part of
the theory is given in [15]).

The background was as follows. I ran across the textbook [3] by chance
in my second semester at the Moscow State University (1974), and read it be-
cause it is a highly readable collection of speciˇc examples with the irrelevant
abstract parts of the theory of distributions omitted. Now it seems to me that
the ®true¯ mathematical physicists who later pounced me on the head with their
anonymous reports, learn distributions from the ®real¯ book [2] which is entirely
devoted to the abstract theory without a single meaningful example. Anyhow,
I had a unique opportunity to go through the rest of my curriculum with a
working knowledge of distributions, which proved to be highly beneˇcial, and
I emphatically agree with Richtmeier [6] on how distributions should be taught
(if what I learned from [3] were not useful I'd forgotten it long ago as I did
many other books I read then). By the time I took the course of quantum ˇeld
theory (1975) I had distributions in my bones. So I had no trouble with grasp-
ing the meaning of local UV counterterms and proceeded to develop a scenario
for a distribution-theoretical proof of the R-operation as a mnemonic tool which
allowed me to skip the extremely cumbersome and unilluminating BPHZ argu-
ments. The scenario was formalized in [16]. Unfortunately, I learned about
Ref. 11 much later and so was unable to employ the authority of Epstein and
Glaser as a (much needed) protection against inconscientious referees from the
BPHZ camp.

The techniques of distributions properly extended to many dimensions allows
one to make a full use of the recursion structure of the problem and perform proofs
inductively with respect to dimensionality of the manifolds on which singularities
are localized. A discussion of this key dilemma (singularities vs. the recursion
structure) is given in [15]; brie^y speaking, the BPHZ method sacriˇces the
recursion in order to avoid distributions, whereas AO develops a technique to
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handle singularities in order to take full advantage of the recursion structure to
facilitate the reasoning.

The importance of such a proof (which essentially trivializes the mechanism
of ˇniteness of R-operation) is that Å unlike the BPHZ-style proofs Å it is
directly coupled to the heuristics of the problem. I don't have space to explain
technical details and refer to the review [15] where an example is given, and to
a systematic formal exposition of [17].

One could argue that all one needs for practical purposes is a rule for sub-
tractions that works, and whether or not the proofs are transparent is irrelevant.
Unfortunately, life is a bit more complicated than that because there are far too
many problems where one needs to handle speciˇc patterns of singularities (soft,
collinear, mass shell...), and it is impossible to enumerate and memorize all possi-
ble cases and list all the corresponding rules. A more sensible approach is to have
a systematic rule to generate rules for doing subtractions in speciˇc situations.
To ensure that results are correct the method must so immediately translate into
formal proofs as to obviate them altogether.

From the distribution-theoretical viewpoint all such problems follow the same
general pattern: singularities are generated by zeros of denominators; intersections
of the corresponding singular manifolds require special treatment; they are enu-
merated in a straightforward fashion (the subgraphs); the added counterterms are
localized on those manifolds (such a manifold is described by a system of equa-
tions Pi = 0, where Pi are the corresponding denominators, and the counterterms
are simply products proportional to derivatives of Πiδ(Pi)).

ASYMPTOTIC OPERATION (AO)

Starting from 1978 I was involved in pQCD calculations and, again, when
confronted with the so-called mass singularities was quickly able to see (in the
early 1981) the analogy with Bogoliubov's 1952 argument: a formal manipulation
(in this case, a mass expansion) results in an inˇnite expression (a mass singular-
ity) to correct which one adds a counterterm localized at the point of singularity,
roughly like this:

1
p2 = m2

− 1
p2

+
m2

p4
+ c(m)δ(p) + . . .

The new element here compared with UV divergences is the requirement of
asymptotic smallness of the remainder, which, together with a key requirement
that the resulting expansion runs in pure powers and logarithms of the expansion
parameter [18], allows one to ˇx the ˇnite part of c(m). Coupled with the
techniques for handling products of singular factors, this leads to:
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(i) theoretical results that the BPHZ experts had for years been struggling to
obtain (short-distance expansion valid for models with massless particles
[18]);

(ii) powerful calculational formulas that helped deˇne state of the art in the
ˇeld [18,19];

(iii) extensions (complete with calculational formulas) to the entire class of
expansions of Euclidean type [21] (including mass expansions).

The formulas obtained using the Euclidean AO in 1984Ä1986 formed a basis
for a calculational industry (a number of such calculations have been used, e.g., in
the precision measurements at LEP1). Of course, they were rewritten in the style
of BPHZ and subsequent references are made to those secondary publications.
The objective reason was that in Euclidean problems such as OPE and mass
expansions, singular distributions appear only in intermediate formulas and can
be integrated out from the ˇnal answers. (There were also subjective reasons such
as the lack of any formal mechanism in the international research community
to protect creative individuals from plagiarism by representatives of established
maˇas. Watch [22] for more on this.)

NON-EUCLIDEAN EXTENSION OF AO

By 1990, with all the results of the Euclidean AO neatly appropriated by
other authors (see [23] for bibliographic comments), I had no choice but to push
forward in the non-Euclidean direction. Already in 1984 [20] I clearly understood
both the fact that the then obtained formulas were limited to Euclidean problems
(not that there is a shortage of physically interesting problems of this kind; in
fact, some my former colleagues seem to have chosen to forever remain experts
in this kind of calculations), as well as the fact that the scheme of AO per ce
was in no way limited to Euclidean situations, and that the true challenge was
the general asymptotic expansion problem for PT integrals in Minkowski (non-
Euclidean) space. However, both my collaborators and plagiarists pooh-poohed
the idea. This did not prevent me from participating in QCD calculations [24] with
a view to extend the method of AO to pQCD problems of non-Euclidean type.
I realized that the key difference from the Euclidean formulas is a secondary
expansion for the counterterms (the homogenization) needed to achieve pure
power-and-log dependence on the expansion parameters [25]. The last step [26]
was to realize that if one follows the routine of AO in a systematic fashion, no
special rules for correct scalings, etc., are needed to do the power counting at
the singularities localized on nonlinear manifolds: all one has to do is to perform
the secondary expansion (the homogenization) in the sense of distributions (as



206 TKACHOV F.V.

is indeed warranted by the logic of the problem) Å with all the corresponding
counterterms, etc. In the language of AO, the difˇculties which, say, pQCD
experts encountered with power counting at mixed soft-collinear singularities are
due to the fact that the secondary expansions, if done formally, may result in
nonintegrable singularities to which the routine of AO has to be applied with
appropriate (straightforward) modiˇcations Å but that is practically impossible
to see in the context of the forest formula.

The result of [26] represents the much needed ®rule to generate rules¯ for
doing expansions in speciˇc non-Euclidean situations. Needless to say that the
truly huge physical importance of the problem of non-Euclidean expansions and a
huge variety of speciˇc problems creates an insurmountable temptation to devise
a ®method of regions¯ in order to rewrite the prescriptions obtained via AO
in the BPHZ style Å exactly as was done with the results of Euclidean AO.
Fortunately, the method of non-Euclidean AO is applicable to problems involving
phase-space δ-functions (because for AO such δ-functions are not really different
from ordinary propagators), and so distributions cannot be eliminated from ˇnal
answers thus defeating any attempt to rewrite them BPHZ-style. An example of
such a problem is the systematic perturbation theory with unstable fundamental
ˇelds described in [27].

There is another line of research that leads to distributions from another
direction: the so-called algebraic (a.k.a. integration-by-parts) algorithms invented
in [28] have by now become an indispensable tool for automated large-scale
calculations of multiloop integrals [29]. A recent extension to loop integrals
with arbitrary topologies and mass patterns [30] relies on results of the theory of
singularities of differentiable mappings [31], and there is a connection with the
homogenization procedure of the non-Euclidean AO [26]. But I've run out of
space. Watch [22] for more.
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