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1. An approximation of a quantity under consideration by a ˇnite number
of terms of a certain series is often used in analysis of many physical problems.
In quantum ˇeld theory this is conventionally an expansion into a perturbative
series. This approach combined with the renormalization procedure is now a
basic method for computations. As is well known, perturbative series for many
interesting models including realistic models are not convergent. Nevertheless, at
small values of the coupling constant these series may be considered as asymptotic
series and could provide a useful information. However, there exist problems
which cannot be resolved by perturbative methods. In quantum chromodynamics
there are many problems whose solution requires nonperturbative approaches.

There are methods that combine an expansion of a given quantity in a se-
ries that deˇnes the algorithm of calculating the correction with an optimizing
procedure (see [1, 2] and references therein). Different ways of constructing the
variational procedures for scalar models of quantum ˇeld theories are discussed
in [3Ä5]. In this paper we apply the idea of variational perturbation theory (VPT)
to QCD. In spite of the term ®perturbation¯ the VPT approach does not use the
coupling constant as a small expansion parameter and can be used to go beyond
the weak-coupling regime. This method allows one to systematically determine
the low energy structure in quantum chromodynamics. In this case, we shall
construct the expansion which is based on a new small parameter. The results
concerning the method of variational perturbation theory and some its applications
can be found in the papers [6Ä9] and [10Ä12].

2. In the case of QCD we will apply the harmonic variational procedure
which leads to a new small expansion parameter. To explain the basic idea of
the method we consider the pure YangÄMills theory. The Lagrangian density has
the form

LY M = −1
4

(Fµν)2 − 1
2
g Fµν [Aµ×Aν ] +

1
4
g2 [Aµ×Aν ]2 + Lg.f. + LF.P. =

= L0(A) + g L3(A) + g2L4(A) , (1)
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where Fµν = ∂µAν−∂νAµ, Lg.f. and LF.P. are gauge ˇxing and FaddeevÄPopov
terms.

The term L3(A) generates the three-gluon and ghost-gluon-ghost vertices.
This interaction is the Yukawa type interaction. The term L4(A) generates the
four-gluon vertices. Let us introduce the χµν ˇeld and transform the term L4(A)
to the Yukawa type interaction

exp
{
i
g2

4

∫
dx [Aµ ×Aν ]2

}
=

=
∫
Dχ exp

{
− i

2

∫
dxχ2

µν + i
g√
2

∫
dxχµν [Aµ ×Aν ]

}
. (2)

The action functional can be written in the form

S = S0(χ) + S(A,χ) + SY uk
Y M (A) , (3)

where

S(A,χ) =
1
2

∫
dx dy Aa

µ(x)
[
D−1(x, y|χ)

]ab

µν
Ab

ν(y) (4)

and D(x, y|χ) is the gluon propagator in the χ-ˇeld.
The Green functions can be represented as G(· · · ) = 〈GY uk(· · · |χ)〉, where

GY uk(· · · |χ) =
∫
DA [· · · ] exp

{
i

[
S(A,χ) + SY uk

Y M (A)
] }

(5)

and

〈· · · 〉 =
∫
Dχ [· · · ] exp [ i S0(χ) ] . (6)

The Green functions GY uk(· · · |χ) contain only the Yukawa type diagrams ap-
pearing inside the brackets 〈· · · 〉 with the gluon propagator D(x, y|χ).

Rewrite the Lagrangian in the form

L(A,χ) = L0(A,χ) + LI(A,χ) ,
L0(A,χ) = ζ−1 L(A,χ) + ξ−1 L(χ) , (7)

LI(A,χ) = η
[
g LY uk

Y M (A) − (ζ−1 − 1)L(A,χ) − (ξ−1 − 1)L(χ)
]
,

where ζ and ξ are the parameters of variational type. The original quantity
L(A,χ) does not depend on ζ and ξ. The freedom in choosing ζ and ξ can be
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used to improve the series properties. The VPT series for the Green function is
given by

G(· · · ) =
∑

n

Gn(· · · ) ,

Gn(· · · ) =
1
n !
ηn

∫
DχDA [· · · ] [ i SI(A,χ)]n exp [ i S0(A,χ)] = (8)

= (i η)n
n∑

k=0

1
(n − k) ! k !

∫
DχDA [· · · ]

[
g SY uk

Y M (A)
]k ×

×
[
(ζ−1 − 1)S(A,χ) + (ξ−1 − 1)S(χ)

]n−k
exp [ i S0(A,χ)] .

Redeˇne the L0(A,χ) for convenience of calculations as follows

L0(A,χ) ⇒ L′
0(A,χ) =

[
1 + κ(ζ−1 − 1)

]
L(A,χ) +

[
1 + κ(ξ−1 − 1)

]
L(χ) .

(9)

Any power of [(ζ−1 − 1)S(A,χ) + (ξ−1 − 1)S(χ)] in (8) can be obtained by the
corresponding number of differentiation with respect to κ (after all calculations
we set κ = 1).

From Eqs. (8) and (9) we have

Gn = ηn
n∑

k=0

1
(n − k) !

(
− ∂

∂ κ

)n− k

〈 gk(κ) 〉 , (10)

where the functions

gk(κ) =
ik

k!

∫
DA [· · · ]

[
g SY uk

Y M (A)
]k

exp
{
i [1 + κ(ζ−1 − 1)]

∫
dxL0(A,χ)

}

(11)

correspond to the Yukawa diagrams of the YangÄMills theory with gluon propa-
gator

1
1 + κ(ζ−1 − 1)

D(x, y|χ) → ζ D(x, y|χ)

for κ = 1. The propagator of χ-ˇeld includes the factor [1 + κ(ξ−1 − 1)]−1

which is transformed into ξ for κ = 1.
The operator of differentiation (−∂/∂κ)l

/l! leads to the factor (1 − ζ)l for
the gluon propagator and (1 − ξ)l for the propagator of the χ-ˇeld. Thus, the
outline of the VPT expansion structure can be written as

1 + η (1 − ζ) + η2
[
(1 − ζ)2 + g2 ζ3 + g2 ξ

]
+ (12)

+ η3
[
(1 − ζ)3 + g2 ζ3 (1 − ζ) + g2 ξ (1 − ζ) + g2 ξ (1 − ξ)

]
+ · · ·
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If we choose ξ = ζ3 and (1 − ζ)2 = Cλζ3, where C is a positive constant,
we obtain that the nth order term of our series contains the factor (1 − ζ)n and the
expansion parameter a = (1−ζ) < 1 for all values of the initial coupling constant.
To ˇx the parameter C, it is possible to use a nonperturbative information coming
from the meson spectroscopy (see details in [7, 8]).

The renormalization group method gives an equation for the Q2-evolution
of the expansion parameter a = a(Q2). By solving the renormalization group
equation one ˇnds the momentum dependence of the running expansion parameter
as a solution of the following transcendental equation

ln
Q2

Q2
0

=
C

2 β0
[ f(a) − f(a0) ] . (13)

For the function f(a), by ˇnding the renormalization constants in the massless
renormalization scheme with an accuracy O(a3), we get

f(a) =
2
a2

− 6
a
− 48 ln a− 18

11
1

1 − a+

+
624
121

ln(1 − a) +
5184
121

ln
(

1 +
9
2
a

)
. (14)

For any values of Q2, this equation has a unique solution a(Q2) in the interval
between 0 and 1.

It is easy to verify that the N th order of the VPT series contains the N th order
of a perturbation series with the correction O( gN+1 ), therefore, the VPT expan-
sion does not contradict the perturbative results obtained for the small coupling
constant.

3. As an example of applications of the a-expansion approach consider a
description of the inclusive decay of the τ lepton taking into account renor-
malon contributions [13, 14]. The Rτ ratio can be parameterized by the Adler
D-function D(Q2) = −Q2dΠ/dQ2. The two-loop perturbative approximation is
given by D(t, λ) = 1 + 4λ(µ2), where t = Q2/µ2. Standard renormalization
group improvement leads to the substitution λ(µ2) → λ̄(t, λ), which implies a
summation of the leading logarithmic contributions. However, due to the ghost
pole of the running coupling at Q2 = Λ2 this substitution breaks the analytic
properties of the D-function in the complex q2 = −Q2 plane, namely that the
D-function should only have a cut on the positive real q2 axis. We may cor-
rect this feature by noting that the above solution of the renormalization group
equation is not unique. The general solution is a function of the running cou-
pling with the asymptotic behaviour 1 + 4λ, for small λ. To maintain the ana-
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lytic properties∗ of the D-function we can write it as the dispersion integral of
R(s) = (1/π)ImΠ(s+ iε), and use RG improvement on the integrand rather than
D itself. This method leads to D(t, λ) = 1+4λeff(t, λ). The Borel representation
of λeff(t, λ) has the form

λeff(t, λ) =
∫ ∞

0

db e−b/λ̄(t,λ)B(b) , (15)

with B(b) = Γ(1+ bβ0)Γ(1− bβ0). Here β0 = 11− 2/3Nf is the ˇrst coefˇcient
of the β-function, and Nf is the number of active ^avors. Thus, in the Borel
plane there are singularities at bβ0 = −1,−2, ... and bβ0 = 1, 2, ... corresponding
to ultraviolet and infrared (IR) renormalons, respectively.

The ˇrst IR singularity at bβ0 = 1 is probably absent since there is no
corresponding operator in the operator product expansion. Although this issue is
not currently settled, it seems reasonable to assume that the ˇrst IR renormalon
occurs at b = 2/β0, and we would like to use this property of the operator
product expansion as an additional constraint on the choice of solution to the
renormalization group equation. This can be simply achieved, and as a result we
obtain the following expression for λeff :

λeff(t, λ) =
∫ ∞

0

d τ ω(τ)
λ̄(kt, λ)

1 + λ̄(kt, λ)β0 ln τ
, (16)

in which the factor k re^ects the renormalization scheme ambiguity and the func-
tion ω(τ) = 2τ/(1 + τ)3 describes the distribution of virtuality usually associated
with renormalon chains. The function B(b) in the Borel transform of (16) has
the form

B(b) = Γ(1 + bβ0) Γ(2 − bβ0) . (17)

Thus in this representation for λeff the positions of all ultraviolet singularities
remain unchanged, but the ˇrst IR renormalon singularity at b = 1/β0 is absent.

In order to render Eq. (16) integrable we must combine this method with the
nonperturbative a-expansion in which from the beginning the running coupling
has no ghost pole. Separating the QCD contribution to Rτ -ratio as ∆τ and writing
Rτ = R0

τ (1 + ∆τ ), where R0
τ is the well-known electroweak factor, we obtain

the expression

∆τ = 48
∫ M2

τ

0

ds

M2
τ

(
s

M2
τ

)2 (
1 − s

M2
τ

)
λ̃(ks) , (18)

∗It has been shown [15] (see also [16]) that requiring the correct analytic properties for the
running coupling is associated with the inclusion of nonperturbative power corrections of the form
exp{−1/[λ̄(Q2)β0]}. The role of these contributions in the context of the τ -decay has been analyzed
in [17, 18].
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in which the factor k again parametrizes the renormalization scheme and λ̃ =
a2(1 + 3a)/C. In what follows we shall use the MS scheme, in which k =
exp(−5/3). Note that the renormalon representation obtained for the coupling
modiˇes the polynomial in the integral so that the maximum now occurs near
s = (2/3)M2

τ .
Taking as input the experimental value of Rexp

τ = 3.56 ± 0.03, three active
quark ^avors and the variational parameter C = 4.1 as in [8], we ˇnd αs(M2

τ ) =
0.339 ± 0.015 which differs signiˇcantly from that obtained (αs(M2

τ ) = 0.40
in leading order [11]) without the renormalon-inspired representation∗ for the
coupling. The method, applying the matching procedure in the physical s-cha-
nnel [10] and using standard heavy quark masses, leads to RZ = 20.90 ± 0.03,
which agrees well with experimental data.

4. We have considered an approach to quantum chromodynamics Ä the
method of variational perturbation theory. The original action functional is rewrit-
ten using some variational addition and an expansion in the effective interaction
is made. Therefore, in contrast to many nonperturbative approaches, in the VPT
the quantity under consideration from the very beginning is written in the form
of a series which makes it possible to calculate the needed corrections. The VPT
method thereby allows for the possibility of determining the degree to which
the principal contribution found variationally using some variational principle
adequately re^ects the problem in question and determining the region of ap-
plicability of the results obtained. The variational parameters arising in the VPT
method allow the convergence properties of the VPT series to be controlled.
For the harmonic variational procedure used here there are indications that VPT
series can be converged on the sense of the so-called induced convergence, by
ˇne-tuning the variational parameters from order to order.

Here, we have considered the application of the method to quantum chromo-
dynamics, where the VPT idea leads to an expansion with a new small expansion
parameter. This parameter obeys an equation whose solution is always smaller
than unity for any value of the coupling constant. Therefore, while remaining
within the limits of applicability of this expansion it is possible to deal with
considerably lower energies than in the case of perturbation theory. An important
feature of this approach is the fact that for sufˇciently small value of the running
coupling constant ᾱs it reproduces perturbative predictions. Therefore, all the
high-energy physics is preserved in the VPT method. In going to lower energies,
where standard perturbation theory ceases to be valid, ᾱs � 1, the VPT running
expansion parameter ā remains small and we do not ˇnd ourselves outside the
region of applicability of the method.

∗The analysis of the heavy quark bound state spectrum using the a-expansion approach and the
renormalon representation has been performed in [19].
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