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NONLINEAR REPRESENTATIONS OF THE LORENTZ
GROUP AND THE WIGNER FUNCTION
FOR RELATIVISTIC FREE PARTICLES
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The generalization of the Wigner function for the case of particles with relativistic Hamiltonian
H(p) =

√
p2 + m2 is given; the transformation properties of the wave functions with respect to

the Lorentz group are discussed.

1. INTRODUCTION

N.N.Bogoliubov was always interested in alternative, nonstandard approaches
to the quantum theory, in particular, in the so-called Wigner approach [1].

The main idea of the Wigner approach was that in some cases the evolution
of the quantum system of particles can be treated as the evolution of the classical
ensemble, characterized by the (pseudo)probability distribution densityW (p,q; t)
of particles in the phase (p, q)-space (p being the momentum of the particle, q
being its coordinate). In such cases (for example, in case of the free nonrelativistic
motion) the corresponding quantum dynamics, based on the Schréodinger equation,
proves to be consistent with their classical dynamics, based on the Hamiltonian
equations.

Thus the nice feature of the Wigner approach is that the quantum evolution
and the evolution of the classical ensemble (1) are identical. However, such
identity should not be understood too simple-mindedly: the Wigner function is
not necessarily positive (that was what we really meant using the word ®pseudo¯
in the neologism ®pseudoprobability¯ previously).

The generalization of the Wigner function W (p,q; t) for the free relativistic
particles, that is for the Hamiltonian

H(p) = ω(p) =
√

p2 + m2, (1)

was given by us (together with A.M.Malokostov) only quite recently [2]. We
shall describe this generalization a bit later.

However, before this let us make several comments. It is well known that the
straight-forward quantum mechanical theoretical scheme is compatible with the
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relativistic principles only for free particles (in fact, this was just the main reason
to introduce quantum ˇeld theory). Difˇculties arise even for free particles, for
example, when trying to construct the coordinate operator x̂ [3]. Nevertherless,
it is generally assumed that free particles corresponding to the Hamiltonian (1)
can possess the usual wave function in momenta representation (the function on
the upper mass hyperboloid), let us say, ψ(p). The scalar product of two such
functions ψ1(p) and ψ2(p) is

〈ψ1(p), ψ2(p)〉 =
∫

dµ(p)ψ∗
1(p)ψ2(p),

where

dµ(p) =
dp
ω(p)

is the invariant measure on the mass hyperboloid. One assumes that the trans-
formation properties of the momentum wave functions ψ(p) with respect to the
Lorentz transformations Λ are as follows:

ψΛ(p) = ψ(Λp)

(this is the main assumption used, in particular, when constructing the Fock
space). The standard momentum space L2(dp,R3) of the square integrable
wave functions ψ′(p) with the Lebesque measure dp is achieved in result of the
isomorphism

ψ′(p) =
ψ(p)√
ω(p)

,

while the general transformation law of the wave function under the Lorentz
transformations can take the form

ψ′
Λ(p) =

√
ω(Λp)
ω(p)

eiΩ(Λp)−iΩ(p)ψ′(Λp). (2)

Here Ω(p) is an arbitrary real function.
In this space the momentum operator p̂ is just the multiplication operator

p̂ψ′(p) = pψ′(p).

It follows from the canonical commutation relations that the coordinate oper-
ator x̂ (if it exists) should take the form x̂ = i ∂

∂p [3]. The respective coordinate

wave function ψ̃′(x) (if such a function exists) should be simply the Fourier
transform of the wave function ψ′(p):

ψ̃′(x, t) =
1

(2π)3/2

∫
dpeipxψ′(p)e−iω(p)t. (3)
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Now we enumerate the desired properties of the possible relativistic analog
W (p,x; t) of the Wigner function:

1) it should be bilinear with respect to the wave function ψ(p);
2) the functionW being integrated over the coordinate x gives the probability

density in the momentum space

ψ∗(p, t)ψ(p, t) =
∫

dxW(p,x, t); (4)

3) the function W being integrated over the momentum p gives the proba-
bility density in the coordinate space

ψ̃∗(x, t)ψ̃(x, t) =
∫

dpW(p,x, t);

4) the Wigner function admits the classical evolution law, namely:

W (p,x, t + τ) = W
(
p,x − p

ω(p)
τ, t

)
. (5)

Now we claim that the natural relativistic analog for the Wigner function can
be given by the following relation

W (p,x, t) =
1

(2π)3

∫
dp1 dp2 ψ

′∗(p1)ψ′(p2)δ
(
p− (p1 � p2)

)
× exp

(
i
(
ω(p1) − ω(p2)

)
t + i(p2 − p1)x

)
. (6)

Here the symbol � serves to denote the special ®sum on the mass shell¯: if
one introduces two 4-vectors P1 = (ω(p1),p1) and P2 = (ω(p2),p2), then by
deˇnition

P1 � P2 ≡ m
P1 + P2√
(P1 + P2)2

.

The quantity p1 � p2 is just the space part of the 4-vector P1 � P2. In other
words,

p1 � p2 = m
p1 + p2√

2
(
m2 + ω(p1)ω(p2) − p1p2

) . (7)

This function can be shown to satisfy all the necessary properties 1)Ä4).
Of course, the situation with the physical interpretation of the relativistic

function W is not at all better than in nonrelativistic case. It can also be neg-
ative. Moreover, the general principles of the classical mechanics imply such
transformation properties of the function W (p,x, t) with respect to the Lorentz
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group which by no means follow from the transformation law (2). This shows
once again that even for free particles incompatibility of the quantum mechanical
principles and the special relativity might be deeper than it is usually assumed.
However, in the present paper, we'll try to develop quite an opposite point of
view: we'll make an attempt to ˇnd such transformation laws for the wave func-
tions which lead to simple ®natural¯ transformation properties for the function
W (as if it really were the classical distribution density on the phase space). We
shall see that such transformations (if they exist) are sure to be nonlinear, at least
in two-dimensional space-time. However there is no doubt that, in their main
features, our conclusions will remain valid also for the four-dimensional theory.

The described possibility (for nonlinearity of the transformation laws for
the wave functions) seems interesting to us due to the following reasons. The
combination of the wave functions constituting the function W gives rise to
the family of trajectories of the Wigner (pseudo)particles quite independently of
the naive ®pseudoprobability¯ interpretation of the Wigner function W (p,x; t).
Every such trajectory generates a continuous sequence of some events in the
space-time with any number of dimensions. If to return to four-dimensional re-
ality, the four-dimensional coordinates describing these events must, in any case,
be transformed (under a change of the reference frame) in agreement with the
standard Einstein formulas no matter if the ®straight-forward¯ Wigner interpre-
tation makes any sense or not (if the combination W (p,x; t), in principle, can
be measured experimentally). Suppose that such nonlinear transformations can
seriously compete with the usual linear transformations. In this case they have
a chance to play an important, and probably a destructive role in the standard
quantum ˇeld theory. In particular, the creation and annihilation operators a+(p)
and a(p) entering the standard scalar ˇeld

ϕ(x) =
1√

2(2π)3

∫
dk
ω(k)

[
a+(k)eiω(k)x0−ikx + a(k)e−iω(k)x0+ikx

]
will change (so far, I don' know how) their transformation properties. In this
case, will ϕ(x) remain scalar? If not, which object will get the role of the scalar
ˇeld? I would like to discuss this and other dissident questions in subsequent
publications.

From now on let us be conˇned to the two-dimensional Minkovski space. In
this case (see [2]) the Wigner function can be written as follows:

W (p, x, t) = W (mshγ, x, t) =
m

2πchγ

∫
dγ1 dγ2chγ1chγ2

×δ
(
γ − γ1 + γ2

2

)
Ψ∗

γ1,x,tΨγ2,x,t. (8)

Here, we changed the momenta variables p, p1, and p2 into the hyperbolic angles
γ, γ1, and γ2:
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mshγ = p, mshγ1 = p1, mshγ2 = p2.

Due to the fact that now the vectors p, p1, p2 and x become one-dimensional
they are denoted as p, p1, p2, and q, respectively. In (8) the following notations
were also used

Ψγ,x,t = Ψγe
−itmchγ+ixmshγ , (9)

and

Ψγ ≡ Ψ(mshγ). (10)

In what follows we set m = 1 and denote W (p, 0, 0) like Wγ . We introduce
also the Fourier-transforms related to all these functions. Namely,

W̃ (ξ) =
∫
dγ chγWγe

iγξ,

Ψ̃(ξ) =
∫
dγ chγΨγe

iγξ. (11)

Next we calculate W̃ (ξ) and due to (12) arrive at the equation

W̃ (ξ) =
1
2π

Ψ̃∗
(
− ξ

2

)
Ψ̃

(
ξ

2

)
. (12)

Now we consider an inˇnitely small Lorentz transformation characterized
by a (small) hyperbolic angle γ0. Let us call the result of the corresponding
transformation of the initial Wigner ensemble to be ®boosting¯ of the latter. It is
not difˇcult to ˇnd out that the Lorentz-invariance of the classical evolution of
Wigner pseudoparticles implies that the ®boosted¯ ensemble should correspond
to a new Wigner function W ′(p, x, 0):

W (p, x, 0) →W ′(p, x, 0) = W (p′, x′), (13)

where

p′ = p− ω(p)γ0, (14)

x′ = x

[
1 +

p

ω(p)
γ0

]
. (15)

In order to guess how the transformation law (with respect to Lorentz boosts)
for the wave functions ψ(p) looks like let us use the formulas (13), (14) and (15)
ˇxing the conditions of the Lorentz-invariance for the Wigner function. Here
our speculations will be based only on partial information contained in relations
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(13)Ä(15). Namely, let us now use these relations only for x = 0. One ˇnds for
inˇnitely small γ0:

W (p, 0; 0) → W ′(p, 0; 0) = W (p′, 0; 0), (16)

where

p′ = p− γ0ω(p) = shγ − γ0 ≈ sh(γ − γ0), (17)

and, for sure, in the right-hand side of (17) one has to keep only the terms of
the ˇrst order with respect to γ0. For the function W̃ (ξ) (given in (15)) the
transformation (13) takes the form

W̃ (ξ) → W̃ ′(ξ) = W (ξ) + iξγ0W̃ (ξ) + γ0

∫
dγ eiξγWγ(shγ) (18)

= W̃ (ξ)[1 + iγ0ξ] + γ0

∫
dη∆(ξ − η)W̃ (η), (19)

where ∆(ξ) is the Fourier-transform (in the sense of distributions) of the func-
tion (thγ):

∆(ξ) =
∫
dγ

2π
(thγ) eiξγ . (20)

Now let us use the relation (12) in order to ˇnd the relation between the
initial wave function Ψ̃(ξ) and the transformed wave function Ψ̃′(ξ). We claim
that the ®condition (13) of the Lorentz-invariance¯ of the Wigner function W̃ (ξ)
implies that the wave function Ψ̃(ξ) is transformed according to the law

Ψ̃(ξ) → Ψ̃′(ξ) = Ψ̃(ξ) + iγ0ξΨ̃(ξ) (21)

+ γ0

∫
dη∆(2ξ − 2η)

Ψ̃∗(−η)Ψ̃(η)
Ψ̃∗(−ξ)

+ γ0A(ξ)Ψ̃(ξ), (22)

where A(ξ) is an arbitrary function, satisfying the condition

A∗(−ξ) = −A(ξ).

Thus we came to the indication that, may be, the transformations of the
momentum wave functions ψ(p) (used, in particular, to construct the Fock space)
are realized by nonlinear operators. The possible class of such transformations is
given (inˇnitesimally) by the formula (20), which is valid, literally, only on the
dense set of the Hilbert space consisting of functions Ψ̃(ξ) that have no zeroes
on the real axis.

Of course, one should try to take into account the complete condition of the
Lorentz-invariance for the Wigner function beyond the plane x = 0. This is sure
to impose additional restrictions on the possible functions A(ξ) entering (20). May
be, choosing the appropriate function A(ξ), one can manage that the nonlinear
operation (20) will conserve the Hilbert norm of the function ψ(p).
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