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On the basis of general space-time and crossing symmetry, a general analytic structure for am-
plitudes describing spin-particle binary reactions is considered. Using knowledge about the kinematic
structure of helicity amplitudes in the dynamic amplitude approach we can get: dispersion relations for
helicity amplitudes; low-energy theorems; sum rules; model-independent sum-rule type inequalities
for observable quantities and some asymptotic relations between polarization parameters. In this short
paper we will consider only dispersion relations for each individual helicity amplitudes describing any
elastic processes.

1. INTRODUCTION

A nice analytic structure of the scattering amplitude can be seen from dis-
persion relations. Dispersion relations for pion-nuclon scattering for ˇxed t were
ˇrst proved by Nikolai Nikolaevich Bogoliubov in axiomatic approach to quantum
ˇeld theory. This famous work was presented at the Siettle conference in 1956
(see [1]). In the framework of the so-called S-matrix approach [2], dispersion
relations are postulated Å they are considered as basis of theory.

For real binary processes with particles of nonzero spins, analytic structures
of amplitudes are deˇned by spin-kinematics (they give us kinematic singularities)
and general properties deˇned by the unitarity condition (dynamic singularities).

On the basis of general space-time and crossing symmetry, a general analytic
structure for amplitudes describing spin-particle binary reactions is considered.
Using knowledge about the kinematic structure of helicity amplitudes in the dy-
namic amplitude approach we can get: dispersion relations for helicity amplitudes;
low-energy theorems; sum rules; model-independent sum-rule type inequalities for
observable quantities and some asymptotic relations between polarization para-
meters. In this short paper we will consider only dispersion relations for each
individual helicity amplitudes describing any elastic processes.

2. SYMMETRY AND SPIN PARTICLES

Due to the symmetry in particle physics (quantum ˇeld theory), we have a
Lagrangian of a deˇnite form that depends on a certain number of masses and



80 CHAVLEISHVILI M.P.

interaction constants. This is in sharp contrast with quantum mechanics where
interactions are considered as arbitrary functions (potentials) for every pair of
particles. The symmetry does not admit arbitrary functions.

Today we have the following succession:

Symmetry → group → particle interaction.

Besides the Lagrangian approach, in particle physics there exists a problem
that has its own history: the problem of direct investigation of processes with
elementary particles, based on the general principles and independent of the
explicit form of Lagrangian. This general principles are: symmetry, causality and
unitarity.

Analytic properties of the amplitudes of certain particle reaction are connected
with causality and unitarity, and properly deˇned amplitudes obey dispersion
relations. Dispersion relations for invariant amplitudes of pion-nucleon interaction
were given in [1].

In studying analytic properties of amplitudes, we have two types of singular-
ities: dynamic singularities connected with unitarity and kinematic singularities
connected with spin.

3. SPIN AND PARTICLE REACTIONS

Most of the particles have a nonzero spin. We are going to consider binary
reactions with particles of arbitrary spins. If we consider reactions with particles
with spin

s1 + s2 → s3 + s4, (1)

we have N = (2s1 + 1)(2s2 + 1)(2s3 + 1)(2s4 + 1) functions to describe the
process, and we must choose the optimal set of these functions. The spin-particle
reactions are convenient to describe in the helicity amplitude formalism [3].
Helicity amplitudes fλ3,λ4;λ1,λ2(s, t) have a clear physical meaning, observables
are expressed by them in a simple way. Helicity amplitudes contain all the
information about the considered process. Helicity amplitudes have kinematic
singularities independent of interactions.

Scattering of spinless particles is described by one amplitude. Considering
this amplitude as a function of invariant variables, we have the function A(s, t).
This amplitude has some singularities. They are called the dynamic singularities.

For spin-particles, the process is described by several functions, several he-
licity amplitudes. And they have additional, so-called kinematic, singularities. So
helicity amplitudes do not fulˇl simple dispersion relations. It is necessary to ˇnd
and separate kinematic singularities. So, helicity amplitudes are expressed via a
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set of other amplitudes without kinematic singularities. For a lowest spin it is
convenient to introduce invariant amplitudes.

Let us consider the simplest nontrivial reaction: π-N scattering, elastic scat-
tering of a spin-zero particle with the mass µ on the spin-1/2 particle of mass
m. Using the Dirac equation one can ˇnd the following connection between the
helicity and invariant amplitudes (in the standard notation):

fs
0,λ4;0,λ2

(s, t) = ūλ4(p4){A(s, t) + Q̂B(s, t)}uλ2(p2). (2)

Here A(s, t) and B(s, t) are invariant amplitudes. Properly deˇned invariant
amplitudes have no kinematic singularities.

For the general case of scattering of particles with spins si we have relations
of the following type [4]:

fλ3λ4,λ1,λ2(s, t) =
N∑

n=1

an
λ3λ4,λ1,λ2

(s, t)An(s, t). (3)

Kinematic singularities of fλ3λ4,λ1,λ2(s, t) are contained in the coefˇcient func-
tions an(s, t).

This procedure is nice for low spins. It is difˇcult to construct such an
expansion for high spins; for all si = 3/2, N = 256 and for si = 11/2,
N � 20000. Besides, the main difˇculty is to ˇnd a decomposition of that type
so that coefˇcients of invariant amplitudes do not contain ®secret singularities¯
rather than in dimensions. So, in describing the Compton effect for several years
people used a decomposition suggested in [5], but then it appeared that those
invariant amplitudes had additional singularities, and later a more complicated
decomposition [6] was suggested.

Besides technical difˇculties for spins larger than 1, a nontrivial question of
uniqueness of that decomposition arises, and since for higher spins the invari-
ant amplitude decomposition is not unique, ®secret¯ singularities, additional and
noncontrollable kinematic constraints appear.

There exists another way based on symmetry principles, and it uses repre-
sentations of a rotation group Å Wigner's d-functions. If we use d-functions in
the s-channel, then use d-functions in the t-channel, and ˇnally connect channels
also by d-functions, we can get a result much more convenient than (3).

4. ANALYTIC PROPERTIES OF AMPLITUDES:
SEPARATION OF SPIN-KINEMATICS AND DYNAMICS

A lot of people worked in this direction by considering spin-kinematics and
decomposition of helicity amplitudes in terms of other sets of amplitudes [4Ä6].
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Combining some approaches and modifying others we suggest a new variant of
the formalism that has all advantages of different approaches, differs from all of
them, and is based on the symmetry and conservation laws, and is general and
simple.

Symmetry imposes restrictions on amplitudes. When one has additional
symmetries in deˇnite directions, the number of independent amplitudes in such
®symmetric directions¯ is reduced. Such situations occur for forward and back-
ward scattering.

Consider the reaction in the s-channel described by the helicity amplitudes.
Introduce the quantities λ = λ1 − λ2 and µ = λ3 − λ4. Two particles in the
centre-of-mass system are moving in the opposite directions, and thus, λ and µ are
projections of the total spin in the directions of motion prior to and after collision.
Owing to the conservation of the projection of the total angular momentum, the
amplitudes in the forward direction, θs → 0, should vanish in all cases except
for λ = µ. Analogously, for backward scattering, θs → π, the amplitudes should
vanish for the same reasons in all cases except for λ = −µ.

For forward scattering we have

f forward
λ3λ4,λ1,λ2

=

{
fλ3λ4,λ1,λ2 , when λ = µ,

0, when λ �= µ,
(4)

whereas for backward scattering

fbackward
λ3λ4,λ1,λ2

=

{
fλ3λ4,λ1,λ2 , when λ = −µ,

0, when λ �= −µ.
(5)

Two questions arise: Can the helicity amplitudes be parametrized so as to
satisfy the conditions (4) and (5) automatically? Can kinematic singularities of
helicity amplitudes be found and separated in a simple way? The answer to both
questions is ®yes¯.

For the spinless case we have the decomposition via the Legendre polynomials
depending on cos θ. By deˇnition, in the spinless case we have no kinematic
singularities.

In the nonzero spin case, helicity amplitudes have decomposition via Wigner
d-functions of rotation. Helicity amplitudes are splitted into two parts; one part
is deˇned by the symmetry properties and enters into the functions dJ

λµ(cos θ)
[7] that make the conservation laws of the angular momentum valid, and the
other part has a dynamic nature and enters into the partial helicity amplitudes
fJ

λ3λ4,λ1,λ2
(s).

Kinematic singularities in d-functions do not depend on J , and we can sepa-
rate the common singular factors. The rest sum in the decomposition contains the
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decomposition over polynomials in the t-variable. So, we can deˇn the so-called
dispersion amplitudes [8] for any binary processes:

fs
λ3λ4,λ1,λ2

(s, t) = A|λ−µ|B|λ+µ|f̄s
λ3λ4,λ1,λ2

(s, t), (6)

here

A =
√

L2 − a2

(m1 + m2)(m3 + m4)
, B =

√
L2 + a2

(m1 + m2)(m3 + m4)
,

L2 = {[s − (m1 + m2)][s − (m1 + m2)]
[s − (m3 + m4)][s − (m3 + m4)]}1/2,

a2 = 2st + s2 − s
∑

m2
k + (m2

1 − m2
2)(m

2
3 − m2

4).

The mass factors in the denominators make A and B dimensionless without
introducing additional singularities in the variable s . Under this parametrization,
the conditions (4) and (5) are fulˇlled automatically. All kinematic singularities
in variable t are separated explicitly, and no false singularities in s are introduced.
The amplitudes f̄s

λ3λ4,λ1,λ2
(s, t) suit well for studying the analytic properties of

the amplitudes at ˇxed s, because they obey dispersion relations. Therefore,
we call them the dispersion amplitudes [12]. They still may have the kinematic
singularities in the variable s.

Dispersion amplitudes remind reduced amplitudes [10], but they have no
additional s-variable false singularities.

For t-channel processes the corresponding dispersion amplitudes are free from
kinematic singularities in the variable s. Expressing the dispersion amplitudes of
the s-channel in terms of the dispersion amplitudes on the annihilation channel,
we obtain the connection between the amplitudes having kinematic singularities
in s with the amplitudes that are free from them. So, kinematic singularities of
the s-channel helicity amplitudes are in crossing coefˇcients in crossing relations
between s- and t-channel amplitudes. The number of coefˇcients is restricted,
and we do know the singularities of these coefˇcients; indeed these coefˇcients
are Wigner's functions, and we do know their singularities!

So, using crossing symmetry we can ˇnd kinematic singularities of the s-
channel dispersion amplitudes also in the variable s; separating these singularities
we determine a new set of functions describing binary processes Å dynamic
amplitudes. Dynamic amplitudes for elastic processes (m + µ −→ m + µ) have
the following relations with the helicity amplitudes [11]:
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fλ3λ4,λ1,λ2(s, t) =
( √

−t

m + µ

)−|λ−µ|(√
L2 + st

(m + µ)2

)−|λ+µ|
×

×
(

L

(m + µ)2

)−2(s1+s2)

Dλ3λ4,λ1,λ2(s, t). (7)

Dynamic amplitudes are in fact modiˇed regularized helicity amplitudes, they
differ from the reduced amplitudes by dimensions: all dynamic amplitudes have
the same dimensions, whereas the dimensions of regularized amplitudes depend
on spins and helicities [10].

5. ANALYTIC PROPERTIES AND DISPERSION RELATIONS
FOR INDIVIDUAL HELICITY AMPLITUDES

Let us consider dispersion relations with ˇxed t, a certain number of them
was strongly proved for deˇnite regions of t, and which are used much more
frequently, then relations with ˇxed s. For getting such dispersion relations one
has to have amplitudes free of kinematic singularities in s and u variables. Such
functions are: dynamic amplitudes, correctly deˇned invariant amplitudes, and
t-channel dispersion amplitudes. Of course, considering process in the centre-of-
mass system of s-channel it is convenient to use s-channel amplitudes.

Dynamic amplitudes when t is ˇxed fulˇl the following dispersion relations:

Dh(s, t) = DB
h (s, t) +

1
π

∞∫
s0

ds
′

s′ − s

{
Dh(s

′
, t)

}s

+
1
π

∞∫
u0

du
′

u′ − u

{
Dh(u

′
, t)

}u

.

(8)

One can easily add corresponding subtraction terms, if they are necessary.
Taking into account a simple, one-to-one correspondence between dynamic

and helicity amplitudes, we get dispersion relations for each individual helicity
amplitudes for any spin-particle elastic scattering:

fh(s, t) = fB
h (s, t) + Kh(s, t) ×

×
{

1
π

∞∫
s0

ds
′

s′ − s

{ fh(s
′
, t)

Kh(s′ , t)

}s

+
1
π

∞∫
u0

du
′

u′ − u

{ fh(u
′
, t)

Kh(u′ , t)

}u
}

. (9)

In invariant amplitudes it is possible to get dispersion relations for combina-
tions of helicity amplitudes if the connection matrix between helicity and invariant
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amplitudes is known. But they are known only for small values of spins, and
even in this case they are very complicated.

6. OTHER APPLICATIONS OF DYNAMIC AMPLITUDES

The spin kinematics allows one to obtain the low-energy theorems for photon-
hadron processes [12] and gravitino scattering on a spin-0 target. For the latter
process at low energies, the helicity amplitudes up to 0(E3) are determined
by their t-channel Born terms with the photon exchange [13]. The dynamic
amplitudes, or more simply the t-channel dispersion amplitudes, can be used to
prove model-independent dispersion inequalities for the Compton effect on a pion
and a nucleon target, including the case of the polarized photon scattering [14].

In the framework of the ®dynamic amplitude¯ approach, obligatory kinematic
factors arise in the expressions of observables. These spin structures for high en-
ergies give a small parameter that orders the contributions of helicity amplitudes
to observables. Such a ®kinematic hierarchy¯ predicts a simple connection be-
tween asymmetry parameters and even numerical values for them [15] for pp
elastic scattering at high energies and a large ˇxed angle (90◦).
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