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The functional integral method was applied for the calculation of the asymptotic behaviour of
the correlation functions for the repulsive Bose gas in a paraboloidal trap. Results are reported here
for the two-point correlation functions below the critical temperatures in d = 3, 2 and 1 dimensions.
Only for d = 3 correlations are long range. The two-dimensional condensate is marginally stable in
the sense that correlations decay by a power law.

The observation of Bose condensation in vapours of alkali atoms [1Ä3] held in
magneto-optical traps, and recently [4] in atomic hydrogen, has stimulated enor-
mous interest, both experimentally and theoretically, in this phenomenon. The
natural starting point for studying the behaviour of such systems is the theory
of the dilute weakly interacting Bose gas which was originated by Bogoliubov's
1947 paper [5]. Much of the theoretical work has been concerned with solutions
of the GrossÄPitaevskii (GP) equation in the presence of the paraboloidal potential
describing the trap [6Ä8]. Without the trap this equation is also called the Non-
linear Schréodinger (NLS) equation [9] which, in one space dimension (d = 1),
can be solved exactly at both classical and quantum level including [10, 11]
calculation of the ˇnite-temperature correlation functions for the repulsive case
(coupling constant g > 0). For d = 1 as well as for the higher dimensions,
the ˇnite-temperature properties of the quantum NLS equation have otherwise
been extensively analyzed [12] by functional integral methods. This way it is
established, e.g., that without any trap no long-range correlations arise for d < 3.
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Thus far it has remained an open question whether the presence of a trap
potential will induce long-range order for d < 3. We'll establish here that, even
in the presence of a paraboloidal trap, there is long-range order only for d = 3.
To this end we have applied the previous [12, 13] functional integral methods
to the case when a trap is included. An important new aspect is then that the
trap breaks translational invariance; and this introduces wholly new many-body
theoretical problems. Thus, rather than using periodic boundary conditions (b.c.s),
we must expect to impose vanishing b.c.s at inˇnity, and so to work at ®zero
density¯ [14].

The functional integral method provides a framework within which, in prin-
ciple, all thermodynamic properties of the trapped bose gas can be determined.
The main result reported here is the calculation of the asymptotic behaviour of the
two-point correlation functions for trapped Bose gases at ˇnite temperature for
each of d = 1, 2, 3. Because there is no translational invariance these correlation
functions no longer depend solely on the difference of two position vectors. It
can still be concluded that long-range order arises, for T < Tc, in d = 3, and the
ˇrst-order coherence function asymptotically approaches unity. In d = 2 and for
T < Tc the condensate is marginally stable for correlations decay algebraically,
namely as a power law. In d = 1 correlations decay exponentially for T < Tc,
and we have not yet analyzed any T = 0 limit. For T > Tc there is a Gaussian
decay in all dimensions.

One can write the ˇnite-temperature correlation function G(r1, r2) ≡
〈Tτ ψ̂(r1, τ1)ψ̂†(r2, τ2)〉 (where Tτ means a thermal ordering in τ ) as the ra-
tio of two functional integrals,

G(r1, r2) = Z−1

∫
eSψ(r1, τ1)ψ̄(r2, τ2)DψDψ̄, (1)

in which Z is a partition function Z =
∫
eSDψDψ̄. The action S is

S =
∫ β

0

dτ

∫
ddr

{
ψ̄(r, τ)Kψ(r, τ) − g

2
ψ̄(r, τ)ψ̄(r, τ)ψ(r, τ)ψ(r, τ)

}
. (2)

The boundary conditions are vanishing at inˇnity for r and periodic, period
β = (kBT )−1, for τ . The action S yields the quantum many-body problem at
T > 0 for a gas with repulsive pairwise δ-function interactions of strength g in

Rd. The differential operator K = ∂τ −H , and H = − �
2

2m
∇2 + V (r) − µ; µ

is the chemical potential and V (r) =
m

2
Ω2r2 is the paraboloidal trap potential,

taken with spherical symmetry for simplicity.
For T < Tc we shall put ψ(r, τ) = ψo(r) + ψ1(r, τ) [7, 12,15] and likewise

for ψ̄: where the condensate variable ψo(r) will not depend on τ , and ψ1 is
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that due to thermal _uctuations. In this Letter we shall only consider terms in S
up to quadratic (bilinear) in ψ1, ψ̄1 and can therefore explicitly integrate out the
thermal _uctuations. This way we arrive at Seff [ψo, ψ̄o] = ln

∫
eSDψ1Dψ̄1, and

Seff [ψo, ψ̄o] + βFnc(µ)

=β

∫
ddr{ψ̄o(r)[

�
2

2m
∇2+µ−Ṽ (r)]ψo(r)−

g

2
ψ̄o(r)ψ̄o(r)ψo(r)ψo(r)}. (3)

In Seff , Ṽ (r) = V (r) + 2gρnc(r) is a renormalized trap potential, while ρnc(r)
is the density proˇle of the thermal particles in the ideal gas approximation Å
as is consistent with terms only quadratic in ψ1, ψ̄1 retained. More precisely,
at this level of approximation (HartreeÄFockÄBogoliubov) this density proˇle
derives from the fundamental solution of the d + 1-dimensional operator K:
KG(r, τ ; r′, τ ′) = −δ(r− r′)δ(τ − τ ′), and Green's function G can be expressed
in the form

G(r, τ ; r′, τ ′) =
∑
n

un(r)un(r′)
eβEn − 1

eEn(τ−τ ′), τ > τ ′. (4)

For d = 3 the vectors n = (n1, n2, n3), and the un(r) and En are the eigenfunc-
tions and eigenenergies, respectively, of the d = 3 harmonic oscillator Hamil-
tonian H ; and similarly for d = 1, 2. Then ρnc(r) = G′(r, τ ; r, τ), where prime
means n = (0, 0, 0) is omitted. The free energy of the thermal particles Fnc(µ)
is simply Fnc(µ) = β−1

∑′

n ln(1 − e−βEn).
At this point it is possible to calculate the actual temperatures Tc. The

leading, i.e., zeroth order term is found by replacing ρnc(r) by a constant ρnc(0):
this deˇnes the renormalized chemical potential Λ = µ − 2gρnc(0), and Λ = 0
determines Tc [6]. At ˇrst order in g we can add the appropriate terms arising in
Seff . Beyond this we also need to include _uctuations ψ1 to an order higher than
quadratic.

The free energy F of the trapped Bose gas is calculated from −βF (µ) =
ln

∫
eSeffDψ0Dψ̄0. By the steepest descents for large β (low T ) we ˇnd that

F (µ) = Fnc(µ) − g

2

∫
ddr | Φ(r) |4 . (5)

In Eq.(5) the ˇelds Φ, Φ̄ are the quasi-classical ˇelds satisfying the extremum
condition δ(Seff [Φ, Φ̄]) = 0. This condition is equivalent to the stationary GrossÄ
Pitaevskii equations

�
2

2m
∇2Φ(r) + (µ− Ṽ (r))Φ(r) − g | Φ(r) |2 Φ(r) = 0, (6)
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and the similar equation for Φ̄. At this quasi-classical approximation we al-
ready ˇnd through the presence of Ṽ (r) the HartreeÄFockÄBogoliubov (HFB)
corrections to the GrossÄPitaevskii equation introduced earlier [6].

We turn next to the calculation of the ˇnite-temperature correlation function,
Eq. (1). By integrating out the thermal _uctuations included up to terms quadratic
in ψ1,ψ̄1 we ˇnd that

G(r1, r2) 

∫
eSeffψo(r1)ψ̄o(r2)DψoDψ̄o∫

eSeffDψoDψ̄o
≡ C(r1, r2). (7)

At low enough temperatures these remaining functional integrals can be evaluated
by the steepest descents where again we work consistently at the HFB level. At
this level the correlation functions can be expressed in the form

C(r1, r2) 
 e−Seff [Φ0,Φ̄0]+Seff [Φ1,Φ̄1]+ln Φ1(r1)Φ̄1(r2), (8)

and the ˇelds Φ0, Φ̄0 satisfy Eq. (6). Evidently the ˇelds Φ1, Φ̄1 are determined
by δ(Seff [Φ1, Φ̄1]+ lnΦ1(r1)Φ̄1(r2)) = 0, and this variational equation also leads
to a pair of equations with additional sources from the ln(Φ1Φ̄1). This pair of
equations is

− �
2

2m
∇2Φ1(r) − (µ− Ṽ (r))Φ1(r) + gΦ2

1(r)Φ̄1(r) =
δ(r − r2)
βΦ̄1(r2)

,

− �
2

2m
∇2Φ̄1(r) − (µ− Ṽ (r))Φ̄1(r) + gΦ̄2

1(r)Φ1(r) =
δ(r − r1)
βΦ1(r1)

. (9)

For simplicity, we shall solve them only at the Thomas-Fermi approximation:
this is expected to be valid at low enough temperatures [6Ä8]. The stationary
GrossÄPitaevskii equation Eq. (6) is now reduced to a simple algebraic equation
and we then easily ˇnd the expected inverted paraboloidal density proˇle which
is

ρ0(r) ≡ Φ0(r)Φ̄0(r) =
1
g
(µ− Ṽ (r))Θ(µ− Ṽ (r)), (10)

in which Θ is the Heaviside step function. Evidently ρ0(r) can be interpreted as
the condensate density expressed in terms of order parameters Φ0, Φ̄0. The radius
of the condensate Rc can now be determined from the condition µ− Ṽ (Rc) = 0.

The solution of Eqs. (9) is more complicated. Notice ˇrst that the ˇelds
Φ1, Φ̄1, appearing in these equations will be complex valued ˇelds in general. But
they are two independent ˇelds with independent variations. We can therefore
seek ˇrst of all solutions in the form

Φ1(r) =
√

ρ(r)eφ(r), Φ̄1(r) =
√

ρ(r)e−φ(r),
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where φ(r) can be complex valued, but will be found bellow to describe the
real contribution to the correlation functions of the complex phases of the wave
functions. We can furthermore assume that, away from the boundaries, ρ(r) is
a slowly varying function of position r so that ∇2√ρ and ∇√

ρ are both small
and can be neglected. This will not be true of (∇φ)2 or ρ∇2φ, so that Eqs. (9)
become

gρ(r) − (µ− Ṽ (r)) − �
2

2m
(∇φ(r))2 = 0, (11)

�
2

2m
∇2φ(r) =

1
2βρ(r1)

δ(r − r1) −
1

2βρ(r2)
δ(r − r2). (12)

The ˇrst of these equations Eq. (11) has the solution ρ(r) = ρ0(r) +
�

2

2mg
(∇φ)2.

Within the ThomasÄFermi approximation, ρ(r) in Eq. (12) is then ρ0(r). We
then express the solution of this equation in terms of a function f(r, r′):

φ(r; r1, r2) = f(r, r1) − f(r, r2).

The functional form of f(r, r′) depends on the dimensionality of the system. We
ˇnd that

f(r, r′) = − a

2πβρ0(r′)
1
R

(d = 3), (13)

f(r, r′) =
a

πβρ0(r′)
lnR (d = 2), (14)

f(r, r′) =
a

βρ0(r′)
R (d = 1) (15)

with a ≡ m

2�2
and R ≡| r− r′ |. It is already clear that the correlation functions

can no longer depend on R =| r − r′ | alone: they depend also on both r1 and
r2 separately, consistent with the breakdown of translational invariance induced
by the trap.

We consider ˇrst the correlation function in d = 3. In this case the points
r = r1 and r = r2 in φ(r; r1, r2) are singular and introduce a divergence problem.
This difˇculty can be avoided ˇrst of all by considering a ˇrst-order ®coherence
function¯ G(1)(r1, r2) (compare, e.g., [16,17]) which we deˇne here as

G(1)(r1, r2) =
G(r1, r2)

〈ψ(r1, τ1)〉〈ψ†(r2, τ2)〉

 C(r1, r2)

〈ψo(r1)〉〈ψ̄o(r2)〉
, (16)
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for identically the same singularities appear [12] in the direct calculation of the
order parameters 〈ψ(r, τ)〉, 〈ψ†(r, τ)〉. Notice that in Eq. (16) we have already
replaced 〈ψ〉, the order parameter of the trapped Bose gas, by 〈ψo〉 since average
over thermal _uctuations vanishes: 〈ψ1〉 = 0. For T < Tc, when the order
parameter is nonzero, we ˇnd that

G(1)(r1, r2) 
 e−
1
2 (f(r1,r2)+f(r2,r1)) (17)

= exp{ a

4πβρ0(r1, r2)
1
R
},

where ρ−1
0 (r1, r2) ≡ ρ−1

0 (r1) + ρ−1
0 (r2). Evidently that G(1)(r1, r2) → 1 for

large R, thus indicating long-range order and long-range coherence, and there
are thus features of a coherent state in this sense. The coherence length is given

by
a

4πβρ0(r1, r2)
and depends on both r1 and r2 separately. Notice that we

have assumed r1 and r2 are not close to the boundaries of the condensate so that
always ρ0(r) > 0 in the above expression.

Let us consider the uniform Bose gas (V (r) = 0) and study the long distance
(R → ∞) behaviour of the correlation function:

G(1)(r1, r2) − 1 
 m

4π�2β

1
| r1 − r2 | .

Going over to the momentum representation one can see that for the small tem-
peratures the Fourier transform of this function is divergent at small momenta as
| k |−2 thus forbidding transitions for a lower symmetry phase at d = 1, 2 which
is the famous Bogoliubov's result [18].

For d = 2 the singularity in f(r, r′) is logarithmic and the divergence is
renormalizable. For d = 1 the function f is nonsingular. Thus we can directly
evaluate the correlation functions, and ˇnd that

G(r1, r2) 

√

ρ0(r1)ρ0(r2) exp{− a

2πβρ0(r1, r2)
lnR} , (d = 2); (18)

G(r1, r2) 

√

ρ0(r1)ρ0(r2) exp{− a

2βρ0(r1, r2)
R} , (d = 1). (19)

It is obvious that these correlation functions both vanish for large R and that there
is no long-range order in d = 1 or in d = 2. In the case d = 2 the condensate
is marginally stable in that correlations decay algebraically, namely by a power
law. The exponent of this power-law is proportional to T so that at very low
temperatures, correlations may thus prevail over almost macroscopic distances.
In real magneto-optical traps for d = 3 we still expect the condensate to be stable
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even for extremely anisotropic trap potentials, as in, e.g., the experiments [4] on
atomic hydrogen. The three correlation functions (Eqs. (17Ä19)) coincide with
those obtained under translational invariance without the trap to the extent that
for Ω → 0, V (r) →0, and we can expect 2gρnc(r) →Const= 2gρnc.

Thus in summary we have demonstrated that the functional integration tech-
niques can be extended to Bose gases in a conˇning trap potential, and form a
convenient framework in which to consider the thermal properties of the conden-
sate. We have shown in particular that true long-range order only arises in d = 3.
In d = 2 the condensate is only marginally stable, but the related power-law decay
of correlations becomes increasingly weak as temperature decreases. We expect
to deˇne multipoint correlation functions similarly to Eq. (16) and ˇnd these ∼ 1
for large separations of points.
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