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We consider systems of spatially distributed and harmonically coupled nonlinear constituents
driven by a Gaussian white noise. In contrast to the single constituent one ˇnds noise-induced
nonequilibrium phase transitions connected with a breaking of ergodicity in the coupled inˇnite array
depending on the control parameter and the strength of the noise and the spatial coupling. We compare
the results for global coupling with those for nearest neighbor coupling on cubic lattices. The globally
coupled case allows for analytical results and can be considered as a mean-ˇeld approximation for
the case of nearest neighbor coupling. We discuss ˇrst a model which exhibits both continuous and
discontinuous phase transitions, the latter one is connected with a hard onset of the order parameter.
In a second model we consider a coupling which favours a coherent behaviour of the individual
systems (ferromagnetic coupling) and also an antiferromagnetic coupling.

1. INTRODUCTION

Nonlinear systems exposed to external noise are investigated in the two past
decades with growing interest both theoretically and in experiments [1].

Zero-dimensional models described by stochastic ordinary differential equa-
tions may exhibit bifurcations of the maximum of the stationary probability den-
sity for a spatially homogeneous order parameter. Models with spatially dis-
tributed nonlinear constituents subject to external noise may show noise induced
nonequilibrium phase transitions.

In this paper we deal with systems of identical nonlinear constituents where
each one is coupled in a harmonic way to any other one (global coupling) or,
alternatively, to the nearest neighbors on a cubic lattice which are described by
ordinary stochastic differential equations. The case of global coupling is by far
easier to investigate and allows even for explicit analytical results [2Ä4] which
may be considered as mean ˇeld approximation for the case of nearest neighbor
coupling. Shiino [2] extended the concept of phase transitions to nonequilibrium
phenomena in systems of globally coupled nonlinear oscillators subject to addi-
tive noise. More recently, Van den Broeck et al. [4] demonstrated the appearance
of a second order noise induced phase transition in a model with multiplicative
and additive noise which shows no transitions in the absence of noise. In [5] we
constructed a model which exhibits a ˇrst order noise induced phase transition
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connected with a hard onset of the coexisting ergodic components of the sys-
tem. Varying parameters of the system the order of the phase transition may be
changed similar to changes from supercritical to subcritical bifurcations observed
previously in zero dimensional models [6].

We consider a class of models where the dynamics of the individual con-
stituents xi at the lattice sites i is governed by a system of stochastic ordinary
differential equations in the Stratonovich sense

ẋi = f(xi) + g(xi) ξi −
D

N

∑
j∈N (i)

(xi − xj) , (1)

where N (i) denotes the set of involved neighbors of site i and N = #N (i) is
equal to L−1 in the case of global coupling and to 2d in the case of nearest neigh-
bor coupling. The parameter D is the strength of the spatial interactions. ξi(t)
is a zero mean spatially uncorrelated Gaussian white noise with autocorrelation
function 〈

ξi(t) ξj(t′)
〉
= σ2δijδ(t − t′) , (2)

and σ2 is the noise strength.
The (reduced) stationary probability density Ps(xi) fulˇlls the FokkerÄPlanck

equation [4]

0=
∂

∂xi

(
−f(xi)+

D

N

∑
j∈N (i)

(xi−〈xj |xi〉)+
σ2

2
g(xi)

∂

∂xi
g(xi)

)
Ps(xi) , (3)

where 〈xj |xi〉 =
∫

dxjxjPs(xj |xi) denotes the steady state conditional average
of xj , j ∈ N (i), given xi at site i. For the case of global coupling, Zuctuations
disappear in the average 1/(L − 1)

∑
j∈N (i)〈xj |xi〉 if L → ∞, and 〈xj |xi〉 may

be determined self-consistently.
In Section 2 we discuss the appearance of ˇrst order vs. second order phase

transitions for a special model and in Section 3 we extend the method to treat
spatially inhomogeneous solutions which are favoured by an antiferromagnetic
coupling of the constituents.

2. FIRST VS. SECOND ORDER PHASE TRANSITIONS

Here we consider the case D > 0 which favours a ®ferromagnetic¯ behaviour
of the constituents. Restricting to spatially homogeneous solutions for which
〈xj |xi〉 is independent of lattice site i, 〈xj |xi〉 can be replaced by the steady state
mean value 〈x〉 to be determined self-consistently from

〈x〉 =
∫ ∞

−∞
dxxPs (x, 〈x〉) ≡ F (〈x〉) , (4)
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where Ps (x, 〈x〉) is the formal solution of (3) considering 〈x〉 as a parameter,

Ps(x, 〈x〉) ∝ exp

{
2
σ2

∫ x

0

dy
f(y) − σ2

2 g(y)g′(y) − D(y − 〈x〉)
g2(y)

}
. (5)

Fig. 1. Solution of the self-consistency
equation (4) in typical cases

The solution of the self-consistency
equation 4 is visualized in Figure 1
in different situations typically for con-
tinuous and discontinuous phase tran-
sitions, respectively. In the case of
the dashed line the only solution is
〈x〉 = 0. Typical for a continuous tran-
sition (solid line) are two stable solu-
tions 〈x〉 = ±xs (full circle), 〈x〉 =
0 is unstable. In the discontinuous
case (tightly dotted line) we have a
pair of unstable solutions 〈x〉 = ±xu

(empty circle) and a pair of stable solu-
tions 〈x〉 = ±xs (full circle) besides
the stable solution 〈x〉 = 0. In the
latter case the nontrivial solutions ap-
pear with nonzero value at the criti-

cal value of the control parameter which indicates a ˇrst order nonequilibrium
phase transition. The dash-dotted line shows a typical situation for the system of
coupled Stratonovich models considered in Section 3.

Fig. 2. Phase diagram of model (6) in the
case of global coupling, cf. text

A simple model [5] displaying both
continuous and discontinuous phase tran-
sitions is given by

f(x) = ax + x3 − x5 , g(x) = 1 + x2 .
(6)

In the case of global coupling the station-
ary probability density can be obtained
explicitly.

Figure 2 shows the phase diagram
in the a-D plane for a given strength of
the noise, σ2 = 1. For small D we have
a second order transition (dashed line).
The spatial coupling favours a coherent
behaviour of the constituents, acting thus opposite to the noise. With increasing
coupling strength D the critical value of a is reduced and above a critical strength
of D the ˇrst order transition (solid line) of the model without noise and spatial
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coupling is ®restored¯. The number of ergodic components is three in the shad-
owed region, two in the region above and one in the region below. Hysteresis
appears in the shadowed region.

3. FERROMAGNETIC VS. ANTIFERROMAGNETIC COUPLING

The analytic results for inˇnite systems with global coupling give a very
good idea of the behaviour of ˇnite systems or systems with nearest neighbor
coupling. Figure 3 compares the order parameter obtained by simulation for a 2-
dimensional square lattice of size L = 100× 100 with the results for the globally
coupled model for D = 30. The diamonds denote the average of xi(t) over all
lattice sites and over a time span of order 100 during which no jumps between
the ergodic components occur. The error bars indicate the time average of the
standard deviation. Figures 3,a and b show the order parameter as a function
of the control parameter a (σ2 = 1) and the noise strength σ2 (a = −1.5),
respectively.

Fig. 3. Order parameter 〈x〉 as a function of a and σ2 for a 2-dimensional square lattice
(diamonds) and the globally coupled case (thick solid line)

In this Section we consider a system of coupled Stratonovich models speciˇed
by

f(x) = ax − x3 , g(x) = x . (7)

The stationary probability density in the globally coupled case is easily obtained
from (5) as

Ps(x, 〈x〉s) ∝ |x|2(a−D)/σ2−1exp
{
−

(
x2 + 2D〈x〉s/x

)
/σ2

}
, (8)

provided D〈x〉s/x ≥ 0, otherwise Ps is zero because the above expression is not
normalizable then. Note that 〈x〉s is the spatial average over all involved sites.
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For D > 0 a solution is found where all constituents have the same (statistical
or temporal) average 〈x〉 as it is typical for ferromagnets; in this case we have
〈x〉 = 〈x〉s. Depending on the parameters a, σ, and D one ˇnds continuous
transitions from zero to nonzero values of 〈x〉 determined as solutions of Equation
(4).

For D < 0 an 'antiferromagnetic' solution is preferred. We ˇnd two subsys-
tems labeled by + and − respectively, for which the averages 〈x〉 have opposite
sign. In the globally coupled case they are given by

〈x+〉 =
∫ ∞

0

dxxPs(x, 〈x〉s) = −
∫ 0

−∞
dxxPs(x, 〈x〉s) = −〈x−〉, (9)

where Ps is obtained from (8) by inserting 〈x〉s = (〈x+〉 + 〈x−〉)/2 = 0. For
nearest neighbor coupling on a cubic lattice, the subsystems correspond just to
the two Naeel sublattices.

An antiferromagnetic solution exists also for D > 0. It is less stable than the
ferromagnetic solution in the following sense. For the model with global coupling
we prepared such initial conditions that a fraction λ of the constituents has, say,
positive initial values; and a fraction 1 − λ, negative ones. We then simulated
the dynamics of the system and determined the ˇrst time for which one of the
constituents changed the sign (ˇrst passage time), cf. Figure 4.

Fig. 4. Mean ˇrst passage time as a function of the system size L for globally, ferromag-
netically coupled Stratonovich models. The initial conditions are characterized by λ �= 1/2
in (a) and λ = 1/2 in (b). The lines indicate exponential and linear ˇts, respectively. For
other parameters and discussion see text

We found that for λ �= 1/2, the mean ˇrst passage time (MFPT) decreases
exponentially and the system reaches very fast the ferromagnetic state. For
λ = 1/2 the MFPT increases with the system size L and one expects that it
diverges in the limit N → ∞. However, the antiferromagnetic state is only
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metastable since an additive noise can easily lead to λ �= 1/2 and ˇnally to a
ferromagnetic state.

Figure 4,a shows the MFPT for a system with initial conditions characterized
by λ = 0.4 (parameter values a = 1.5, D = 0.5, σ2 = 0.3) and Figure 4,b the
same for λ = 1/2 (parameter values a = 4, D = 2.5, σ2 = 0.4). The average is
over 103 samples.

A more detailed account on the model discussed in this Section will be
published elsewhere, cf. also [7].
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