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We review several recent results concerning two-dimensional systems which exhibit a transport
induced by a ®one-dimensional¯ perturbation of a homogeneous magnetic ˇeld. The ˇrst concerns
the ®local¯ Iwatsuka model, where a charged particle interacts with a ˇeld which is homogeneous
outside a ˇnite strip and translationally invariant along it: we present two new sufˇcient conditions
for absolute continuity of the spectrum and show that in most cases the number of open spectral gaps
is ˇnite. In the second model the perturbation is a periodic array of point obstacles. In this case the
Landau levels remain to be inˇnitely degenerate eigenvalues, and between them the system has bands
of absolutely continuous spectrum.

1. INTRODUCTION

The purpose of this talk is to present results of two recent papers [7, 8]
investigating transport of a charged particle in the plane due to a perturbation of
a homogeneous magnetic ˇeld. We give a short overview referring to the said
papers for more details, proofs, references, as well as for numerical analysis of
examples.

Magnetic transport and the edge states are since the eighties a standard object
of solid-state physics [11Ä13]. Recently the subject attracted new ®theoretical¯
interest: it was shown that current-carrying states in a halfplane or a more general
domain survive a weak disorder [4, 9, 10, 14] and new sufˇcient conditions were
found for existence of transport induced by a variation of the ˇeld alone [15].



178 EXNER P. ET AL.

Our aim here is to contribute to this development in two directions. First
we shall present a pair of new sufˇcient conditions for the absolute continuity in
the Iwatsuka model. Of them the second one is important being a rather weak
local requirement; this represents a step towards the proof of a conjecture put
forth in [5, Sec. 6.5] which states that any nonzero (translationally invariant) ˇeld
variation spreads the Landau levels into a purely absolutely continuous spectrum.
In addition, we shall show that the number of open gaps is ˇnite here provided
the ˇeld variation has a nonzero mean and we conjecture that this claim holds
generally.

The second topic to address are the edge states: we shall show that they can
exist even if there is no edge. This is illustrated by a simple model in which the
magnetic transport is a purely quantum effect (in the sense that a quantum particle
propagates while its classical counterpart moves on localized circular trajectories,
apart of a zero-measure family of the initial conditions): a charged quantum
particle in the plane exposed to a homogeneous magnetic ˇeld and interacting
with a periodic array of point obstacles described by δ potentials.

2. LOCAL IWATSUKA MODEL

Consider a two-dimensional charged particle interacting with a magnetic ˇeld
perpendicular to the plane. We assume that ˇeld is translationally invariant in the
y-direction, nonzero and constant away of a strip of a width 2a:

(a) the functional form of the ˇeld is B(x, y) = B(x) = B + b(x), where
B > 0 and b is bounded and piecewise continuous with supp b = [−a, a]. With
an abuse of notation, we employ the same symbol for functions on IR and R2 if
they are independent of one variable.

We use the Landau gauge, Ax = 0, Ay(x) = Bx + a(x), with a(x) :=∫ x

0
b(t) dt. We also adopt the natural system of units, 2m = � = c = |e| = 1;

then the Hamiltonian H ≡ H(B, b) of our system is

H = (p + A)2

with the appropriate domain in L2(IR2). Since it commutes with y-translations,
it allows for a standard decomposition [12, Sec. 2] being unitarily equivalent∫ ⊕

H(p)dp with the ˇber space L2(IR) and ˇber operator

H(p) = −∂2
x + (p + xB + a(x))2. (1)

The function a is bounded, so the spectrum of H(p) is purely discrete and consists
of a sequence of eigenvalues εn(p). In the absence of the perturbation b they are
the Landau levels, {(2n + 1)B : n ∈ IN0}. In the perturbed case they belong to
the spectrum too, at least as its accumulation points.
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Lemma 2.1 εn(p) → (2n+1)B as |p| → ∞ for any n ∈ IN0.

To proceed, let us observe ˇrst the following analyticity property.

Lemma 2.2 {H(p) : p ∈ IR ∪ {∞}} is an analytic family of type (A). In partic-
ular, each εn(·) is an analytic function.

Let ψn(·, p) be the eigenfunctions of (1), i.e., H(p)ψn(x, p) = εn(p)ψn(x, p), and
denote fn(x, p) := (p+xB+a(x))ψn(x, p)2. Using then a standard semiclassical
technique [16], we can derive the following estimates.

Lemma 2.3 For any p large enough there is c(p) > 0 such that

5c(p) e−p(x−x0) ≥ fn(x, p) ≥ c(p)
7

e−3p(x−x0)

holds for all −a ≤ x0 ≤ x ≤ a.

With these preliminaries, we were able to prove in [8] the desired result under
one of the following additional assumptions:

(b) b(·) is nonzero and does not change sign in [−a, a],

(c) let a� < ar, where we have put a� := sup{x : b(x) = 0 in (−∞, x)} and
ar := inf{x : b(x) = 0 in (x,∞)}. There exist c0, δ > 0 and m ∈ IN such that
one of the following conditions holds:

|b(x)| ≥ c0(x− a�)m for x ∈ [a�, a� + δ),
|b(x)| ≥ c0(ar − x)m for x ∈ (ar − δ, ar].

Theorem 2.4 Assume (a) and (b), or (a) and (c); then |ε′n(p)| > 0 for each
n ∈ IN0 and all |p| large enough. In particular, the spectrum of H is absolutely
continuous.

We also want to know how the spectrum of H looks like as a set. It follows from
direct-integral decomposition that σ(H) consists of a union of spectral bands In:

In =
[

inf
p∈IR

εn(p), sup
p∈IR

εn(p)
]

;

the question is how many gaps between them remain open. We shall distinguish
two cases depending on whether the functional A[b] :=

∫ a

−a
b(x) dx vanishes or

not. In the latter situation the BohrÄSommerfeld quantization condition yields:

Proposition 2.5 Assume
∫ a

−a
b(x) dx = 0. Let n(E, p) and n0(E) be the numbers

of eigenstates of H(p) and H0, respectively, with the eigenenergy smaller than
E. Then for any m ∈ IN0 there exist p0 and E(m, p0) such that

(n0(E) − n(E, p0)) sgnA[b] > m

holds for all E > E(m, p0).
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Corollary 2.6 If A[b] = 0 the number of open gaps in the spectrum of H is ˇnite.

If A[b] = 0 the situation is more complicated since the perturbed and unperturbed
potentials on (1) differ only in a subset of the interval (−a, a). In [8] we gave
an example showing that also in this case the number of open gaps may be ˇnite,
and conjectured that this is true generally. However, to prove it one obviously
needs a more sophisticated technique.

3. ARRAY OF POINT PERTURBATION

Let us turn now to the second model mentioned in the introduction. The
Hamiltonian can be formally written as

Hα,� = (−i∂x + By)2 − ∂2
y +

∑
j

α̃δ(x−x0−j ) , (2)

where  > 0 is the array spacing. To introduce the interaction term in a rigorous
way, we follow the usual deˇnition [1] which employs the boundary conditions

L1(ψ,!aj) + 2παL0(ψ,!aj) = 0 , j = 0,±1,±2, . . .

with !aj := (x0+j , 0), where Lk are the generalized boundary values

L0(ψ,!a) := lim
|�x−�a|→0

ψ(!x)
ln |!x−!a| , L1(ψ,!a) := lim

|�x−�a|→0

[
ψ(!x)−L0(ψ,!a) ln |!x−!a|

]
,

and α is the (rescaled) coupling constant; the free (Landau) Hamiltonian corre-
sponds to α = ∞. Using the periodicity, we can write the Bloch decomposition in
the x direction, Hα,� = �

2π

∫ ⊕
|θ�|≤π Hα,�(θ) dθ , where the ˇber operator Hα,�(θ)

is of the form (2) on the strip 0 ≤ x ≤  with the boundary conditions

∂i
xψ( −, y) = eiθ�∂i

xψ(0+, y) , i = 0, 1 ,

and its Green's function is given by means of the Krein formula

(Hα,�(θ)−z)−1(!x, !x′) = G0(!x, !x′; θ, z)
+(α−ξ(!a0; θ, z))−1G0(!x,!a0; θ, z)G0(!a0, !x

′; θ, z) ,

where

ξ(!a; θ, z) := lim
|�x−�a|→0

(
G0(!a, !x; θ, z) − 1

2π
ln |!x−!a|

)
and G0 is the free Green's function,

G0(!x, !x′; θ, z) = −
∞∑

m=−∞

uθ
m(y<)vθ

m(y>)
W (uθ

m, vθ
m)

ηθ
m(x)ηθ

m(x′) ,
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where ηθ
m(x) = 1√

�
ei(2πm+θ�)x/�, m runs through integers, y<, y> is the smaller

and the larger value, respectively, of y, y′, and uθ
m, vθ

m are solutions to the
equation

−u′′(y) +
(
By +

2πm
 

+ θ

)2

u(y) = zu(y)

such that uθ
m is L2 at −∞ and vθ

m is L2 at +∞; in the denominator we have
their Wronskian. We have uθ

m(y) = u
(
y + 2πm+θ�

B�

)
and the analogous relation

for vθ
m, where

{
u
v

}
(y) =

√
π e−By2/2

[
M

(
B−z
4B , 1

2 ;By2
)

Γ
(

3B−z
4B

) ± 2
√
By

M
(

3B−z
4B , 3

2 ;By2
)

Γ
(

B−z
4B

)
]
.

An explicit computation then leads to the formula

G0(!x, !x′; θ, z) = − 2(z/2B)−(3/2)

√
πB 

Γ
(

B − z

2B

)
eiθ(x−x′)

×
∞∑

m=−∞
u

(
y< +

2πm + θ 

B 

)
v

(
y> +

2πm + θ 

B 

)
e2πim(x−x′)/� .

As expected the function has singularities which are independent of θ and coin-
cide with the Landau levels, zn = B(2n+1), n = 0, 1, 2, . . . . Using an argument
modiˇed from [3, 6] one can check that these points are preserved in the spec-
trum of the ®full¯ ˇber operator Hα,�(θ). On the other hand, Hα,�(θ) has also

eigenvalues away of zn which we denote as εn(θ) ≡ ε
(α,�)
n (θ); they are given by

the implicit equation

α = ξ(!a0; θ, ε) (3)

and the corresponding eigenfunctions are

ψ(α,�)
n (!x; θ) = G0(!x,!a0; θ, εn(θ)) . (4)

The regularized Green's function appearing in (3) can be computed to be

ξ(!x; θ, z) =
∞∑

m=−∞

{
1 − δm,0

4π|m| − 2−2ζ−1

√
πB 

Γ(2ζ) (uv)
(
y +

2πm + θ 

B 

)}
, (5)

where ζ := B−z
4B . Spectral bands of the model are given by the ranges of the

functions εn(·). Solutions of the condition (3) do not cross the Landau levels,
because ξ(!a0; θ, ·) is increasing in the intervals (−∞, B) and (B(2n−1), B(2n+
1)) and diverges at the endpoints. It is easy to see that ξ(!x; ·, z) is real-analytic,
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hence the spectral bands will be absolutely continuous if the function is non-
constant in the whole Brillouin zone [−π/ , π/ ). Using the explicit expression
(5) together with properties of the Fourier transformation, we have arrived in [7]
at the following conclusion:

Theorem 3.1 For any real α the spectrum of Hα,� consists of the Landau levels
B(2n+1), n = 0, 1, 2, . . . , and absolutely continuous spectral bands situated
between adjacent Landau levels and below B.

Let us mention for comparison that a chain of point scatterers in a three-
dimensional space with a homogeneous magnetic ˇeld was discussed recently
in [2]. Due to the higher dimensionality, the spectrum is purely a.c. in that case
and has at most ˇnitely many gaps.

The band function for different values of the parameters are computed in [7].
When α runs from +∞ to −∞ a band splits from each Landau level and moves
down being ˇnally absorbed by the neighbouring LL (with the exception of the
lowest one). To characterize the transport associated with the bands, one can also

use the probability current, !n(!x; θ) = 2 Im
(
ψ̄

(α,�)
n (!∇− i !A)ψ(α,�)

n

)
(!x; θ), which

is in general nonzero because the Bloch functions (4) are complex-valued. The
current pattern changes with θ oscillating between a symmetric ®two-way¯ picture
and the situations where one direction clearly prevails; examples are worked out
in [7]. They show in particular that the probability current may exhibit vortices
in some regions.
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