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We present a new purely equilibrium microscopic approach to the description of liquid-glass
transition in terms of space symmetry breaking of three- and four-particle distribution functions in
the cases of two and three dimensions, respectively. The approach has some features of spin glass
theories as well as of density-functional theories of freezing.

The main purpose of the report is to present a new purely equilibrium mi-
croscopic approach to the description of liquid-glass transition in terms of space
symmetry breaking of three- and four-particle distribution functions in the cases
of two and three dimensions, respectively. The approach has some features of the
spin glass theories as well as of the density-functional theories (DFT) of freezing.

It is usually believed that there are two essential differences between spin
glasses and real structural glasses: 1) in the Hamiltonian of spin glasses there is
explicit randomness from the very beginning, while in the case of real glasses
there is no such randomness. 2) In experiments with spin glasses there is always
the range of the concentration of magnetic impurities where nothing else that a
spin glass phase appears while in the case of space glass there exists a crystalline
ground state. However, in real systems one can consider these differences simply
as time scales differences for the freezing of corresponding degrees of freedom
with respect to the time scale of the real or computer experiments. In fact, there
are now some indications that two possible candidates for equilibrium glasses
do exist: some polydisperce hard-sphere systems and some binary mixtures of
hard spheres. Even if it is not so, it seems to us that one needs an ®underlying¯
equilibrium theory of liquid-glass transition to understand what really glasses
present as space symmetry breaking problem. We should mention that beautiful
and fruitful time-dependent mode-coupling theory [1] which describes a number
of subtle experimental facts does not consider the problem of space symmetry
breaking. Some other arguments can be found in the recent papers by Parisi (see,
e.g., [2] and references therein).

To describe different kinds of space symmetry breaking we use the formalism
of classical many particle conditional distribution functions
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Here z is the activity, ρ is the mean number density, Sk+1(r1, ..., rk+1) is the
irreducible cluster sum of Mayer functions connecting (at least doubly) k + 1
particles, β = 1/kBT and T is the temperature.

If one takes the derivative of (1) relative to r1, one obtains the equilibrium
Bogoliubov hierarchy [4] along with the explicit expression for Fs+2 as the
functional on Fs+1 which gives the formally exact closure. However it contains
inˇnite series and integrals and one has to use some approximations to exploit it.
The same can be said about the Eq.(1) itself.

Let us now consider the symmetry breaking of the one-particle distribution
function and formulate brieXy DFT of freezing (see [6] and the reviews [7]). The
equation (1) for s = 0 is the extremum condition for the free energy functional
of the inhomogeneous system with the density ρ(r) = ρF1(r) and has the form:
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∫
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−
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or

F/kBT =
∫

dr1 ρ(r1)[ln(λdρ(r1) − 1] −Fex[ρ(r)]/kBT. (3)

The excess free energy Fex[ρ(r)]/kBT is just the generating functional for direct
correlation functions

cn(r1...rn) =
δnFex[ρ(r)]/kBT

δρ(r1) · · · ρ(rn)
, (4)

so that Taylor expansion around the liquid can be written in the following form:
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where
∆�(r) = �(r) − �l

is the local density difference between solid and liquid phases.
The full system of equations to be solved in DFT contains the nonlinear

integral equation for the function ρ(r), obtained as the extremum condition for
the free energy and the equilibrium conditions for the chemical potential and the
pressure written in terms of the same functions as in (5). To proceed construc-
tively in the frame of DFT we must choose a concrete form of the free energy
functional Å a kind of closure or truncating Å and we must make an ansatz
for the average density of the crystal. The importance of such an ansatz follows
from the fact that we are dealing with a theory which is equivalent to Gibbs
distribution and one has to break symmetry following the Bogoliubov concept
of quasiaverages [5]. Now it is necessary to specify the crystal symmetry (e.g.,
lattice type) and to locate the freezing transition for that particular lattice type

∆ρ(r) = ρl

∑
k ϕkeikr = ρlϕ0 + ρlϕ(r),

ϕk = 1
∆

∫
∆

∆ρ(r)
ρl

e−ikrdr.
(6)

The sum is over reciprocal lattice vectors and the integral is taken over the
elementary lattice cell ∆. ϕk are the order parameters of the problem. The DFT
approach occurs to be very fruitful and was used to calculate a lot of melting
curves for different systems.

The 3D DFT scenario of freezing is valid for some 2D systems. However,
there is a number of 2D systems which melts through two continuous phase tran-
sition including intermedeate (so-called hexatic) anisotropic liquid phase. The
scenario for such a case of 2D melting is the well-known KTNHY [8] phenom-
enological scenario. We develop a microscopic approach to 2D melting [9, 10]
in the spirit of 3D DFT. Our approach differs from the standard DFT theory of
freezing in two main points: First, we allow the Fourier coefˇcients ρG(r) of the
one-particle distribution function expanded in a Fourier series in reciprocal-lattice
vectors {G}: ρ(r) =

∑
G ρG(r)eiGr to Xuctuate and to have amplitude and

phase. Second, we allow the liquid to be anisotropic: we consider as possible
the existence of a phase with constant density but angular dependent two-particle
distribution function F2(r1 − r0) �= g(r10).

These two points of generalization deˇne two new order parameters: the Xuc-
tuating ρG(r) and the Fourier coefˇcients characteristic for the broken symmetry
of the function F2(r1 − r0). Our approach again is based on the Eq.(1) but now,
considering hexatic phase, we are dealing with the bifurcation of the solution for
the two-particle distribution function. The relative spatial distribution of pairs of
particles is characterized by the function F2(r1|r0) = F2(r1 − r0). The vector
r1 − r0 deˇnes the direction of the bond between the molecules at the points
r1 and r0. In the ordinary isotropic liquid the nearest neighbouring of a given



CLASSICAL MANY-PARTICLE DISTRIBUTION FUNCTIONS 187

molecule (the ˇrst coordination sphere) has a deˇnite local symmetry, which can
be characterized by the set of bond directions. The local structure of the liquid
in the neighbourhood of a molecule at the point r′0 is characterized by the bond
directions r′ = r2 − r′0. It occurs that if the point r′0 is at sufˇciently large
distance from r0 then there is no correlation between the directions r = r1 − r0

and r′ = r2 − r′0. In this case after the averaging over the system as a whole
the pair distribution function transforms into the RDF and the equation (1) for
s = 1 has the solution F2(r1 − r0) = g(|r1 − r0|), which corresponds to ordinary
isotropic liquid. When we approach the anisotropic liquid phase the long-ranged
correlations between the bond directions r and r′ do appear and the averaged
two-particle distribution function depends on the bond direction now.

In the vicinity of the transition one can write

F2(r1, r0) = g(|r1 − r0|)(1 + f(r1 − r0)), (7)

where f(r1 − r0) has the symmetry of the local neighbourhood of the particle
at r0. The bifurcation point is given by the linearized equation (1) for s = 1,
namely,

f(r1 − r0) =
∫

Γ(r1, r0, r2)f(r2 − r0) g(|r2 − r0|)dr2, (8)

where

Γ(r1, r0, r2) =
∑
k≥1

ρk

(k − 1)!

∫
Sk+1(r1, ..., rk+1)

×g(|r3 − r0|)...g(|rk+1 − r0|) dr3...drk+1. (9)

At the same time, when one approaches the line deˇned by the bifurcation
condition, the correlation radius for the orientation Xuctuations of the pair dis-
tribution function diverges. This fact can be shown with the use of the gradient
expansion technique in the case of the equation (1) for s = 3, if we write the long
range part of the correlator using the principle of vanishing correlations ( [4]) as:

F4(r1, ..., r4) = g(|r1 − r2|)g(|r3 − r4|)(1 + f4(r1, ..., r4)) (10)

f4(r1, ..., r4) = f4(r, R, ρ, ϕ1, ϕ2).

Here ϕ1 is the angle between the vector r = r1 − r2 and the axis R = r2 − r3,
ϕ2 is the angle between the vector ρ = r3 − r4 and the same axis. We have
f4(r, R, ρ, ϕ1, ϕ2) → 0 when R → ∞ .

The microscopic expressions for the elastic moduli and Frank constant [10]
enable us to understand on the microscopic level whether the 2D melting for any
given potential is 3D like or whether it follows the KTHNY scenario.
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Let us consider now a possible description of the liquid-glass transition in
terms of space symmetry breaking for three- (four) particle distribution function
in 2D (3D) systems. At high temperature the nearest neighbours of a molecule can
take different relative positions and there is no short-range order (SRO). At lower
temperature a SRO appears which can be of different kinds at different densities
(for phase transitions in liquids see [11]). The rotation and the translation of
the clusters of prefered symmetry give rise to the fact that one-particle and two-
particle distribution functions remain isotropic. If a kind of bond orientational
order (BOO) appears the clusters are oriented in similar way and the two-particle
distribution function becomes to be anisotropic (as in 2D hexatic phase). How-
ever, we can imagine another situation Å freezing of the symmetry axes of the
clusters in different position. The isotropic phase can be considered as analogous
to the paramagnetic phase (of cluster symmetry axes), the BOO phase Å to the
ferromagnetic phase, and the mentioned freezed phase Å to a spin glass phase.

Let us consider for simlicity a 2D system. In the vicinity of the transition
one can write (in the superposition approximation for the liquid)

F3(r1|r0
1, r

0
2) = g(|r1 − r0

1|)g(|r1 − r0
2|)(1 + f3(r1|r0

1, r
0
2). (11)

In 2D case f3(r1|r0
1, r

0
2) depends in fact on two distances and two angles

f3(r1|r0
1, r

0
2) = f3(R0, φ0; R1, Θ1), (12)

where R0 = r0
2 − r0

1, R1 = r1 − r0
1, R2 = r2 − r0

1 and φ0 is the angle of the
vector R0 with the z axis, Θ1 Ä the angle between R1 and R0 and Θ2 Ä the
angle between R2 and R0.

The linearization of (1) for s = 2 gives:

f3(R0, φ0; R1, Θ1) =

=
∫
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There are two kinds of angles entering the equations and two kinds of order
parameters, consequently. One angle (φ0) ˇxes the position of one pair of particles
of the cluster, and the other (Θi) Å the position of the third particle in the
coordinate frame deˇned by φ0. The order parameter connected with Θi is the
generalization of intracluster hexatic parameter for the case of different coordinate
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frames. The order parameter connected with φ0 is an analogue of magnetic
moment and in glass-like phase one can consider an Edwards-Anderson parameter
< cosφ0(t) cos φ0(0) >. In such a way we come to the concept of a ®conditional¯
long range order: if we consider two pairs of particles at inˇnite distance from
one another then there exists a preferable possibility for the relative position of the
third particle near each pair. The directions of the bonds in the pairs of particles
themselves are subjects to spin-glass-like order. In 3D case the rotation of clusters
is given by matrices Dl′m′

lm (�ω0i) so that we obtain a kind of orientational multipole
glass for the clusters.
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