
®”ˆ‡ˆŠ� �‹…Œ…�’��›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„�¯
2000, ’�Œ 31, ‚›�. 7!

“„Š 539.12.01,536.75

DUALITY SUMMETRY OF THE 2D Φ4 FIELD MODEL
B.N.Shalaev

A.F.Ioffe Physical & Technical Institute, Russian Academy of Sciences,

194021 St.Petersburg, Russia

G.Jug

Max-Planck-Institut f éur Physik Komplexer Systeme, 38 D-01187 Dresden, Germany

We show that the exact beta-function β(g) of the continuous 2D gΦ4 model in the strong
coupling regime g > g∗+ possesses the KramersÄWannier duality symmetry. The duality symmetry
transformation g̃ = d(g) such that β(d(g)) = d′(g)β(g) is constructed. The approximate values of
the ˇxed point g∗+ computed from the duality equation d(g∗+) = g∗+ are shown to agree with those
obtained from the strong coupling expansion and with available numerical results.

1. INTRODUCTION

The 2D Ising model and some other lattice spin models are known to possess
the remarkable KramersÄWannier(KW) duality symmetry, playing an important
role both in statistical mechanics and in quantum ˇeld theory [1Ä3]. The self-
duality of the isotropic 2D Ising model means that there exists an exact mapping
between the high-T and low-T expansions of the partition function [3]. In the
transfer-matrix language this implies that the transfer-matrix of the model under
discussion is covariant under the duality transformation. If we assume that the
critical point is unique, the KW self-duality would yield the exact Curie temper-
ature of the model. This holds for a large set of lattice spin models including
systems with quenched disorder (for a review see [3,4]).

In this paper we study mainly the symmetry properties of the beta-function
β(g) for the 2D gΦ4 theory, regarded as a continuum limit of the exactly solvable
2D Ising model. In contrast to the latter, the 2D gΦ4 theory is known not to be
an integrable quantum ˇeld theory.

The beta-function β(g) of the continuum limit theory is known to date only in
the four-loop approximation within the framework of conventional perturbation
theory at ˇxed dimension d = 2 [5]. (Five-loop RG calculations have also
been recently completed [6]). Calculations of beta-functions are of great interest
in statistical mechanics and quantum ˇeld theory. The beta-function contains
the essential information on the renormalized coupling constant g∗+, this being
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important for constructing the equation of state of the 2D Ising model. Duality
is known to impose some important constraints on the exact beta-function [7].

The paper is organized as follows. In Sect. II we set up basic notations
and deˇne both the correlation length and the beta-function β(g). In Sect.III
the duality symmetry transformation g̃ = d(g) is derived. Then it is proved that
β(d(g)) = d′(g)β(g). An approximate expression for d(g) is also found. Sect.
IV contains some concluding remarks.

2. CORRELATION LENGTH AND COUPLING CONSTANT

We begin by considering the standard Hamiltonian of the 2D Ising model
(in the absence of an external magnetic ˇeld), deˇned on a square lattice with
periodic boundary conditions; as usual:

H = −J
∑

<i,j>

σiσj , (2.1)

where < i, j > indicates that the summation is over all nearest-neighboring sites;
σi = ±1 are spin variables and J is the spin coupling. The standard deˇnition of
the spin-pair correlation function reads:

G(R) =< σRσ0 >, (2.2)

where < ... > stands for the thermal average.
The statistical mechanics deˇnition of the correlation length is given by [8]

ξ2 =
d lnG(p)

dp2
|p=0. (2.3)

The quantity ξ2 is known to be conveniently expressed in terms of the spherical
moments of the spin correlation function itself, namely

µl =
∑
R

(R/a)lG(R) (2.4)

with a being some lattice spacing. It is easy to see that

ξ2 =
µ2

2dµ0
(2.5)

where d is the spatial dimension (in our case d = 2).
In order to extend the KW duality symmetry to the continuous ˇeld theory we

have need for a ®lattice¯ model deˇnition of the coupling constant g, equivalent
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to the conventional one exploited in the RG approach. The renormalization
coupling constant g of the gΦ4 theory is closely related to the fourth derivative of
the ®Helmholtz free energy¯, namely ∂4F (T, m)/∂m4, with respect to the order
parameter m = 〈Φ〉. It may be deˇned as follows (see [8])

g(T, h) = − (∂2χ/∂h2)
χ2ξd

+ 3
(∂χ/∂h)2

χ3ξd
, (2.6)

where χ is the homogeneous magnetic susceptibility

χ =
∫

d2xG(x). (2.7)

It is in fact easy to show that g(T, h) in Eq.(2.6) is merely the standard four-spin
correlation function taken at zero external momenta. The renormalized coupling
constant of the critical theory is deˇned by the double limit

g∗ = lim
h→0

lim
T→Tc

g(T, h) (2.8)

and it is well known that these limits do not commute with each other. As a
result, g∗ is a path-dependent quantity in the thermodynamic (T, h) plane [8].

Here we are mainly concerned with the coupling constant on the isochore
line g(T > Tc, h = 0) in the disordered phase and with its critical value

g∗+ = lim
T→T+

c

g(T, h = 0) = −∂2χ/∂h2

χ2ξd
|h=0. (2.9)

The ®lattice¯ coupling constant g∗+ deˇned in Eq. (2.9) is of course some given
function of the temperature Tc.

3. DUALITY SYMMETRY OF THE BETA-FUNCTION

The standard KW duality tranformation is known to be as follows [1Ä3]

sinh(2K̃) =
1

sinh(2K)
. (3.1)

We shall see that it will be more convenient to deal with a new variable s =
exp (2K) tanh(K), where K = J/T .

It follows from the deˇnition that s transforms as s̃ = 1/s; this implies that
the correlation length of the 2D Ising model given by ξ2 = s

(1−s)2 is a self-dual
quantity [9]. Now, on the one hand, we have the formal relation

ξ
ds(g)
dξ

=
ds(g)
dg

β(g), (3.2)
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where s(g) is deˇned as the inverse function of g(s), i.e., g(s(g)) = g and the
beta-function is given, as usual, by

ξ
dg

dξ
= β(g). (3.3)

On the other hand, it is known from [9] that

ξ
ds

dξ
=

2s(1 − s)
(1 + s)

. (3.4)

From Eqs. (3.2)Ä(3.4), a useful representation of the beta-function in terms of
the s(g) function thus follows

β(g) =
2s(g)(1 − s(g))

(1 + s(g)) (ds(g)/dg)
. (3.5)

Let us deˇne the dual coupling constant g̃ and the duality transformation function
d(g) as

s(g̃) =
1

s(g)
; g̃ ≡ d(g) = s−1(

1
s(g)

), (3.6)

where s−1(x) stands for the inverse function of x = s(g). It is easy to check
that a further application of the duality map d(g) gives back the original coupling
constant, i.e., d(d(g)) = g, as it should be. Notice also that the deˇnition of the
duality transformation given by Eq. (3.6) has a form similiar to the standard KW
duality equation, Eq. (3.1).

Consider now the symmetry properties of β(g). We shall see that the KW
duality symmetry property, Eq. (3.1), results in the beta-function being covariant
under the operation g → d(g):

β(d(g)) = d′(g)β(g). (3.7)

To prove it let us evaluate β(d(g)). Then Eq.(3.5) yields

β(d(g)) =
2s(g̃)(1 − s(g̃))

(1 + s(g̃)) (ds(g̃)/dg̃)
. (3.8)

Bearing in mind Eq. (3.6) one is led to

β(d(g)) =
2s(g) − 2

s(g)(1 + s(g)) (ds(g̃)/dg̃)
. (3.9)

The derivative in the r.h.s. of Eq. (3.9) should be rewritten in terms of s(g) and
d(g). It may be easily done by applying Eq. (3.6):

ds(g̃)
dg̃

=
d

dg̃

1
s(g)

= − s′(g)
s2(g)

1
d′(g)

. (3.10)
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Substituting the r.h.s. of Eq. (3.10) into Eq. (3.9) one obtains the desired
symmetry relation, Eq. (3.7).

Therefore, the self-duality of the model allows us to determine the ˇxed point
value in another way, namely from the duality equation d(g∗) = g∗.

Making use of a rough approximation for s(g), one gets [9]

s(g) � 2
g

+
24
g2

� 2
g

1
1 − 12/g

=
2

g − 12
. (3.11)

Combining this Padè-approximant with the deˇnition of d(g), Eq. (3.6), one is
led to

d(g) = 4
3g − 35
g − 12

. (3.12)

The ˇxed point of this function, d(g∗) = g∗, is easily seen to be g∗+ = 14.
The recent numerical and analytical estimates yield g∗+ = 14.69 (see [9Ä11] and
references therein).

It is worth mentioning that the above-described approach may be regarded as
another method for evaluating g∗+, fully equivalent to the standard beta-function
method.

4. CONCLUDING REMARKS

We have proved the existence of the duality symmetry transformation d(g)
in the 2D gΦ4 theory such that β(d(g)) = d′(g)β(g). Actually, this symmetry
property was shown to result from the KW duality of the 2D lattice Ising model.

It would be tempting but wrong to regard d(g) as a function connecting the
weak-coupling and strong coupling regimes. As a matter of fact, our proof is
based on the properties of g(s), s(g) deˇned only for 0 ≤ s < ∞, g∗+ ≤ g < ∞
and therefore does not cover the weak-coupling region, 0 ≤ g ≤ g∗. The main
statement is that the beta-function β(g) does have the dual symmetry only in
the strong-coupling region, in contrast to the weak-coupling regime where that
symmetry is dynamically broken.

In contrast to widely held views, the duality symmetry imposes only mild
restrictions on β(g). It means that this symmetry property ˇxes only even deriv-
atives of the beta-function, β(2k)(g∗+)(k = 0, 1, ...), at the ˇxed point, leaving
the odd derivatives free. The duality equation d(g) = g provides yet another
method for determining the ˇxed point, independently of the approach based on
the equation β(g) = 0. Another open problem is also that of ˇnding a systematic
approach for calculating d(g).
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