
®”ˆ‡ˆŠ� �‹…Œ…�’��›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„�¯
2000, ’�Œ 31, ‚›�. 7!

“„Š 539.14

DESCRIPTION OF TRANSITIONAL NUCLEI
IN THE FRAMEWORK

OF ®QUADRUPOLE PLUS PAIRING¯
COLLECTIVE MODEL
S.G.Rohozi	nski, J.Srebrny

Faculty of Physics, Warsaw University, 00-681 Warsaw, Poland

K.Zaja�c, L.Pr	ochniak, K.Pomorski

Institute of Physics, The Maria Curie-Sklodowska University, 20-031 Lublin, Poland

The ®quadrupole plus pairing¯ collective model is constructed and adopted to describe the
quadrupole collective states in even-even transitional nuclei. An approximation scheme of solving the
model is given. Exemplary results of microscopic calculations within the framework of the model are
shown.

Since more than 30 years the General Bohr Hamiltonian (GBH) remains the
main tool for description of collective states in even-even transitional nuclei (e.g.,
[1Ä5]). This is because of two important features of such a model. The former
is that the collective Hamiltonian is a rotational scalar and its eigenfunctions are
of a deˇnite angular momentum. The latter is that a rotation-vibration coupling,
so important for transitional nuclei, is taken into account. To be sure, algebraic
collective models of the type of Interacting Boson Model (IBM) possess similar
features (cf. [7]). However, such models act usually as purely phenomenological
approaches whereas there exist efˇcient methods of microscopic constructing the
GBH. Two standard microscopic approaches are: (i) the cranking model (see [6]
for formulae and references quoted therein) which, however, gives a classical
Hamiltonian and, therefore, requires a requantization procedure, (ii) the Gaussian
Overlap Approximation (GOA) of the Generator Coordinate Method (GCM) [8].
But it should be admitted that the GBH treats collective excitations as an adiabatic
phenomenon and does not take into account a coupling with other degrees of
freedom, in particular, with two-quasiparticle excitations.

It is known for a long time that the GBH, when constructed microscopically,
gives results which are not compatible with experimental data [3]. The calculated
excitation energies of collective levels are not in a proper scale. This seems as if
the inertial parameters are two to three times too small. These inertial parameters
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are sensitive functions of the pairing energy gaps and can easily be made bigger
by an artiˇcial weakening of pairing forces [3]. This observation has brought us
to the conclusion that a coupling between the quadrupole and the pairing degrees
of freedom should be taken into account [9,10]. It can be done by the construction
of a collective Hamiltonian for both, the quadrupole and the pairing vibrations.

Below we present the ®quadrupole plus pairing¯ collective model and discuss
a way of its approximate solving. Next, we show some exemplary results of
calculations and compare them with experimental data. At the end we draw some
conclusions.

Apart from the ˇve usual collective variables, namely, β, γ, the Bohr defor-
mation parameters describing the nuclear shape or the quadrupole moment in the
intrinsic frame, and φ, θ, ψ, the Euler angles describing the orientation of the
intrinsic frame, we introduce a further four dynamical variables to the collective
model, namely, ∆p, ∆n, the proton and neutron energy gaps describing the pro-
ton and neutron pairing correlations, and Φp, Φn, the proton and neutron gauge
angles describing rotations in the proton and neutron gauge spaces or transfer
of the proton and neutron pairs (cf. [11Ä13]). We assume the ®quadrupole plus
pairing¯ collective Hamiltonian (QPCH) of the following structure:

Ĥquad−pair = T̂vib(β, γ; ∆n,∆p) + Vdef(β, γ,∆n,∆p)

+Ĥrot(φ, θ, ψ;β, γ,∆n,∆p)

+
∑

t=p,n

[
T̂ (t)

pair(∆
t,Φt;β, γ) + V

(t)
pair(β, γ,∆

t)

+ T̂ (t)
quad−pair(β, γ,∆

t)
]
. (1)

The operators which enter into the Hamiltonian of Eq. (1) are differential operators

of the second order in the arguments given in front of semicolon; T̂ (t)
quad−pair is

a differential operator in all of its arguments. We do not write down here exact
forms of all terms of the Hamiltonian which are more or less obvious. We only
mention that it is determined by the following functions of β, γ, ∆p and ∆n

Ä Vdef , V
(p)
pair, V

(n)
pair, the deformation and pairing potentials,

Ä Bββ, Bβγ , Bγγ , the quadrupole vibrational inertial functions (mass para-
meters),

Ä J1, J2, J3, the quadrupole moments of inertia,

Ä B∆t∆t for t = p, n, the pairing vibrational inertial functions,

Ä Bβ∆t , Bγ∆t for t = p, n, the quadrupoleÄpairing mixed vibrational inertial
functions,
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Ä JΦt for t = p, n, the pairing moments of inertia,

Ä λ(t) for t = p, n, the chemical potentials.

Fig. 1. Zero-point pairing vibration of neu-
trons in 104Ru at deformation β = 0.2, γ =
20◦. The equilibrium value of the energy
gap is ∆BCS ≈ 0.14�ω0 whereas the most
probable value is ∆0 ≈ 0.09�ω0. The os-
cillator frequency is �ω0 ≈ 41/A1/3 MeV

To calculate electromagnetic character-
istics of nuclei, like reduced proba-
bilities of γ-transitions, electric and
magnetic multipole moments, collective
multipole operators, which are deter-
mined again by some functions of β,
γ, ∆p and ∆n, should be constructed.
All these functions determining the col-
lective Hamiltonian and multipole op-
erators can be calculated from a mi-
croscopic theory. This problem is dis-
cussed elsewhere [6].

Solving the collective model for-
mulated above may consist in the nu-
merical diagonalizing the set of opera-
tors: Ĥquad−pair, the collective Hamil-

tonian, Î2, Îz , the total angular momen-
tum and its projection onto a lab axis z,
N̂t = −i∂/∂Φt for t = p, n, the parti-
cle number excess operators. We do not
solve this eigenvalue problem exactly as
yet. Instead, we have adopted an ap-
proximation scheme, which proceeds in
the following steps:

1. Neglect the quadrupole-pairing coupling in the kinetic energy, i.e., put

T̂ (t)
quad−pair(β, γ,∆

t) = 0 for t = p, n in Eq. (1).

2. Find the zero-point pairing vibration of neutrons and protons for given β
and γ solving the eigenvalue problem

Ĥ(t)
pair(∆

t;β, γ)Ψ0(∆t;β, γ) = E
(t)
0 (β, γ)Ψ0(∆t;β, γ), (2)

N̂t(Φt)Ψ0(∆t;β, γ) = 0, (3)

where

Ĥ(t)
pair(∆

t;β, γ) = T̂ (t)
pair(∆

t;β, γ) + V
(t)
pair(∆

t, β, γ) (4)
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and the collective pairing kinetic energy (excluding the pair transfer effect)
reads [12,13]

T̂ (t)
pair = − �

2

2
√
g(∆t)

∂

∂∆t

√
g(∆t)

B∆t∆t(∆t)
∂

∂∆t
; (5)

here g(∆t, β, γ) is a normalization weight.

3. Find the most probable neutron or proton energy gap ∆t
0(β, γ), i.e., the

value of ∆t
0 for which g|Ψ0|2 takes its maximum (see Fig. 1).

4. Solve the eigenvalue problem for the following general Bohr Hamiltonian

Ĥcoll = T̂vib(β, γ; ∆n
0(β, γ),∆p

0(β, γ)) + Vcoll(β, γ,∆n
0(β, γ),∆p

0(β, γ))

+ Ĥrot(φ, θ, ψ;β, γ,∆n
0(β, γ),∆p

0(β, γ)), (6)

where the quadrupole collective potential is

Vcoll = Vdef + E
(n)
0 + E

(p)
0 (7)

and the quadrupole kinetic energy reads

T̂vib = − �
2

2
√
wr

{
1
β4

[
∂β

(
β4

√
r

w
Bγγ∂β

)
− ∂β

(
β3

√
r

w
Bβγ∂γ

)]

+
1

β sin3γ

[
1
β
∂γ

(√
r

w
sin3γBββ

)
∂γ − ∂γ

(√
r

w
sin3γBβγ∂β

)]}
, (8)

Ĥrot =
1
2

3∑
k=1

Î2
k/Jk; (9)

here Î1, Î2, Î3 are the operators of intrinsic angular momenta ( differential
operators in the Euler angles). The GBH of Eq. (6) is Hermitian with the
volume element

dτ = β4
√
wr| sin3γ|dβdγ sinθdθdφdψ, (10)

where w = BββBγγ −B2
βγ and r = J1J2J3/(4β6 sin23γ).

The physical meaning of the above approximation consists in taking into ac-
count an effect of the zero-point pairing vibration on the quadrupole collective
excitations.



DESCRIPTION OF TRANSITIONAL NUCLEI 241

Fig. 2. Experimental (black ˇgures) and theoretical (open ˇgures connected by straight
lines) energy levels in 104Ru versus angular momentum Jπ . The theoretical levels are
calculated with (®new¯) and without (®old¯) the effect of zero-point pairing vibration taken
into account

Fig. 3. Experimental (black ˇgures) and theoretical (open ˇgures connected by straight
lines) values of the lowest excited 2+ levels and band-heads of the β- and the γ-band in
the Ba isotopes. The theoretical levels are calculated without (left part) and with (right
part) the effect of zero-point pairing vibration taken into account

Results of calculations show that the zero-point-pairing-vibration effect is re-
ally essential for the quadrupole excitations and improves considerably an agree-
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ment with experimental data. It is easily seen in Fig. 2, where the collective
energy levels in 104Ru calculated without (®old¯) and with (®new¯) this effect
taken into account, are compared with experimental levels [14]. The ®new¯ cal-
culation reproduces the data almost perfectly. The ground-state rotational bands in

Fig. 4. Experimental (black ˇgures) and the-
oretical (open ˇgures connected by straight
lines) rotational bands in the Er isotopes.
The upper part shows the ground-state band,
the lower Å γ-band

isotopes of Erbium, 152−166Er are re-
produced equally well and the γ-bands
only a little bit worse (Fig. 4). From
Fig. 3 we see that the effect of pairing
vibration improves the results also for
isotopes of Barium. However, it does
not make the job in this case. The
qudrupole-pairing coupling in the ki-
netic energy and also a coupling with
the octupole degrees of freedom may
probably play a role in the quadrupole
excitations of the neutron-deˇcient nu-
clei of 50 < Z,N < 82.

In conclusion, the ®quadrupole
plus pairing¯ collective model can suc-
cessfully be applied to the description
of collective states in even-even transi-
tional nuclei. An essential role of the
zero-point pairing vibration in the be-
haviour of quadrupole excitations is ob-
served. When the pairing vibration is
taken into account, microscopic calcu-
lations with no free parameters yield
results which are in good agreement
with experimental data. However, it is
still an open question whether the de-
scription of low-lying collective states
by the ®quadrupole plus pairing¯ model

takes all main and/or proper effects into account.
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