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The phenomenological approach to gravitation is discussed in which the 3-graviton interaction
is reduced to the interaction of each graviton with the energy-momentum tensor of two others.
If this is so, (and in general relativity this is not so), then the problem of choosing the correct
energy-momentum tensor comes to ˇnding the right 3-graviton vertex. Several energy-momentum
®tensors¯ of gravitational ˇeld are considered and compared in the lowest approximation. Each of
them together with the energy-momentum tensor of point-like particles satisˇes the conservation laws
when equations of motion of particles are the same as in general relativity. It is shown that in
Newtonian approximation the considered tensors differ one from the other in the way their energy
density is distributed between energy density of interaction (nonzero only at locations of particles) and
energy density of gravitational ˇeld. Starting from Lorentz invariance, the Lagrangians for spin-2,
mass-0 ˇeld are considered. They differ only by divergences. From these Lagrangians by BelinfanteÄ
Rosenfeld procedure the energy-momentum tensors are built. Using each of these tensors in 3-graviton
vertex we obtain the corresponding metric of a Newtonian centre in G2 approximation. Only one
of these ®ˇeld-theoretical¯ tensors (namely the half sum of Thirring tensor and the tensor obtained
from Lagrangian given by Misner, Thorne and Wheeler) leads to correct value of the perihelion shift.
This tensor does not coincide with Weinberg's one (directly obtainable from Einstein equation) and
gives metric of a spherical body differing (in space part of metric in the ˇrst nonlinear approximation)
from Schwarzschild ˇeld in harmonic coordinates. As a result a relativistic particle in such ˇeld
must move not according to general relativity prescriptions. This approach puts the gravitational
energy-momentum tensor on the same footing as any other energy-momentum tensor.

�¡¸Ê¦¤ ¥É¸Ö Ë¥´µ³¥´µ²µ£¨Î¥¸±¨° ¶µ¤Ìµ¤ ± £· ¢¨É Í¨¨, ¶·¨ ±µÉµ·µ³ ¢§ ¨³µ¤¥°¸É¢¨¥ É·¥Ì
£· ¢¨Éµ´µ¢ ¸¢µ¤¨É¸Ö ± ¢§ ¨³µ¤¥°¸É¢¨Õ ± ¦¤µ£µ £· ¢¨Éµ´  ¸ É¥´§µ·µ³ Ô´¥·£¨¨-¨³¶Ê²Ó¸  ¤¢ÊÌ
µ¸É ²Ó´ÒÌ. …¸²¨ ÔÉµ É ± (  ¢ µ¡Ð¥° É¥µ·¨¨ µÉ´µ¸¨É¥²Ó´µ¸É¨ ÔÉµ ´¥ É ±), Éµ ¢µ¶·µ¸ µ ¶· ¢¨²Ó´µ³
¢Ò¡µ·¥ É¥´§µ·  Ô´¥·£¨¨-¨³¶Ê²Ó¸  ¸¢µ¤¨É¸Ö ± ¶· ¢¨²Ó´µ³Ê ¢Ò¡µ·Ê É·eÌ£· ¢¨Éµ´´µ° ¢¥·Ï¨´Ò.

� ¸¸³µÉ·¥´Ò ¨ ¸· ¢´¥´Ò ´¥¸±µ²Ó±µ ®É¥´§µ·µ¢¯ Ô´¥·£¨¨-¨³¶Ê²Ó¸  £· ¢¨É Í¨µ´´µ£µ ¶µ²Ö ¢
´¨§Ï¥³ ´¥²¨´¥°´µ³ ¶·¨¡²¨¦¥´¨¨. Š ¦¤Ò° ¨§ ´¨Ì ¢³¥¸É¥ ¸ É¥´§µ·µ³ Ô´¥·£¨¨-¨³¶Ê²Ó¸  ÉµÎ¥Î-
´ÒÌ Î ¸É¨Í Ê¤µ¢²¥É¢µ·Ö¥É § ±µ´ ³ ¸µÌ· ´¥´¨Ö, ±µ£¤  Ê· ¢´¥´¨Ö ¤¢¨¦¥´¨Ö Î ¸É¨Í É¥ ¦¥, ÎÉµ ¨ ¢
µ¡Ð¥° É¥µ·¨¨ µÉ´µ¸¨É¥²Ó´µ¸É¨.

�µ± § ´µ, ÎÉµ ¢ ´ÓÕÉµ´µ¢¸±µ³ ¶·¨¡²¨¦¥´¨¨ · ¸¸³µÉ·¥´´Ò¥ É¥´§µ·Ò µÉ²¨Î ÕÉ¸Ö É¥³, ± ±
£· ¢¨É Í¨µ´´ Ö ¶²µÉ´µ¸ÉÓ Ô´¥·£¨¨ ¶µ¤· §¤¥²Ö¥É¸Ö ´  ¶²µÉ´µ¸ÉÓ Ô´¥·£¨¨ ¢§ ¨³µ¤¥°¸É¢¨Ö (µÉ²¨Î-
´ÊÕ µÉ ´Ê²Ö Éµ²Ó±µ É ³, £¤¥ ¥¸ÉÓ Î ¸É¨ÍÒ) ¨ ¶²µÉ´µ¸ÉÓ Ô´¥·£¨¨ £· ¢¨É Í¨µ´´µ£µ ¶µ²Ö, Ë¨£Ê·¨-
·ÊÕÐÊÕ ¸ ³µ¸ÉµÖÉ¥²Ó´µ.

‘ ¨¸¶µ²Ó§µ¢ ´¨¥³ Éµ²Ó±µ ²µ·¥´Í¥¢¸±µ° ¨´¢ ·¨ ´É´µ¸É¨ · ¸¸³µÉ·¥´Ò ² £· ´¦¨ ´Ò (µÉ²¨-
Î ÕÐ¨¥¸Ö ´  ¤¨¢¥·£¥´É´Ò¥ Î²¥´Ò) ¶µ²Ö ¡¥§³ ¸¸µ¢ÒÌ Î ¸É¨Í ¸¶¨´  2. ˆ§ ÔÉ¨Ì ²a£· ´¦¨ ´µ¢
³¥Éµ¤µ³ �¥²¨´Ë ´É¥Ä�µ§¥´Ë¥²Ó¤  ¶µ²ÊÎ¥´Ò É¥´§µ·Ò Ô´¥·£¨¨-¨³¶Ê²Ó¸ . ˆ¸¶µ²Ó§ÊÖ ± ¦¤Ò° ¨§
´¨Ì ¢ É·¥Ì£· ¢¨Éµ´´ÒÌ ¢¥·Ï¨´ Ì, ³µ¦´µ ´ °É¨ ¸µµÉ¢¥É¸É¢ÊÕÐ¨¥ ³¥É·¨±¨ ´ÓÕÉµ´µ¢¸±µ£µ Í¥´-
É·  ¢ G2-¶·¨¡²¨¦¥´¨¨. ’µ²Ó±µ µ¤¨´ ¨§ ¶µ¸É·µ¥´´ÒÌ ®É¥µ·¥É¨±µ-¶µ²¥¢ÒÌ¯ É¥´§µ·µ¢ (  ¨³¥´´µ
¶µ²Ê¸Ê³³  É¥´§µ·  ’¨··¨´£  ¨ É¥´§µ· , ¶µ²ÊÎ¥´´µ£µ ¨§ ² £· ´¦¨ ´ , ¶·¨¢¥¤¥´´µ£µ Œ¨§´¥·µ³,
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’µ·´µ³ ¨ “¨²¥·µ³) ¶·¨£µ¤¥´ ¤²Ö ¶· ¢¨²Ó´µ£µ µ¶¨¸ ´¨Ö ¶·¥Í¥¸¸¨¨ ¶¥·¨£¥²¨Ö ¶² ´¥ÉÒ. �ÉµÉ É¥´-
§µ· ´¥ ¸µ¢¶ ¤ ¥É ¸ É¥´§µ·µ³ ‚ °´¡¥·£  (´¥¶µ¸·¥¤¸É¢¥´´µ ¸²¥¤ÊÕÐ¨³ ¨§ Ê· ¢´¥´¨Ö �°´ÏÉ¥°´ )
¨ ¢¥¤¥É ± ³¥É·¨±¥ ¸Ë¥·¨Î¥¸±µ£µ É¥² , µÉ²¨Î ÕÐ¥°¸Ö ¢ ¶·µ¸É· ´¸É¢¥´´µ° Î ¸É¨ µÉ Ï¢ ·ÍÏ¨²Ó-
¤µ¢¸±µ° ¢ £ ·³µ´¨Î¥¸±µ° ¸¨¸É¥³¥ ±µµ·¤¨´ É. ‚ ·¥§Ê²ÓÉ É¥ ·¥²ÖÉ¨¢¨¸É¸± Ö Î ¸É¨Í  ¤µ²¦´ 
¤¢¨£ ÉÓ¸Ö ¢ É ±µ³ ¶µ²¥ ¨´ Î¥, Î¥³ ¶·¥¤¸± §Ò¢ ¥É¸Ö µ¡Ð¥° É¥µ·¨¥° µÉ´µ¸¨É¥²Ó´µ¸É¨.

‚ · ¸¸³ É·¨¢ ¥³µ³ ¶µ¤Ìµ¤¥ £· ¢¨É Í¨µ´´Ò° É¥´§µ· Ô´¥·£¨¨-¨³¶Ê²Ó¸  ¨³¥¥É ÉµÉ ¦¥ ¸É ÉÊ¸,
ÎÉµ ¨ ²Õ¡µ° ¤·Ê£µ° É¥´§µ· Ô´¥·£¨¨-¨³¶Ê²Ó¸ .

1. INTRODUCTION

General relativity is a complete, elegant, and self-consistent theory. Yet
there is a necessity of obtaining gravity by ˇeld-theoretical means starting from
	at spacetime, see, e.g., [1Ä4]. It is widely believed that on this way even
dropping the general covariance requirement we naturally get general relativity.
It is supposed that in the lowest nonlinear approximation this is demonstrated in
detail by Thirring [2]. Yet this conclusion cannot be drawn from [2], see Sec. 2.

The energy-momentum tensor of material ˇelds in general relativity is ob-
tained from the corresponding one without gravitational ˇeld by equivalence prin-
ciple (comma goes to semicolon). This means that general covariance dictates the
form of vertices containing material ˇelds. Even in this case other considerations
may lead to modiˇcations. So conformal invariance leads to ChernikovÄTagirov
energy-momentum tensor [5]. Dropping general covariance gives more freedom
in choosing and rejecting vertices in phenomenological approach to gravitation.

Since the gravitational collapse is considered as the greatest crisis in physics
[6], the research into possible alternative theories acquire especial signiˇcance.
It is quite natural to make the ˇrst step and to consider the simplest processes
by utilizing vertices; the graviton propagator is known by analogy with electro-
dynamics.

In the lowest nonlinear approximation it is necessary to know only 3-graviton
vertex. We assume the simplest possibility: the source of graviton is the energy-
momentum tensor of two other gravitons. In higher approximations probably
other vertices will be needed. Along this path one can ˇnd out what theories are
possible without assuming general covariance and a priori restriction on vertices.
An important step in this direction was made by Thirring [1Ä2]. We continue
his investigation in the same approximation and restrict ourselves to point-like
classical particles as sources of gravitation. Mainly we are interested in the
simplest system consisting of a Newtonian center and test particle moving in its
ˇeld.

In general relativity classical particles move along geodesics in Riemannian
space. This is the incarnation of equivalence principle and it is more reliable
than speciˇc equation determining the gravitational ˇeld [9]. As to the equation
determining gravitational ˇeld, it is possible to think that the phenomenological
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ˇeld-theoretical approach will lead to more complicated algorithm for getting the
ˇeld. An interesting possibility in this direction was pointed out by Schwin-
ger [10].

It is reasonable to believe together with Einstein that for some reason or
other the singular behaviour near the gravitational radius does not correspond to
reality, see §15 in A.Pais's book [11] and Einstein paper [12]. At present the
Schwarzschild singularity is considered as ˇctitious by many researchers because
the geometry is nonsingular there. See however the text after (2.2.6) in [13] and
after Eq. (9.40) in [14], where they say convincingly about physical singularity.
By ˇeld-theoretical approach it is difˇcult to understand why in a ˇnite system
the acceleration of a freely falling particle becomes unlimited when it nears the
horizon. Such a behaviour should be connected with the fact that according to
[15] the gravitational energy in vacuum outside the sphere of radius R goes to
−∞ for R → rg . In conformity with this the energy of matter and gravitational
ˇeld inside the sphere of radius R goes to +∞ in such a way that total energy
of spherical body is equal to its mass. But if a theory predicts that the absolute
value of ˇeld energy outside sphere of radius R might be greater than total energy
of a body, then the analogy with electrodynamics suggests that the concept of
external ˇeld becomes inapplicable [16]. The belief in general relativity in similar
circumstances is based upon the concept of nonlocalazability of gravitational
energy, see, e.g., §20.4 in [6]. What is more, general relativity does not need as
a rule the gravitational energy-momentum pseudotensor.

Yet for understandable reason there is a persistent desire to obtain the best
possible energy-momentum tensor in the framework of general relativity. For the
latest achievements in this ˇeld see the exellently written papers [17] and [18].

The situation changes drastically when we begin to construct gravity theory
starting from 	at spacetime and assume that in 3-graviton vertex each graviton
interacts with energy-momentum tensor formed by two other gravitons. Then
the nonlinear correction to the motion of a test particle depends on the chosen
energy-momentum tensor. The latter is built from ˇeld Lagrangian, which is
not unique as one can add to it some divergence terms. This leads to different
energy-momentum tensors. They can give rise to gravitational energy densities,
which may have even different signs. The question of sign of energy density is
of interest by itself. Provided the sign turns out to be positive, one should expect
the weakening of gravitational interaction at r ∼ rg = 2GM in comparison with
Newtonian one in order that the gravitational energy outside the sphere of radius
r were much less than the mass M of the centre. The possibility of decreasing
the interaction at small distances is suggested also by the behaviour of attraction
force between two bodies supported by Weyl's strut, see, §35 in [19].

In order to understand in what way the various energy-momentum tensors
differ one from the other we consider the following tensors: Thirring's [1, 2],
LandauÄLifshitz's [16], PapapetrouÄWeinberg's [9] and tensor obtained from
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the Lagrangian given in Exercise 7.3 in [6]. The second and third tensors are
representatives of general relativity, the rest are built from Lagrangians of free
ˇeld of spin-2, mass-0 particles and symmetrized by the BelinfanteÄRosenfeld
procedure, see §1 Ch.7 in [20].

In the considered approach it is suitable to subdivide the 3-graviton vertex into
three vertices in accordance with three possibilities for choosing two gravitons
out of three to form the energy-momentum tensor Å the source for the third
graviton (see Sec.2). So three diagrams contribute to nonlinear correction to the
ˇeld. In contrast with this the energy-momentum tensor, ˇguring in the solution
of Einstein equation by iteration procedure, is so deˇned that the correction to
ˇeld is given simply by means of propagator, i.e., by one diagram only.

The main result of the paper is this: starting from quadratic Lagrangians
(differing by divergence terms) of spin-2, mass-0 particles, the energy-momen-
tum tensors are constructed by BelinfanteÄRosenfeld procedure. It turns out that
only certain combination of these tensors (used in 3-graviton vertex) is ˇtted for
correct description of perihelion shift. This combination does not coincide with
PapapetrouÄWeinberg tensor.

The investigation of possibilities of phenomenological approach to gravita-
tion without use of general covariance seems to us very promising. Valuable
undertaking in this direction was made in [21].

Throughout the paper we use

gµν = ηµν + hµν , (1)

in Sections 2, 3, 5 ηµν = diag (1,−1,−1,−1); in Sections 4, 6 and Appedix
ηµν = diag (−1, 1, 1, 1). In Sec. 2 we use Thirring's notation [2]; both greek and
latin indices run from 0 to 3.

The gravitational ˇeld is described by the symmetric tensor hµν , which
contains spin-2 and lower spins, see, e.g., [3]. The unnecessary spins (spin-1 and
one of spin-0) are excluded by Hilbert gauge:

h̄µν
,ν ≡ (hµν − 1

2
ηµνh),ν = 0, h = hσ

σ, h,ν ≡ ∂

∂xν
h. (2)

2. THIRRING'S ENERGY-MOMENTUM TENSOR

Thirring was the ˇrst who attempted to synthesize ˇeld-theoretical and geo-
metrical approaches to gravitation [1, 2]. He tried to do several important things.
First, to demonstrate that in the lowest nonlinear approximation the graviton inter-
acts with something physically important, namely with energy-momentum tensor
of gravitational ˇeld. Second, that this energy-momentum tensor can be built by
ˇeld-theoretical methods starting from 	at spacetime. Finally, he wanted to show
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that his ˇeld-theoretical approach can be naturally brought in line with general
relativity. Yet Nature seems resists implementing Thirring ˇnal wish. To show
this we consider Thirring's paper in some detail.

One way to obtain Thirring's tensor is to start from general relativity La-
grangian

√−gR. If we remove terms with second derivatives of gµν into diver-
gence terms and drop the latter, we get the function

G(x) = gµν(Γσ
µτΓτ

νσ − Γτ
µνΓσ

τσ), (3)

see [16, 18]. Retaining in it only quadratic in hµν terms we get

G(x) =
1
4
[hµν,λhµν,λ − 2hµν,λhλν,µ + 2hνµ

,µh,ν − h,λh,λ]. (3a)

This is equivalent to Thirring's Lagrangian [2]

f

L=
1
2
[ψµν,λψµν,λ − 2ψµν,λψλν,µ + 2ψµν

,µψ,ν − ψ,λψ,λ]. (4)

Here

ψµν = −hµν/2f, ψ = ψσ
σ, f2 = 8πG, G = 6.67 ·10−8cm3/g · sec2. (5)

Thirring considers (4) as a Lagrangian of ˇeld of spin-2 massless particles.
Using ψµν instead of hµν is justiˇed because then the analogy with electro-

dynamics becomes more close: ψµν is analogous to vector-potential Aµ and has
the same dimensionality, M

√
G has the dimensionality of electromagnetic charge.

We note that the Lagrangian (4) exactly corresponds to Schwinger's Lagrangian
[10], who uses the notation ηµν = diag (−1, 1, 1, 1) and 2hSch

µν = −hT
µν = −hµν .

The canonical energy-momentum tensor following from (4), has the form

f

T γδ= ϕµν,δϕµν
,γ − 1

2
ϕ,δϕ,γ − 2ϕµν,δϕγ

ν,µ − ηγδ
f

L,

f

L=
1
2
[ϕµν,λϕµν,λ − 1

2
ϕ,λϕ,λ − 2ϕµν,λϕλν,µ], (6)

ϕµν ≡ ψ̄µν = ψµν − 1
2
ηµνψ, ψ = ψσ

σ. (7)

Using ϕµν instead of ψµν is handy as many expressions become more compact
and the consequences of imposition of Hilbert gauge more clear.

Now we look for ϕµν generated by energy-momentum tensor of a static
point-like mass (Newtonian center)

M

Tµν= Mδ(x)δµ0δν0. (8)
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The solution of linearized Einstein equation with the source (8) is [2]

ϕµν = −h̄µν/2f =
fM

4π|x|δµ0δν0, h̄µν = 4φδµoδν0, (9)

satisfying Hilbert condition (2). For one Newtonian centre φ = −GM/r. For
several centres

φ = −G
∑

a

ma

|r − ra|
. (10)

In terms of

hµν = h̄µν − 1
2
ηµν h̄, h̄ = h̄σ

σ
, (11)

we have
hµν = 2φδµν , h = hσ

σ = −4φ = −h̄. (12)

The energy density of ˇeld (9) is positive

f

T
00 =

1
8πG

(∇φ)2. (13)

As any canonical tensor of ˇeld of particles with nonzero spin, the tensor
f

T γδ

ought to be supplemented to symmetric one by the spin part (see [16]):

θγδ =
f

T
γδ+

s

T
γδ. (14)

For Newtonian centre Thirring obtains

s

T γδ= − 1
πG

(∇φ)2δγ0δδ0,
s

T̄ γδ= − 1
2πG

(∇φ)2δγδ. (15)

So in this case θ00 is negative

θ00 = − 7
8πG

(∇φ)2. (16)

Turning now to conservation laws of total energy-momentum we remind ˇrst
how matters stand in general relativity. There the energy-momentum tensor of

point-like particles
p

T µν is connected with its counterpart in special relativity T µν

by the relation, see (33.4), (33.5) and (106.4) in [16]:

√
−g

p

T µν= T µν =
∑

a

mauµuν ds

dt
δ(x − xa(t)), uµ = dxµ/ds, (17)
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g is determinant of gµν . In terms of T µν the conservation laws are (see (96.1)
in [16])

T µ
ν,µ = [T µτ (ητν + hτν)],µ =

1
2
hµσ,νT µσ. (18)

We shall see below that T µτhτν can be interpreted as (part of) interaction energy-
momentum tensor.

As is known the equation of motion of particles in general relativity

d2xk

ds2
+ Γk

mju
muj = 0 (19)

is contained in conservation laws. Indeed from

p

T
jk

;j =
p

T
jk

,j + Γj
mj

p

T
mk + Γk

mj

p

T
jm = 0, (20)

taking into account that from deˇnition of
p

T jk in (17)

p

T
jk

,j = −1
2
(−g)−

3
2 (−g),jT jk + (−g)−

1
2 T jk

,j, Γj
mj =

1
2g

g,m, (21)

we get
T jk

,j + Γk
mjT mj = 0. (22)

This is equivalent to (19), because [9]

T jm
,j =

∑
a

dpm

dt
δ(x − xa(t)). (23)

Going back to ˇeld-theoretical approach, we rewrite the equation of motion of
particles (19) in the lowest approximation

duµ

ds
=

d2xµ

ds2
=

1
2
hαβ

,µuαuβ − hµ
α,βuαuβ. (24)

Just at such movement of particles the divergence of total energy-momentum
ought to be zero, and inversely, from zero divergence follows Eq. (24). From
(23) and (24) we ˇnd

T γδ
,γ =

1
2
hαβ

,δT αβ − hδ
α,γT αγ . (25)

This agrees with (22) and (18) in considered approximation. With the same
accuracy this can be rewritten as

(T γδ + T γαhα
δ),γ =

1
2
hαβ

,δT αβ . (26)
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Using linearized Einstein equation for ϕµν

ϕµν,λ
λ − 1

2
ηµνϕ,λλ − ϕλ

ν,µλ − ϕλ
µ,νλ = f T̄ µν ,

T̄ µν = Tµν − 1
2
ηµνT , T = Tσ

σ, (27)

we get
f

T
γδ

,γ = fϕαβ,δT̄αβ = −1
2
h̄αβ

,δT̄ αβ = −1
2
hαβ

,δT αβ . (28)

Addind (26) and (28) we see that the total energy-momentum tensor is con-
served. Spin part of energy-momentum tensor is conserved by itself and does not
contribute to conservation laws:

s

T
γδ

,γ = 0. (29)

So from (26) and (28) it follows that the conserved tensor contains in itself
the interaction tensor [2]

int

T
γδ = T γαhα

δ. (30)

But it is not symmetric. In order to understand the reason we have to

consider the properties of
s

T γδ in detail despite the fact that it does not take
part in conservation laws written in the form of Eqs. (26) and (28). According to
known rules [2, 20] we have

s

T
jk = −F jik

,i − F kij
,i − F ikj

,i, (31)

F jik =
∂L

∂ϕαβ,j
(ϕk

αηi
β − ϕi

αηk
β), L =

f

L . (32)

The antisymmetric part of (31) is contained only in the last term. For it we have

−F ikj
,i =

(
∂L

∂ϕαj,i

)
,i

ϕk
α −

(
∂L

∂ϕαk,i

)
,i

ϕj
α +

∂L

∂ϕαj,i
ϕk

α,i −
∂L

∂ϕαk,i
ϕj

α,i.

(33)
The ˇrst two terms on the right-hand side symmetrize the interaction tensor, the
last two terms symmetrize the canonical one.

It is not seen directly from (6) and (31) that ˇeld energy-momentum tensor
θγδ in (14) is symmetric. This agrees with the fact that the proof of symmetry
utilizes the Euler-Lagrange equations for ˇeld which is considered as free [20].
We are interested in interacting ˇeld. So using linearized Einstein equation (27)
with source, we get(

∂L

∂ϕαj,i

)
,i

ϕk
α −

(
∂L

∂ϕαk,i

)
,i

ϕj
α = f(T̄ αjϕk

α − T̄ αkϕj
α) =

= f(T αjψk
α − T αkψj

α) =
1
2
(T αkhj

α − T αjhk
α). (34)
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In the last equation we use the connection between ψµν and hµν , see (5). Substi-
tuting in (30) γ → j, δ → k, we see that the sum of (30) and (34) is symmetric.
This result retains if we start from another Lagrangian differing from Thirring's
one in (6) by divergence because the linearized equation remains the same.

One should take into account however that the symmetric part of
s

T jk can
also contain terms of interaction type. So for the Lagrangian in (6) similarly to
(34) we ˇnd

−F jik
,i − F kij

,i = [fT − 2ϕil
,il]ϕkj + f [T̄ αjϕk

α + T̄ αkϕj
α] +

+2(ϕij,α
iϕ

k
α + ϕki,α

iϕ
j
α) + 2ϕjα,iϕk

α,i − (ϕαi,jϕk
α,i + ϕαi,kϕj

α,i) −
−2(ϕjk,α

iϕ
i
α + ϕjk,αϕi

α,i) + 2ϕki,αϕj
α,i. (35)

As a result we get for
s

T jk

s

T
jk = 2[(ϕij,α

iϕ
k

α + ϕik,α
iϕ

j
α) − ϕiα

,iαϕkj + ϕjα,iϕk
α,i − ϕjk,α

iϕ
i
α −

−ϕjk,αϕi
α,i + ϕki,αϕj

α,i] − 2ϕiα,jϕk
α,i + 2fT jαϕk

α. (36)

Here last but one term, added to
f

T jk, makes it symmetric. The last term can be
rewritten in terms of hµν in the form, see (9) and (11), (30),

−T jα(hα
k − 1

2
ηα

kh) = −
int

T
jk +

1
2
T jkh. (37)

So the symmetrization of
int

T jk in (30) is reduced to its replacement by 1
2T jkh.

This tensor is nonzero only where particles are present. For Newtonian centres
the corresponding energy density

1
2
T 00h = −2T 00φ (38)

is positive (contrary to our intuition and) contrary to
int

T 00 in (30), see (12) and
(10), where h and φ are given for Newtonian centres.

We note that the use of linearized Einstein Eq. (27) in the expression for
s

T jk

leads to that Eq. (29) is satisˇed only with considered accuracy. The presence of
interaction energy-momentum tensor means the appearance of such vertex: the
energy-momentum tensor of matter together with one of gravitons serves as a
source for other graviton, see Fig. 1.

Now we note that BelinfanteÄRosenfeld procedure leads to the appearance in
gravitational energy-momentum tensor terms with second derivatives.

Thirring assumes that his tensor θγδ (see (14), (6), (31)) is an analog of
energy-momentum tensor ˇguring in the r.h.s. of Einstein equation when iteration
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procedure is used. In other words the nonlinear correction to ˇeld is given only
by diagram (a) in Fig. 2. On this ˇgure the short straight line has only conditional

Fig. 1. The sec-
ond rank ten-
sor formed from
matter energy-
momentum ten-
sor and graviton
is a source for
another graviton

meaning: it represents the source of gravitons, namely the
energy-momentum tensor built of two gravitons (real or virtual)
shown in Fig. 2 as joining the ends of this line. The graviton
emerging from the middle of straight line is emitted or absorbed
by this source. On diagram (a) the energy-momentum tensor
is build from gravitons of Newtonian centre. On diagrams (b)
and (c) one of the virtual gravitons of Newtonian centre interact
with energy-momentum tensor of two other gravitons. All three
diagrams in Fig. 2 correspond to one Feynman diagram obtained
by contracting the short straight line to a point.

The contribution to nonlinear correction for ˇeld from dia-
gram (a) is easy to obtain. Indeed, from (14), (6) and (15) we
have

θjk =
f

T
jk =

1
4πG

(
φ,jφ,k − δjk

2
(∇φ)2

)
, j, k = 1, 2, 3. (39)

Using now the ˇeld equation in Hilbert gauge with θµν from (16) and (39)

�h̄µν = −16πGθµν , � =
∂2

∂t2
−∇2. (40)

Fig. 2. 3-graviton vertex. Short straight line serves only to distinguish the roles of
participating gravitons: energy-momentum tensor is formed from two gravitons joining
the straight line at its ends, this energy-momentum tensor serves as a source for graviton
emerging from the middle of the straight line. Crosses represent external ˇeld sources

we ˇnd

h̄00 = −7φ2, h̄ik = −G2M2

r4
xixk, φ = −GM

r
, i, k = 1, 2, 3. (41)

Here easily veriˇable relations

∇2 xixk

r4
=

2δik

r4
− 4xixk

r6
, ∇2 1

r2
=

2
r4

(42)
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were used. The obtained h̄µν satisˇes Hilbert condition. Going over to hµν =
h̄µν − 1

2ηµν h̄, we ˇnd the following nonlinear corrections

h00 = −4φ2, hik = −G2M2(
xixk

r4
+

3δik

r2
). (43)

Index 2 in
(2)

h µν , indicating the order of correction in powers of G, is dropped
for brevity.

Finally from (12) and (43) we have

ds2 = g00dt2 − (1 − 2φ + 3φ2)δikdxidxk − φ2 xixkdxidxk

r2
, (44)

g00 = 1 + 2φ − 4φ2. (45)

The transition to spherical coordinates is given by the relations

δikdxidxk = dr2 + r2(dθ2 + sin2 θdϕ2),
xixkdxidxk

r2
= (dr)2.

Why the nonlinear correction in (45) turns out to be negative? It will appear
later on that it is caused solely by the source (15), see Eqs. (95) and (93a). The
sources (8) and (15) have different signs, but the corresponding ˇelds have the
same sign. The answer is simple. The correction in (45) is only a small (and
negative) part. The larger and positive part goes for converting initially bare mass
in Newtonian potential into a dressed one, see Eq. (A9). Now the negative sign
of correction is clear: the mass of Newtonian centre at inˇnitely large distance
appears as M , but at ˇnite distance the test particle feels a greater mass and
greater attraction, because (15) is negative.

The nonlinear correction −4φ2 in g00 in (45) is of special interest for us. The
correct value necessary to explain the perihelion shift is +2φ2. The shortest way
to see this is to use the method described in §101 in [16]. We write in spherical
coordinates

ds2 = A(r)dt2 − B(r)dr2 − C(r)(dθ2 + sin2 θdϕ2).

The solution to HamiltonÄJacobi equation has the form

S = −Et + Jϕ + Sr(r), Sr(r) =
∫

B(r)[
E2

A(r)
− J2

C(r)
− m2]

1/2

dr.

Here E and J are constants.
For nonrelativistic particle E = m + E ′, E ′ � m, and the main terms in

square bracket in the expression for Sr are cancelled out:

1/A(r) − 1 ≈ −2φ(1 − φ),

where we have assumed that A(r) = 1 + 2φ + 2φ2.
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So we have to retain in A−1(r) terms of order φ2, but in B(r) and r2C(r)−1

only terms of order φ: B(r) = r−2C(r) = 1 − 2φ. Thus

B(r)(A(r)−1 − 1) ≈ −(1 − 2φ)2φ(1 − φ) ≈ −2φ(1 − 3φ) =
rg

r
+

3r2
g

2r2
.

The leading term ∝ r−2 in Sr is

− 1
r2

(J2 −
3m2r2

g

2
).

As explained in [16], the expansion

Sr(J2 −
3m2r2

g

2
) = Sr(J2) −

3m2r2
g

2
∂Sr

∂J2

directly leads to correct perihelion shift.
In general the motion of a particle is described by equations (cf. §4 in Ch. 8

in [9])

C(r)
dϕ

dt
= JA(r),

B(r)
A2(r)

(
dr

dt

)2

+
J2

C(r)
− 1

A(r)
= −E. (45a)

For nonrelativistic particle only the third term on the l.h.s. of second equation in
(45a) does not contain small factor of order v2. So it requires more accurate ap-
proximation. For relativistic particle A(r), B(r) and C(r)

r2 ought to be considered
in the same approximation.

Now taking into account all 3 diagrams of Fig.2 we get instead of (44) (see
Appendix for more details and pay attention to difference in metric signature
there)

ds2 = (1 + 2φ + 4φ2)dt2 − (1 − 2φ + 9φ2)(dx)2 + 13φ2 xixj

r2
dxidxj . (45b)

As the nonlinear correction to g00 is twice as much as necessary, Thirring tensor
alone is insufˇcient.

We note here that Thirring obtained from his tensor the necessary correction.
Yet his result is objectionable as he used illdeˇned gauge

�2Λ =
G2M2

4r2
,

see Eq. (83) in [2]. Namely the source of Λ fall of too slowly for large r and the
integral deˇning Λ, see (A8), diverges for large r′.

In the next two Sections we shall see how energy-momentum ®tensors¯ of
general relativity differ from Thirring's tensor.
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3. LANDAUÄLIFSHITZ PSEUDOTENSOR OF ENERGY-MOMENTUM

This pseudotensor in the sense and approximation considered here is a tensor.
In the lowest approximation with the help of relation

√
−ggik ≈ (1 +

h

2
)(ηik − hik) ≈ ηik − h̄ik (46)

we get from Eq. (96.9) in [16]

tik =
1

16πG
[h̄ik,lh̄lm

,m− h̄il
,lh̄

km
,m− h̄km,ph̄mp

,i− h̄im,ph̄mp
,k + h̄im,ph̄k

m,p+

+
1
2
h̄pq,ih̄pq

,k − 1
4
h̄,ih̄,k + ηik(

1
2
h̄mn,ph̄

pm,n +
1
8
h̄,mh̄,m − 1

4
h̄pq,mh̄pq,m)]. (47)

Comparison with canonical tensor (6) shows that it is connected with tik by the
relation

tik =
f

T
ik + F ik, h̄ik = −2fϕik,

F ik =
1

16πG
[h̄ik,lh̄ln

,n − h̄il
,lh̄

kn
,n − h̄kn,ph̄np

,i + h̄in,ph̄k
n,p]. (48)

From (14) we see that now in place of
s

T ik stands F ik. But
s

T ik was a
conserved quantity, see (29). So F ik should rather play the role of interaction
energy-momentum tensor. Indeed, taking into account that in the considered
approximation h̄ik satisˇes the linearized Einstein equation

h̄np,j
j − h̄jp,n

j − h̄jn,p
j + ηnph̄qr

,qr = −16πGTnp, (49)

we ˇnd

F jk
,j = h̄kn,iTni = hkn,iTni −

1
2
h,iTi

k. (50)

Now we check that coservation laws [16]

∂

∂xk

(
(−g)[

p

T
ik + tik]

)
= 0 (51)

are fulˇlled. From (48), (28) and (50) we have

tik,i = −1
2
hiq,kTiq + hkn,iTni −

1
2
h,iTi

k. (52)

For matter energy-momentum tensor from (17) we get

(−g)
p

T
ik =

√
−gT ik ≈ (1 +

h

2
)T ik, −g ≈ 1 + h. (53)
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From here (
(−g)

p

T
ik

)
,i

= T ik
,i +

1
2
h,iT ik, (54)

the terms of order h2 being dropped. Now it follows from (25), (52) and (54)
that (51) is fulˇlled. As is seen from (53) here, too, there is a tensor, which is
nonzero only where particles are located. Surprisingly it coincides with Thirring's
interaction tensor, see (37) and text below it.

Although −g
p

T ik + tik differs from Thirring's T ik+
int

T ik + θik, for
Newtonian centres they coincide, see Eqs. (16) and (39).

Now we turn to Newtonian approximation. According to Problem 1 in §106
in [16] the energy density of gravitational ˇeld in this approximation is given by
f

T 00 in (13), (10). But there is also energy density of interaction µφ, where µ
is density of particles. Using Poisson equation ∇2φ = 4πGµ and ignoring the
problems connected with point-like nature of particles, we can write (utilizing
integration by parts) ∫

µφdV = −
∫

1
4πG

(∇φ)2dV. (55)

The density in the integrand on the r.h.s. contains now not only the energy
density of interaction, but also the proper energy density of particle's self-ˇeld.
The density on the l.h.s. is nonzero only at particle locations, the density on the
r.h.s. is nonzero where the ˇeld is nonzero. The integration by parts deprive us the
possibility to retain the previous physical meaning of integrand. If nevertheless
we do this, then adding to (13) the energy density in the r.h.s. of (55) we get the
effective gravitational energy density in Newtonian approximation

− 1
8πG

(∇φ)2. (56)

To bring this in agreement with t00 we ought, according to a foot-note in [16],

take into account the contribution from (−g)
p

T 00. Let us do it. For t00 we have

t00 = − 7
8πG

(∇φ)2, (57)

where φ is the potential of Newtonian centres. Now

(−g)
p

T
00 =

√
−gT 00 ≈ T 00(1 +

h

2
) ≈ T 00 − 2φµ, (58)

see (12). The sought for agreement will be reached only after we rewrite a la
Thirring [2] T 00 in terms of observables. From (17)

T 00 =
∑

a

ma
dx0

ds
δ(x − xa(t)). (59)
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In the presence of gravitational ˇeld

ds2 = g00dt2(1 − v2). (60)

Here v2 is physical velocity, see §88 in [16]. Hence

dx0

ds
=

1√
g00(1 − v2)

≈ 1√
1 − v2

− h00

2
, v2 � 1. (61)

Thus after going over to the observable velocity we obtain the term

−h00

2
µ = −φµ (62)

detached from T 00. Equation (12) was used to get the r.h.s. Together with
corresponding term in (58) this leads to

−3µφ =⇒ 3
4πG

(∇φ)2, (63)

where arrow corresponds to going over in (55) from integrand on the l.h.s. to the
integrand on r.h.s. Now the sum of (57) and (63) gives the expected (56).

The consideration of Newtonian approximation makes the following point of
view very enticing: The energy density of an isolated point-like particle should be
positive; Hilbert gauge exclude the unnecessary spins and then positivity seems
quite natural, because the presence of virtual gravitons should not make the energy
density negative. The attraction is described by interaction energy density and
so the latter must be negative. Neither Thirring tensor nor LandauÄLifshitz one
satisˇes this requirement. The MTW tensor does. Unfortunately I failed to ˇt
this idea into existing approach to gravitation.

Using LL tensor in 3-graviton vertex we get from diagram (a) in Fig. 2 the
same contribution as in the case of Thirring tensor. The contribution from all 3
diagrams of Fig. 2 leads to

ds2 = (1 + 2φ + 4φ2)dt2 − (1 − 2φ + 7φ2)(dx)2 + 7φ2 xixj

r2
dxidxj . (63a)

4. PAPAPETROUÄWEINBERG ENERGY-MOMENTUM TENSOR

Einstein equation can be recast in such a way that gravitational energy-
momentum ®tensor¯ can be easily identiˇed in coordinate system that goes over
to Minkowski system at large distances from gravitating bodies [9]. In the lowest
approximation this tensor has the form, see Eq. (7.6.14) in [9])

tµκ =
1

8πG
[−1

2
hµκR(1) +

1
2
ηµκhρσR(1)

ρσ + R(2)
µκ − 1

2
ηµκR(2)], R(1,2) = R(1,2)

µ
µ.

(64)
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In this Section we use Weinberg notation:

ηµν = diag (−1, 1, 1, 1), gµν = ηµν + hµν , hµν ≡ hW
µν = −hThir = −hLL

µν .
(65)

Greek indices run from 0 to 3; latin ones, from 1 to 3. R
(1,2)
µν is Ricci tensor in

the ˇrst and second approximation in powers of hµν . The indices are raised and
lowered with ηµν . In terms of h̄µν we get

R(1)
µν =

1
2
(h̄µν,σ

σ − h̄σµ,ν
σ − h̄σν,µ

σ) − 1
4
ηµν h̄,σ

σ , R(1) = −h̄µσ
,µσ − 1

2
h̄,σ

σ ,

(66)

R(2)
µκ =

1
2
h̄λν [h̄µν,κλ+h̄κν,µλ−h̄λν,κµ−h̄µκ,νλ]−1

4
(h̄λ

µh̄,κλ+h̄κ
ν h̄,µν) +

+
1
4
h̄(h̄,µκ + h̄µκ,λ

λ − h̄µ
λ

,κλ − h̄ν
κ,νµ) − 1

4
(h̄ν

µ,ν h̄,κ + h̄ν
κ,ν h̄,µ) +

+h̄,σ(
1
2
h̄µκ,σ − 1

4
h̄κσ,µ − 1

4
h̄µσ,κ) +

1
2
h̄ν

σ,ν(h̄σ
µ,κ + h̄σ

κ,µ −

−h̄µκ
,σ) +

1
2
h̄κσ,λ(h̄µ

λ,σ − h̄µ
σ,λ) − 1

4
h̄σλ,κh̄σλ

,µ +
1
8
h̄,µh̄,κ +

+ηµκ[
1
4
h̄λν h̄,λν − 1

8
h̄h̄,λ

λ +
1
4
h̄ν

σ,ν h̄,σ − 1
8
h̄,σh̄,σ], (67)

R(2) = h̄λν(h̄κν
,κ

λ − 1
2
h̄νλ,σ

σ) + h̄ν
σ,ν h̄σκ

,κ − 1
2
h̄ν

σ,ν h̄,σ +

+
1
2
h̄κσ,λh̄κλ,σ − 3

4
h̄κσ,λh̄κσ,λ − 1

2
h̄h̄κλ

,κλ +
1
8
h̄,σh̄,σ. (68)

For Newtonian centre from (9)Ä(12) we obtain

h̄µν = −h̄T
µν = −4φδµ0δν0, hµν = −hT

µν = −2φδµν ,

h = hW = hT = −4φ = −h̄. (69)

Nonzero components of tµκ are

t00 = − 3
8πG

(∇φ)2 = −3GM2

8πr4
, tik =

GM2

8πr6
(7δikr2 − 14xixk). (70)

In Hilbert gauge from equation

∇2h̄µν = −16πGtµν (71)
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we ˇnd, cf. with (40), (42),

h̄00 =
3G2M2

r2
= 3φ2, h̄ik = −7G2M2 xixk

r4
. (72)

It is easy to check that (72) satisˇes the Hilbert condition (2). In terms of hµν

we have

h00 = −2φ2, hik = G2M2(
5δik

r2
− 7

xixk

r4
). (73)

In the expressions (71)Ä(73) hµν is nonlinear correction.
On the other hand, in harmonic coordinates the Schwarzschild solution has

the form [9]

−dτ2 = −1 + φ

1 − φ
dt2 + (1 − φ)2(dx)2 +

1 − φ

1 + φ
φ2 xixk

r2
dxidxk. (74)

So in the considered approximation this gives

g00 = −(1 + 2φ + 2φ2), (75)

gik = (1 − 2φ)δik + φ2(δik +
xixk

r2
). (76)

From (69) we have h
(1)
00 = −2φ, from (73) h

(2)
00 = −2φ2, and there is agreement

with (75). As to the nonlinear correction for gik, in (73) it differs from the one in
(76) by a gauge. Really, subtracting from hik in (73) the nonlinear part of (76),
we ˇnd

G2M2(
4δik

r2
− 8xixk

r4
) = 2G2M2(Λi,k + Λk,i), Λi =

xi

r2
, (77)

i.e., a gauge.
Going back to t00 in (70), we note that this density is negative and does not

coincide with any density of other tensors. At the same time the equation of mo-
tion of particles is contained in the conservation laws of total energy-momentum
tensor. We shall check it in considered approximation. For gravitational part the
calculations give

tµκ
,κ = −hν

σ,νT µσ +
1
2
h,σT µσ − 1

2
hρσ,µTρσ − hνλT µ

ν,λ. (78)

The energy-momentum tensor for particles, ˇguring in conservation laws, has a
rather complicated form by construction [9]

τµκ = ηµσηκτgσαgτβ

p

T
αβ ≈

p

T
µκ + hµ

αT ακ + hκ
αT αµ ≈

≈ T µκ − 1
2
hT µκ + hµ

αT ακ + hκ
αT αµ. (79)



22 NIKISHOV A.I.

From here with the considered accuracy

τµκ
,κ =

p

T
µκ

,κ + hµ
α,κT ακ + hκ

α,κT αµ + hκ
αT αµ

,κ. (80)

So

(τµκ + tµκ),κ =
p

T
µκ

,κ − 1
2
hρσ,µTρσ + hµα,κTακ +

1
2
h,σT µσ. (81)

Further from (53) we get

p

T
µκ

,κ ≈ T µκ
,κ − 1

2
h,κT µκ. (82)

Taking into account (25) we see that the r.h.s. of (81) is zero.
Now we turn to Newtonian approximation. Terms of interaction tensor are

contained in both τµν (three last terms in the r.h.s. of (79)) and in tµκ. From
(64), (66)Ä(68), using (49), which preserve its form in the notation of this Section,
we ˇnd the following terms of interaction tensor contained in tµκ:

−1
2
hµκT − ηµκ(h̄ρσTρσ − 1

4
h̄T ) − 1

2
h̄Tµκ.

From here and the ˇrst equation in (70) we get in Newtonian approximation

t00 = − 3
8πG

(∇φ)2 − 6φT00. (83)

Here φ is the same as in (10). From (79) and (53) we get in this approximation

τ00 = (−g)−
1
2 T 00 +2h0

0T 00 ≈ T 00(1− 1
2
h)−2h00T 00 = T 00 +6φT 00. (84)

Thus in Newtonian approximation the interaction terms in the sum of (83) and (84)
are cancelled out. The agreement with Newtonian approximation (56) is achieved
in the same way as for LandauÄLifshitz tensor: T 00 on the r.h.s. of (84) detaches
term (62), which is equivalent (in accordance with (63)) to 1

4πG(∇φ)2. Together
with the ˇrst term on the r.h.s. of (83) this gives (56).

Weinberg shows in detail that his energy-momentum tensor has all required
characteristics. But this tensor does not help us to ˇnd energy-momentum ten-
sor of two gravitons as represented by straight line on diagrams of Fig. 2. By
construction Weinberg's tensor gives the gravitational ˇeld only via diagram (a)
in Fig. 2. The ˇeld-theoretical description tells us that test particle is not quite
passive. It does not simply follow the command ®move along geodesic¯ but itself
takes part in the creation of ˇeld in which it moves, see Fig. 2(b, c). From this
viewpoint one can expect that, e.g., photon and graviton scatter differently on
Newtonian centre as only in the latter case all three diagrams of Fig. 2 contribute.
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5. MISNERÄTHORNEÄWHEELER ENERGY-MOMENTUM TENSOR

In this Section it is handy for us to use again Thirring's notation. Up to
divergence terms the Lagrangian (6) may be rewritten as [6]

L =
1
2
ϕµν,λϕµν,λ − 1

4
ϕ,λϕ,λ − ϕµν

,µϕλν
,λ. (85)

The corresponding canonical energy-momentum tensor

f

T
jk =

∂L
∂ϕµν

,j
ϕµν,k − ηjkL (86)

acquires the form

f

T
jk = T̄ jk−1

2
ηjkT̄ , T̄ jk = ϕµν,kϕµν

,j−1
2
ϕ,kϕ,j−2ϕjν,kϕνσ

,σ , T̄ = −T = 2L.

(87)
Spin part is given by (31)Ä(32) with substitution L → L. We dwell on differences
from Thirring's tensor. In symmetric in jk tensor

F jik + F kij = (ϕαi,j − ϕασ
,σηji)ϕk

α + (ϕαi,k − ϕασ
,σηki)ϕj

α −
−2ϕiσ

,σϕkj + (2ϕασ
,σηjk − ϕαk,j − ϕαj,k)ϕi

α + ϕkσ
,σϕij + ϕjσ

,σϕik (88)

there are no derivatives over xi. This means that in divergence F jik
,i + F kij

,i

there are no terms of interaction tensor. In antisymmetric in jk tensor

F ikj = (ϕαk,i − ϕασ
,σηik)ϕj

α − ϕkσ
,σϕij + (ϕασ

,σηij − ϕαj,i)ϕk
α + ϕjσ

,σϕik

(89)
such terms are present. Hence, using linearized Einstein equation (27) in the
expression for F ikj

,i, we get

−F ikj
,i = f(T̄ jαϕk

α − T̄ kαϕj
α) + ϕασ

,σ(ϕj
α

,k − ϕk
α

,j). (90)

Terms with f together with (30) give symmetric interaction tensor in accordance

with (34). Other two terms on the r.h.s. of (90) supplement
f

T jk to symmetric
one, see (87). So we get

θjk =
f

T
jk+

s

T
jk = ϕµν,kϕµν

,j − 1
2
ϕ,kϕ,j − ϕjσ

,σiϕ
ik − ϕkσ

,σiϕ
ij −

−ϕαi,jϕk
α,i − ϕαi,kϕj

α,i + (ϕαj,k
i + ϕαk,j

i)ϕi
α + 2ϕiσ

,iσϕjk +
+2ϕiσ

,σϕkj
,i − 2ϕjσ

,σϕki
,i + (ϕαk,j + ϕαj,k)ϕασ

,σ −
−2ηjk(ϕασ

,σϕi
α),i − ηjkL + f(T̄ jαϕk

α − T̄ kαϕj
α). (91)
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From (91) and (30), using the relation between ϕµν and h̄µν in (9), and taking
into account (34), we ˇnd

θjk+
int

T jk =
1

32πG
[h̄µν,kh̄µν

,j − 1
2
h̄,kh̄,j − (h̄jσ

,σih̄
ik + h̄kσ

,σih̄
ij)−

−(h̄αi,j h̄k
α,i + h̄αi,kh̄j

α,i) + (h̄αj,k
i + h̄αk,j

i)h̄i
α + 2h̄iσ

,σih̄
jk + 2h̄iσ

,σh̄kj
,i−

−2h̄jσ
,σh̄ki

,i + (h̄αk,j + h̄αj,k)h̄ασ
,σ − 2ηjk(h̄ασ

,σh̄i
α),i − ηjkL]+

+
1
2
(T kαhα

j + T jαhα
k), (92)

L =
1

32πG
[
1
2
h̄µν,λh̄µν,λ − 1

4
h̄,λh̄,λ − h̄µν

,µh̄λν
,λ]. (93)

It is easy to verify that total energy-momentum tensor consisting of (17) and (92)
is conserved. The canonical part of MTW tensor in Hilbert gauge has the form

f

T
γδ =

1
32πG

{h̄µν,δh̄µν
,γ − 1

2
h̄,δh̄,γ−

−ηγδ[
1
2
h̄µν,λh̄µν,λ − 1

4
h̄,λh̄,λ]} = T̄ γδ − 1

2
ηγδT̄ . (93a)

For Newtonian centres this expression coincides with Thirring's one, see Eq. (6).

As noted earlier the nonlocal part of
s

T µν is zero for Newtonian centres.
For these centres from (92) and (9), (12) we have

θ00+
int

T
00 =

1
8πG

(∇φ)2 + 2µφ, µ = T 00. (94)

For this system the MTW Lagrangian (93) coincides with Thirring's one. The
same is true for canonical energy-momentum tensors, see (6) and (86)Ä(87), but
spin parts are different. It follows from (91) and (87) that for Newtonian centres
MTW spin part contributes only to interaction tensor, while Thirring's spin part
contributes also to pure ˇeld part, see (15).

We note now that in the Hilbert gauge for static case (for Newtonian centres)
the linearized Einstein equation can be written as

∇2hW
µν = −∇2hT

µν = −16πGT̄µν , (95)

see (A12) below. As is seen from (93a) for this system T̄00 = 0, i.e., there is no
contribution to h00 from diagrams of Fig. 2.

Comparing MTW and Thirring tensors in Newtonian approximation we see
that addition of divergence terms to Lagrangian leads to the change in subdivision
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of energy density between purely ˇeld part and interaction part. Using (61)Ä
(63) we obtain from (94) the effective gravitational energy density in Newtonian
approximation given in (56).

Returning now to contributions from diagrams of Fig. 2 we ˇnd that diagram
(a) leads to

ds2 = (1 + 2φ)dt − (1 − 2φ − φ2)(dx)2 − φ2 xixj

r2
dxidxj . (96)

Contribution from all 3 diagrams of Fig. 2 is represented in the expression

ds2 = (1 + 2φ)dt2 − (1 − 2φ − 5φ2)(dx)2 − 9φ2 xixl

r2
dxidxj . (97)

6. DISCUSSION

We have assumed in this paper that in 3-graviton vertex each graviton inter-
acts with gravitational energy-momentum tensor formed from two other gravitons.
But in general relativity the 3-graviton vertex is given by cubic in hµν terms in
function G(x), see Eq. (3). Correcting a misprint in [22] one ˇnds that these
terms are given by Qγθ:

Qγθ =
1

32πG
{ηγθ[hαβ,λhλβ,α − 1

2
hαβ,λhαβ,λ − hαβ

,αh,β +
1
2
h,λh,λ] +

+hαβ,γhαβ
,θ − 2hγα,βhθ

β,α + 2hγα,βhθ
α,β + (hγα,θ + hθα,γ)h,α −

−2hγθ,αh,α + (hγα
,αh,θ + hθα

,αh,γ) − h,γh,θ + 2hγθ,αhαβ
,β −

−2(hαγ,βhαβ
,θ + hθα,βhαβ

,γ)}. (98)

There are no reasons to expect that Qγθ is conserved energy-momentum
tensor. Moreover it does not contain second derivatives and we know that the
only conserved energy-momentum tensor with this property is LandauÄLifshitz
tensor [16]. Yet (98) does not coincide with LL tensor. This is conˇrmed also
by the fact that (98) leads to general relativity result (73), while LL tensor leads
to (63a).

We note now somewhat unexpected fact: the half sum of LL and MTW
tensors reproduces general relativity result (76). On the other hand, the half sum
of Thirring tensor and MTW tensor gives

ds2 = (1 + 2φ + 2φ2)dt2 − (1 − 2φ + 2φ2)(dx)2 + 2φ2 xixj

r2
dxidxj . (99)

This is half sum of (45b) and (97). In such space-time a relativistic particle
moves differently (in G2 approximation) from what is expected according general
relativity.
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Thus, assuming that in 3-graviton vertex each graviton interacts with energy-
momentum tensor (built by ˇeld-theoretical means) of two other gravitons, we
cannot reproduce general relativity results even in this lowest nonlinear approx-
imation. If, on the one hand, Nature chooses the 3-graviton vertex as assumed
here, then the gravitational energy-momentum tensor is speciˇed (in considered
approximation) by the correct choice of 3-graviton vertex.

7. CONCLUDING REMARKS

Though general covariance was not assumed, the gauge invariance is of
course retained [2,10]. For this reason the weak gravitational waves in 	at space
are described as in general relativity. All considered tensors give the same
energy-momentum tensor for the plane gravitational wave. There are no a priori
reasons to believe that ˇeld-theoretical approach will give the same result as
general relativity. It seems that there is still much to be done to synthesize the
geometrical and ˇeld-theoretical aspects of gravitations.

I wish to thank V.I.Ritus, I.V.Tyutin, and S.L.Lebedev for useful discussions
and D.E.Ivanov for collaboration in evaluating the contribution from diagrams
(b) and (c) in Fig. 2. I am also grateful to V.N.Pervushin for careful reading the
manuscript and suggestions to improve it.

8. APPENDIX

Using ηµν = diag (−1, 1, 1, 1) we give here some details of calculating hµν .
We utilize the expression

hµν =
∫

d4x′Dµνρσ(x − x′)tρσ(x′), (A1)

where graviton propagator

Dµνρσ(x − x′) = PµνρσD+(x − x′), (A2)

D+(x) =
i

(2π)3

∫
d3p

2p0
exp i(px − p0|t|), (A3)

Pµνρσ =
1
2
(ηµρηνσ + ηµσηνρ − ηµνηρσ). (A4)

The polarization factor Pµνρσ satisˇes the relations

tµνPµνρσ = tρσ − 1
2
ηρσt ≡ t̄ρσ, PµνρσT ρσ = T̄µν ,
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tµνPµνρσT ρσ = tµνTµν − 1
2
tT = tµν T̄µν = t̄µνTµν . (A5)

The scalar factor D+(x) has the representation

D+(x) =
1
4π

δ+(x2) =
i

(2π)2
1

x2 + iε
, (A6)

and possesses the property∫
dτD+(x − x′, τ) =

i

(2π)2

∫ ∞

−∞

dτ

(x − x′)2 − τ2 + iε
=

1
4π|x− x′| . (A7)

For spherically symmetric body we have to deal with integrals of the kind∫
d4x′D+(x − x′)ρ(r′) =

1
4π

∫
d3x′√

x′2 + x2 − 2x · x′
ρ(r′) =

=
1
r

∫ r

0

dr′r′
2
ρ(r′) +

∫ ∞

r

dr′r′ρ(r′). (A8)

By the way it is seen from here that the derivative of Newtonian potential over r
is determined only by the mass inside sphere of radius r. Assuming in (A8) that
ρ = c

r4 , we get

1
r

∫ r

δ

dr′r′
2
ρ(r′) +

∫ ∞

r

dr′r′ρ(r′) = c

(
1
rδ

− 1
2r2

)
. (A9)

Hence the divergent part at small r′ appears only in the term, which is absorbed
by mass renormalization.

So the source (13) generates the ˇeld

h̄00 = 16πG

∫
d4x′D+(x − x′)T00(x′) =⇒ −φ2. (A10)

The arrow shows that the divergent part is included in mass renormalization. The
r.h.s. of (A10) can be obtained also from the solution of wave equation derived

from (A10) by action of the operator ∂2 = ∇2 − ∂2

∂t2 and taking into account that

−∂2D+(x − x′) = δ(x − x′) , ∇2 1
r2

=
2
r4

. (A11)

We note also that

hµν = 16πG

∫
d4x′D+(x − x′)T̄µν(x′). (A12)
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Now we shall indicate how to obtain the contribution from diagram (b) in Fig. 2.
(The diagram (c) contributes as much as (b) and diagram of Fig. 1 is irrelevant
to ˇnding terms in gµν .) First of all we remark that some terms in energy-
momentum tensor are not symmetric in h forming the tensor. Such terms ought
to be symmetrized. For example the third term on the r.h.s. of (36) should be
rewritten as

−2ϕαβ
,αβϕγθ ⇒ −ϕαβ

,αβϕγθ − ϕγθϕ
αβ

,αβ . (A13)

This is important because the left ϕ will always be considered (for the case
of diagram (b)) as ®contained¯ in propagator and the right ϕ as originating
from Newtonian centre. Moreover the second term in the r.h.s. of (A13) may
be dropped as ϕ coming from Newtonian centre satisˇes Hilbert condition (2).
Rewritten in terms of h (see (7) and (5)) the ˇrst term on the r.h.s. of (A13) has
the form

−ϕαβ
,αβϕγθ = − 1

32πG
[hαβ

,αβhγθ −
1
2
h,α

αhγθ −
1
2
ηγθh

αβ
,αβh +

1
4
ηγθh,α

αh].

(A14)
Now we consider the contribution from the ˇrst term in the r.h.s. of (A14).

Dropping temporarily the constant factor we have to evaluate the integral∫
d4x′[Dµναβ(x − x′)],αβhγθ(x′)hγθ(x′). (A15)

The last h represents the graviton of Newtonian centre. This graviton interacts
with the source, given by ˇrst term in the r.h.s. of (A14). Using (A2), (A4) and
(69) we come to integrals

Iµν = −
∫

d4x′[D+(x − x′)],µνφ2(x′),

∫
d4x′[D+(x − x′)],ααφ2(x′) = −φ2(x). (A16)

The ˇrst equation in (A11) was used in the last equation in (A16). The ˇrst
integral in (A16) is treated as follows. Integrating by parts we get

Iµν =
∫

d4x′[D+(x − x′)],µ2φ(x′)φ,ν(x′). (A17)

As φ(x) is independent of x0, ν = 0 does not contribute. For the same reason
µ = 0 also does not contribute. Indeed for µ = 0 we integrate over x′0 and get
the factor

D+(x − x′)|+∞
−∞ = 0,
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see (A6). Thus we replace µ and ν by i, j = 1, 2, 3. Integrating (A17) over x′0

we obtain

Iij =
G2M2

4π

∫
d3x′

(
∂

∂x′j
1

|x − x′|

)
2

(
∂

∂x′i
1
r′

)
1
r′

. (A18)

Here we have used (A7) and expression for φ, see text before Eq. (10). Now
writing

1
r′

∂

∂x′i
1
r′

=
1
2

∂

∂x′i
1

r′2
(A19)

and again integrating by parts we ˇnd

Iµν = −G2M2

4π

∫
d3x′ 1

|x − x′|
∂2

∂x′i∂x′j
1

r′2
. (A20)

Using relations(
1
r2

)
,ij

= −2δij

r4
+

8xixj

r6
= ∇2

(
−2xixj

r4
+

δij

r2

)
(A21)

and again twice integrating by parts we get

Iij = −G2M2

4π

∫
d3x′

(
−2

x′ix′j

r′4
+

δij

r′2

)
∇2 1

|x − x′| =

= G2M2

(
−2

xixj

r4
+

δij

r2

)
= δijφ

2 − 2r2φ,iφ,j . (A22)

Finally restoring all factors we ˇnd that the contribution from the ˇrst term
in (A14) is

−4ηµνφ2 + 8Iµν . (A23)

The divergent integral

J =
∫

d4x′D+(x − x′)(∇2φ(x′))φ(x′),

appearing in some terms, is cancelled out in ˇnal result.
At last we show how to obtain the ˇnite part of the integral

Jij =
∫

d4x′D+(x−x′)φ,ij(x′)φ(x′) = G2M2

∫
d3x′

4π

1
|x − x′|

3x′ix′j − x′2δij

r′6
.

(A24)
Utilizing relation

∇2Iij(x) =
r2δij − 3xixj

r6
G2M2,
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and (cf. (42))

∇2

(
3
4

xixj

r4
− δij

4r2

)
=

δij

r4
− 3xixj

r6

we ˇnd that the ˇnite part of Iij is

3
4
r2φ,iφ,j −

δij

4
φ2. (A25)

The essential part of this Appendix machinery is checked up by obtaining the
expression (73) starting from (98). Calculation of g00 can be made by much
easier method suggested by Schwinger, see [10] and [21]. This method uses more
fully Hilbert condition and it is helpful for controlling some of our calculation.
For example it is clear from this method that (A13) does not contribute to h00.
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