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Five different versions of the three-dimensional (3D) reduction of the Bethe-Salpeter (BS)
equation in the instantaneous approximation for kernel of BS equation for the two-fermion systems
are formulated. The normalization conditions for the bound-state wave function in all versions are
derived. Further, the 3D reduction of BS equation without instantaneous approximation for the
kernel of BS equation is formulated in the quasi-potential approach. Except for the Salpeter version,
other four versions have the correct one-body limit (Dirac equation) when mass of one of constituent
fermions tends to infinity. Application of these versions for investigation of the different properties
of the ¢¢ bound systems are considered.

CcopMyTipoB HbI IITh P 3IMYHBIX BEPCUl TpexMepHO# peaykuuu yp BHeHus bere—Comnnurep
(BC) s nByX(hepMHOHHO# CHCTEMBI B OTHOBPEMEHHOM mpubmikenun mis sap yp Buenusi BC. Tlo-
JIy4eHBI YCJIOBUS HOPMHUPOBKU BOJIHOBOi (DyHKIIMH CBS3 HHOTO COCTOSIHUA Ul BCEX BEPCH pelyKLMU.
CchopMyTIpoB H T KXe TPeXMepH s pefykuust yp BHenuss BC B KB 3MIOTEHIM JIbHOM moxxone 6e3
NPUMEHEeHNs] OIHOBPEMEHHOIO NMpHOIIXKeHus i aap yp BHenuws BC. Bce Bepcuu pexykimu nMeroT
IIp BWIBHBIN OJHOY CTUYHBIN mpepen (yp BHeHue Jup K ), B KOTOPOM M CC OAHOTO U3 COCT BIISIO-
IUX (PepMHOHOB ycTpemiIseTcs B 6eCKOHEUHOCTh, 3 HCKIoueHneM Bepcun Commurep . P ccMoTpeHo
T KXe IIPUMEHEHHE 9TUX BEpCHIU I UCCIIENOB HUS P 3JIHYHBIX CBOUCTB CBSI3 HHOM ¢Q-CHUCTEMBI.

1. INTRODUCTION

After having firmly established the quark structure of mesons and baryons,
there naturally arises the question: how to describe the properties of hadrons in
terms of explicit quark and gluon degrees of freedom. The main feature of QCD at
low energy — confinement of quarks and gluons into a colorless bound states —
is still understood very little. For this reason, one has to resort to various kinds of
QCD-inspired models. The simplest one is the so-called constituent quark model,
where quarks have a given «constituent» mass, and the interactions between
the «constituent» quarks within mesons qg and baryons gqq are described by
«confining potentials», growing to infinity at the infinite quark separation. At the
first stage, this intuitive picture has been implemented within the nonrelativistic
approach. Despite the evident success of the nonrelativistic potential model,
it has been understood long time ago, that one has to include the relativistic
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effects, at least when describing hadrons consisting of light u, d, s quarks. Field-
theoretical Bethe—Salpeter (BS) equation provides a natural basis for a relativistic
generalization of the potential model, where both light u,d,s and the heavy
quark ¢, b bound states can be treated on the equal footing. A more sophisticated
approach is based on a coupled set of Dyson—Schwinger (DS) and BS equations,
that can be derived at QCD level [1-3]. In such an approach, one uses a model
gluon propagator that through the solution of the DS equation leads to the quark
propagator which is an entire function in a complex p? plane and therefore is
believed to correspond to the confined quark. A full content of underlying QCD
symmetries which are important at low energy, can be consistently embedded
within this approach. In particular, the Goldstone bosons are properly described,
and in the limit of the vanishing quark masses, the masses of Goldstone bosons
obtained through the solution of the coupled DS and BS equations, also vanish
(note that it is not the case in the simple potential-type models with quarks having
the constant «constituent» mass).

In the following, we shall review the potential model based solely on the BS
equation, which 1is the subject of intensive investigations during last
twenty years.

2. BETHE-SALPETER EQUATION
FOR THE TWO-FERMION BOUND STATE

To set up the notation, in this section we give a brief survey of the covariant
BS approach to the two-fermion (fermion-antifermion) bound states. In order
to derive the BS equation for the two-fermion bound state, we consider the full
4-fermion Green function G which in the momentum space is given by

. . . ! ! . ’
G(p1,pa; Py, 0h) = 12/d$1d$2d$l1d$12 e PLoTHIP2 TR I P IDa T

X (O[T (1) (2) b1 (2 )ha(25)]0) (2.1

where, for simplicity, the fermions 1 and 2 are assumed to be distinguishable,
and the spinor indices are suppressed.
The Green function satisfies the BS equation in the momentum space

G=Go+ GoKG =Gy + GKGy, 2.2)

where Gy stands for the free 4-fermion Green function (the direct product of two
fermion propagators), and K denotes the kernel of BS equation, given by the sum
of all two-particle irreducible Feynman graphs.
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In the momentum space, it is convenient to define the centre-of-mass (c.m.)
and relative 4-momenta according to the following relations (with arbitrary «
and 3)*

P=pi+p, p=0p—ap, a+p=1,
or ppr=aP+p, pa=pP—0p. (2.3)
For the basis vectors in the momentum space, the following notation is used
Ip1) © |p2) = [p1p2) = |[Pp) = |P) @ |p). (2.4)

These vectors satisfy the completeness and orthonormality conditions

L i d*p _
/|pl> (27‘(’)4 <p’b| =1 f . 1a27 / |P> (27‘(’)4 <P| 17 (25)
[0t =1
(2m)* ’
(pilp}) = 65 (2m)* 6% (pi — 1)) ,
(P|P"y = 2m)*6*(P - P), (plp’) = 2n)*6*(p — 7). (2.6)

In these notations, we can write
(Pp|O|P'p') = (2m)*6* (P — P")[(p|O(P)[p') = O(P;p, ")),
O =G, Gy, K. 2.7)

Further,
(p|Go(P)Ip") = Go(P;p,p') = (2m)*6%(p — p') Go(P;p) (2.8)

Go(P;p) = S1(p1) ® Sa(p2) = — (1 + m1) @ (B2 + m2) go(P;p),  (2.9)

where S;(p;) = i(p; — m;)~ ! stands for the free fermion propagator with the
mass m;, and the quantity go(P;p) is defined as follows

1 1 1
go(P;p)= . = , — . (2.10)
P a0 0 7y Wi 0 Py~ F 0
with w; = \/m? + p?.
*We choose the system of units, where A = ¢ = 1. Any 4-vector has the components

a = (ag, a), and the metric is g, = diag (1, —1,—1,—1).
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The stable bound state with the mass M p in quantum field theory is described
by the 1-particle state vector in the Fock space

(Pp|P%) = (27)% 2wp 6*(P — P'), wp =/ M% + P2, (2.11)

However, there is no interpolating field in the Lagrangian corresponding to the
bound state particle. The completeness condition of the Fock-state vectors in the
presence of bound states reads

BP
1=/ IP5) (%ﬁ Ppl+---, (2.12)

where dots stand for the contributions of the states with elementary particles and
from the multiparticle scattering states.

Using the completeness condition (2.12), it is straightforward to single out
the bound-state contribution to the Green function (2.1) when P? — M]23 (equiv-
alently P} — w%). The quantity (p|G(P)|p’) exhibits the pole behavior at this
point

<p|q)PB><(T)PB |p,>
P2 — M3

(pIG(P)p') =i + (plR(P)IP') (2.13)
where (p|R(P)|p’) denotes the regular remainder of (p|G(P)|p’) at the bound-
state pole that emerges from the contribution of other states in the sum over
Fock-space vectors. Further, (p|®p,) stands for the BS wave function of the
bound state

(p|Ppy) = Ppy(p) = [do e (0T (Bx)he(—ax)|Pp),

(Pp,lp) = Pp, (0) = [ do o' (Pp|TP1(B2)dn(—ax)|0) = (2.14)
= of, ()% @
The bound-state equation that can be derived for the state vector |Pp,) by

substituting Eq. (2.13) in the BS equation for the Green function (2.2), formally
resembles the nonrelativistic Schrédinger equation for two fermions

G (Pp)|®Pp,) =0,  (Up,|G '(Ps)=0,
with Gy '(P) - G '(P)= K(P), (2.15)
or

|®p,) = Go(Pp)K(PB)|®Pp,), (Pp,| = (Pp,|K(PB)Go(Pp). (2.16)
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Here P = (wp,Pp). Explicitly, in the momentum space, we arrive at the
following equation for the bound-state wave function [4]
d4p’ /

q)PB (p) = GO(Pap) / (27’(’)4 K(Pvpap )q)PB (p,)v

4.1
Bp, (p) = / (d—p Bp, () K (P;p,p)Go(P:p).

(2.17)

This equation should be solved in order to obtain the mass M p of the bound state.
It is obvious that both equations: for ®p , (p), and for its conjugate ®p , (p), lead
to the same bound-state spectrum.

Next, we derive the normalization condition for the BS wave function. To
this end, it is useful to start from the following identity

G(P)G™*(P)G(P) = G(P) = G(P)(Gy*(P) — K(P))G(P) = G(P). (2.18)

If P2 is close to M3, one can neglect the contribution from R(P) in Eq. (2.13).
We substitute the latter into Eq. (2.18), and perform the integration along the
closed contour C that encircles only the bound-state pole at Py = wp, in the
complex F; plane.

(G5 (P) — K(P))dP,
/|cI)pB (Pp,, | P —|—wB—ZO) (PO—wB(—)I—iO)

D) |(I)PB><&)PB| =

dP, -
d d . 2.19
A| PB> (Po—f—’LUB—ZO)(PQ—wB—FZO) < PB| ( )
From the Cauchy’s theorem, one has
f(z)dz _ 1 dn1t
T =2 —— f(z) , (2.20)
/C (z — zs) (n—1)! dzn—1 e

where the function f(z) is analytic inside the contour C, and the choice of the +
sign depends on whether one integrates counterclockwise (+) or clockwise (—)
along the contour. With the use of the above formula, from Eq. (2.19) one readily
obtains the normalization condition for the BS wave function

271') (27T) Po=wp
Xq)pB (pl) = 2wp. (221)

The equations (2.17), together with the normalization condition (2.21), completely
determine the BS mass spectrum and the BS wave function.
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At the end of this section, we shall consider in some detail the spin content
of the BS wave function. In particular, we shall demonstrate that one can rewrite
this equation in terms of «fermion-antifermion» rather than «two-fermion» wave
function.

We work with the following representation of Dirac v matrices

I
70—70—<0 _?>, v—vo[a—<g %)}——ayo. (2.22)

The free two-fermion Green function given by Egs. (2.9), (2.10), can be
written as

. _ Gaa(p ) G, (pl) Gaa(p )Ga (p )
Go(Pip) = < Cn(pr) Crs(01) ) ®< G (2) Gy (02) > (223)

where G, (pi), u,v = a,b is the 2 X 2 matrix (operator) in the spin space of the
i-th particle. Further, the BS wave function of the two-fermion system can be
written as a column

o )
p, (p) = g‘“’g.; , (2.24)
Dy (P

where, again, the components ®,,,(P;p), u,v = a,b are the 2 x 2 matrices in
the spin space of two fermions.

Now, it is straightforward to ensure that the BS equation (2.17) can be
rewritten in terms of «fermion-antifermion» wave function ¥p (p)

4,1

d
Up,(p) = S(l)(m)/ K(P;p,p)¥p,(p) S® (—p2). (2.25)

p
(2m)*
The wave functions ¥p, (p) and ®p, (p) are related by (see [5])

B oo (P5p) Pan(P;p) _
\I/PB(p) - ( Q)ba(P;p) @b:(P;p) )C_

(I)ab(P;p)UQ q)aa(P;p)O—Q )
= — , 2.26
! ( @y (P; p)oa Ppa(P;p)o2 (2:26)
where
C_.QQ_ 0 —iUQ (227)
== —ioy 0 ’

denotes the charge conjugation matrix.
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3. THREE-DIMENSIONAL REDUCTIONS OF THE BS EQUATION

One of the reasons why the three-dimensional (3D) reduction of the BS
equation is necessary, is the absence of the usual quantum-mechanical probability
interpretation for the wave function ®p ,(p) due to the dependence of the latter
on the 0O-th component of the relative 4-momentum. Further, in the presence
of the confining interactions, it is extremely difficult to construct a «reasonable»
kernel K in four dimensions that describes these interactions — we are not
aware of any, completely successful attempt. On the other hand, the concept
of static (3D) confining kernels that corresponds to an intuitively clear picture
of infinitely rising potentials in the coordinate space, has been extremely useful
in many semiphenomenological applications to study, e.g., the characteristics of
heavy quarkonia, etc.

For this reason, below we shall mainly consider the static BS kernels (i.e.,
the kernels which do not depend on the c.m. momentum P and on the O-th
components of the relative momenta pg, pj)

K(P;p,p') — K«(p,p') = —iV(p,p’). (3.1)

In this approximation, there are still different versions of the 3D equations for
the bound-state wave function. Below, we shall consider these versions in detail.

3.1. The Salpeter Equation [6]. In the approximation (3.1), from Eq. (2.17)
it is straightforwardly obtained

31/
B, (1) = Go(Pi) [ 5 (o p) B, (0),

B &Pp = 2m) 3.2)
b, 1) = [ {5 e () K0 ) Go (P,
and
b, (b) = Go(Pip) [ fracd®' (2" V (p.9') B, (0.
- Bp' - ~ (3.3)
B, (p) = [ 555 Bea () V(6 P) Gal(Pi).
(2m)
where
- d = dpo =
@PB (p) = / % @PB (p) ) @PB (p) = / ﬂ (I)PB (p) )
i J 2 (3.4)
Go(P;p) = /Q—pO Go(P;p).
i
At the next step, we introduce the projection operators
i = hi(pi ; i .
AP (py) = wi £ hi(pi) . hip)=aPDp+mal),  i=12 (35)

Qwi
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with the properties

oA =1, APIAY =60 A (e AT = AT (3.6)
OL/L'::‘:

With the use of the following identity

pi +m; = {(Pio +wi) A () + (pio — wi) A )(Pi)}')/(()i) ; (3.7
it is straightforward to obtain

= A(++)(P1 p2) A(ff)(pl p2)
Co(P:p) — 12 ; _ g ’ (1) (2) _
0( ’p) {Po—wl—w2+i0 Py + w1 + we Yo" @ %

—1 _
= [Py — ha(p1) — ha(p2)] (AL (1, p2) — AL 7 (p1,p2)) 7Y ©482.,3.8)

where A{5'"* (p1,py) = A (p1) ® AL (p2).
Now the Salpeter equation (3.3) in the c.m. frame (P 5=0) can be written as

[ Py = hi(p1) — ha(p2) | @, (P) =

d3 ’ _
=1I(p) / (2753 W @A Ve, p') Sars (), (3.9)

where

hi(p) . ha(=p)

I(p) = (Agﬂ(m,m) - Aggi)(PlvPZ)) = 2w AT

(3.10)

Introducing the «frequency components» of the wave function according to

bp,(p) = Y dp(p),  Bpu(p) = A3 (p1,p2) Pp, (p). (3.11)

Qo

the Eq. (3.9) can be reduced to the following system of equations

[MB F (w1 + 'LUQ)] (igj:)(p) =

++ 1 2 d3P
= iA(lQ )(pa _p) 76 ) ®7(g ) / (27‘(’)3 4

/

with additional conditions

OEF(p) =0,  da(p) = (p) + 3, (p). (3.13)
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The normalization condition can be readily obtained from Eq. (2.21) by using
the approximation (3.1) for the kernel, the relation between 4D and 3D wave
functions (3.2), and the decomposition of the wave function (3.11), (3.13)

Bp | - o
/ (27:;)3 {185 ()2 — 185, (p)]* } = 2M5. (3.14)

Note that the wave function ® M5 (P) can be represented in a form analogous
to (2.24)

®
~ Q)a
Prs(P) = | 5 b (3.15)
)

The constraints (3.13) can be considered as equations for the components iab(p)
and @y, (p). The solution of these equations gives

Dy, = (maws +mawr) " {wi (0@ p2)Paq — w2 (oM p1) D4},

i B o o (3.16)
Do = (mrwz + mowr) ™" {wa (0 p1)Paq — wi (0P p2)Pyy) } -

For the «frequency components» &);(;1“2) = Agglw)(p)ézy(p), z,y = a,b, we
obtain the following relations

EH = £(2(miws +mawy)) ! %

x {(wy £my)(we + m2)®q — (U(l)pl)(U(Q)pQ)i)bb} ;

i)ézti) = :|:(2(m1w2 + mgwl))fl X

x  {(eWp1) (0@ p2)®aq — (w1 F ma)(we F ma)Pps ), (3.17)
(ifl::i) = i(2(m1’LU2 + mgwl))_l X

x {(w1 £m1) (0@ p2)Paq — (w2 F ma)(Mp1) Py},
(ié;ti) = i(2(m1’LU2 + mgwl))_l X

x  {(wg + m2) (0 Vp1)Paq — (w1 F ml)(U(Q)Pz)i)bb}

The normalization condition (3.14) can be rewritten as

d3p 2wy wa ~ ~
/ (2m)3 myws + mown { |q>““(p)|2 - |q>bb(p)|2 } =2Mp. (3.18)
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At the end of this subsection, we shall consider the existence of the one-
body limit in the Salpeter equation. From the physical point of view, it is clear
that if the mass of one of the particles in the two-particle bound state tends to
infinity, the equation for the wave function should reduce to Dirac equation for
the light particle with a given interaction potential. Let us check this property for
the Salpeter equation assuming, e.g., that the mass of the first particle tends to
infinity. In this limit:

m; — o0 = wip — mi, 'yél)—>1, hi1 — mq. (3.19)

Then, the Salpeter equation for the bound-state vector |®y/,,) is reduced to
(B2 = Mp —m)

(B2 —h2) |®p,) = % (1 + E) 15 B ) - (3.20)
w2

Due to the presence of the prefactor (1 + hg/ws)/2, this equation differs from

the Dirac equation for the particle 2 moving in the potential V' — that is, the

Salpeter equation does not possess the correct one-body limit.

Now there arises an important problem to solve. We are willing to obtain
the 3D reduction of the BS equation in the static approximation, that correctly
reproduces the dynamics of the system in the one-body limit this property
might be important for the description, e.g., the heavy-light ¢g bound states.

Below, we shall consider several versions of the 3D reduction procedure,
which lead to the correct one-body limit.

3.2. The Gross Equation [7]. In the derivation of the Gross equation, first
we assign o« = 0 and 3 = 1, in the definition of the c.m. and relative momentum
variables (2.3). Physically, this means that the whole c.m. momentum is carried
by the particle 2. The free Green function has the form

Go(P;p) = —(¥+m1) @ (P— p+m2) go(P;p),

1 1
P; = . 3.21
90(P:p) p?—mi+i0 (P—p)2—m3+i0 (321)

The first propagator can be rewritten as

1
p2—m?+i0 " p

1 .
T ind(p? —m?), (3.22)

where the symbol P stands for the principal-value prescription. The approxima-
tion that leads to the Gross equation, consists in the substitution
1 d(po —wr)

= —27

_ 3.23
p2 —m? +i0 2w, ( )
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This approximation is called the «spectator approximation». Note that in this
approximation it is not only the principal-value term in the propagator of the first
particle that is neglected, but also the term containing 0(pg + w1 ) that emerges
from 0(p? — m?). Consequently, in this approximation the particle 1 always
stays on its mass shell defined by the equation py = wi. In a result of this
approximation, the free Green function in the c.m. frame (P, = (Fp, 0)) can be

rewritten in the following form

GFR(Posp) = 2mib(po — w1) GG (Po; p) = 2mid(po — w1) ¥

AP @A (p)  AT@EATERI) w5
Py — wy — ws + 40 Py—wi +we+1i0 [0 0 '

where the functions G§®(Py; p) and G§®(Py; p) are related by Eq. (3.4).

After substituting Eq. (3.24) into (2.16) and integrating over the variable py,
in the c.m. frame (now P* = (Mp,0)) we arrive at the Gross equation for the
3D bound-state wave function

. . B/ -

(PMB (p) = G(?R(MB7 p) / (27TI;3 V(p7 pl) ¢JWB (p/) 5

_ Ao o (3.25)
Bar, (p) = / G5 B (0) V' p) G (Mpip).

Now, using again (3.24) together with (3.6), we arrive at

[Mp — h1(p) — ha(—p)] Pr, (p) =

hi\ o @ / d*p’ R
B AGRET o 2
2( +w1>% ®7% 2n)° V(p,p') Pry (P), (3.26)

which has the correct one-body limit when m; — oo.

The normalization condition for the 3D wave function that satisfies the Gross
equation, cannot be obtained in a standard manner, by using Eq. (2.21). In order
to demonstrate this, note that according to Egs. (2.16), (3.24), and (3.25), 4D and
3D wave functions are related by

®ar, (p) = 276(po — w1) Dary (P), Pary (p) = 278(po — w1) Pary (P). (3.27)

Now if in the normalization condition (2.21) with the static kernel (3.1), the
relation (3.27) between the 4D and 3D wave functions is substituted, one arrives
at the ill-defined expression containing the product of ¢ functions with the same
argument. For this reason, instead of the rigorous derivation, from the analogy
with the Salpeter equation, one merely assumes that the solutions of the Gross
equation satisfy the following normalization condition

Bp - e
/(2733 {1855 (P)I” + 194, (P)I*} = 2M5. (3.28)
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3.3. The Mandelzweig—Wallace Equation [8]. In the derivation of the
Mandelzweig—-Wallace (MW) equation, the parameters « and [ in the expres-
sion of the c.m. and relative momenta (2.3) are defined according to Wightmann
and Garding
_s—l—m%— _s—m%—i—m%

2
my 5 STMITMy _p2_p2  p2
55 , B=p(s)= 55 , s=P*=P; — P~. (3.29)

In the c.m. frame, from Egs. (2.3) and (3.29) it follows

a=a(s)

p1 = (E1+po,p), p2=(E2—Dpo,—p),

E
! oMp ’ oMp ’
m? — m3

FE Eys =M E, — By =
1+ Lo B 1 2 My

Further, we define in the c.m. frame

- d
GY™ (M )= [ 522 [Golr,pa) + Golpr. 7)) PE'=(E2 + po. —p). B3D)

where Go(p1,p2) is given by Egs. (2.8), (2.9), and (2.10). After integrating over
Py, We obtain

A (p, —p) Afy (p,—p)
Ei1+ Ey —w; —wy + 140 —F1 4+ Ey 4+ w1 + wo

Go™ (Mp;p) = {

+

AL (p, — A5 (p,—
12 (P, —p) _ 12 (P, —p) }'Y(gl) ® ’)/(()2). (3.32)
Ey—Ey+w +ws By 4+ Ey +wp +ws

The MW equation is obtained from the BS equation in the static approximation,
by using the combination Go(p1,p2) + Go(p1,ps’) instead of Go(p1,p2) alone.
Unlike the Salpeter version, now all four possible projection operators Agﬂ,
A(J_), A(15+), AS_), enter the expression of G}V (Mp;p), Eq. (3.32). For
this reason, the inverse operator for the free Green function in the 3D space
exists. Further, in analogy with Eq. (2.15), we can define the inverse of the full
Green function in 3D space according to

[CAW] ™Y (Mp;p,p') — [GMV] ™ (Mp;p,p') = V(D, D), (3.33)
where

Gy (Mp;p,p') = (2m)?6*(p — ') GY™ (M; p) . (3.34)
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The MW equation for the bound-state vector |®y,,) is given by
~ —1, ~ ~ ~ ~
[GMV] T @ar,) =0 = [Pag,) = Gy VDo) (3.35)

Note that we can rewrite the inverse of the free Green function in the MW
equation as

~ _ h h
(GE™]) ™ =" @57 [(E1 “h)® 2@ (B~ ha)| . (336)
1

With the use of this identity, one can rewrite the MW equation as

h h - -
(Br—m)o 2+ L (B - hz)] Bars) =18 @7V @) . (337)

Let us now consider the limit of this equation when m; — oo (3.19). In this
limit, according to Eq. (3.30), £1 — m1, Fs — Mp—m1, and the equation (3.37)
simplifies to the Dirac equation

[Bz — ha] [®11,) = 87V |®ar,,) (3.38)

Consequently, the MW equation has the correct one-body limit.
3.4. The Cooper—Jennings Equation [9]. The parameters a(s) and 5(s) in
the Cooper—Jennings (CJ) version are chosen as

a1(s) az(s)
afs) = ——————, §) = ———"—,
R e M A E 6 A,
a(s)_s—i—m%—m% a(s)_s—m%—l—m% '
1 — 2\/5 ) 2 — 2\/5 .
The free Green function for the CJ equation is given by
G§™ (Pip) = —(#1 +m1) ® (¥ + ma)g5” (Pip) . (3.40)

where g5’ (P;p) is constrained by the elastic unitarity and can be written in the
following form

96" (P;p) = 2mi /Oo A5 1 5) 5T (s )P+ p)? = mi] x

(mi+mz)? s’ —s—10

x§T[(B(s") P —p)* —m3]. (3.41)

Here 0% (2% — a®) = (2a)7'6(x — a), P’ = \/s'/sP, and the function f(s,s’)
satisfies the condition f(s,s) = 1.
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After integration, the expression (3.41) yields

02Pp) o S(55) (3.42)

§—=35p ai(sp) az(sp)

where s, = (y/m? — p2? + \/m? — p2)2.
Choosing the function f(s, s,) in the form

95" (Pyp) = —2mi

4s an(sp) aa(sp)

= 3.43
S = = = o
we arrive at the following expression for g5’ (P;p)
2 2,/s6(2P,
96" (P;p) = —2mi > Vs 0( p),(3,44)

(s — (w1 + w2)?2 +40)(s — (w1 — w2)?) w1 + we

Note, that in the c.m. frame, 2/s3(2Pp) = §(po). Because of the presence
of the § function, one can rewrite the free Green function from (3.40) in the
following form (again, in the c.m. frame)

G (Mp;p) = —(B1 +m1) @ (P2 + ma)gs” (Mp; p),
ﬁl = (Elvp)v ]32 = (E2a _p)v (345)

where E; and E5 are given by Eq. (3.30). The free Green function for the CJ
equation in 3D space is related to 4D Green function according to

GG (Mp; p) = 27 0(po) G (Mis; P)., (3.46)
where GS?(Mp; p) is given by

~ 1 (#1+m1) @ (P2 +m2)
CI (M - _ =
Go (Mp;p) = 2(wy + ws) E? —w} B

1 (#1+m1) @ (P2 +ma)

2(wy + ws) E2 — w3
1 1
_ P1+my _ ﬁ2+m2.(3_47)
2(w1 +we) Po—me  2(wr +we) P —
In the limit, when one of the masses tends to infinity,
Pitmi oo, =12, (3.48)
2(wy + wa)

Consequently, the CJ equation has the correct one-body limit.
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Note that, using the properties of the projection operators, the free Green
function in the 3D space can be rewritten in the following form

GS (Mp;p) = (w1 + Ex)(w2 + o)A (p, —p) —

2(w1 + we)a [

—(w1+E1) (w2 —E2) A (p, —p) — (w1 — E1) (wa+ E2)A, P (p, —p) +

+(wr — E)(ws — B2)A 7 (p, —p)] 1Y @4, (3.49)
where
1
a =B} -} = B} — v} = 7 [M3 + B — 20} + )],
(3.50)
m2 — m2
bo=F) — By = 2
0 1 2 MB

3.5. The Maung—Norbury—Kahana Equation [10,11]. The free Green func-
tion for the Maung—Norbury—Kahana (MNK) equation is again given by
Eq. (3.40), but with

g™ (P p) =

+{ [(@(o)P + 97— mi] 5 [(3(0)P 7 — ) 5
. (3.51)

T @@ P ) ]+ [(B)P — pP —m3] 10

with y = (m1 — mg2)/(m1 + ma). This Green function, of course, satisfies the
unitarity condition in the elastic channel. In addition, it has the property that the
particles 1 and 2 in the intermediate states are now allowed to go off mass shell
inverse proportionally to their masses — so that, if one of the particles becomes
infinitely massive, it is automatically kept on its mass shell.

After some transformations, the Green function from Eq. (3.51) in the c.m.
frame can be rewritten as

5(2?0 —par)

MNK .
g0 (Mp;p) = —2mi ————"—,
0 2R(p{py +a)

. R-b
=

Py =——, py =Dp¢ +bo, (3.52)

R=+/b?—4y%a, b= Mg+ byy,
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and by is given by Eq. (3.50). By using the above expression, we obtain
(P +m)(Fy +ma)
2R(pgpy +a)
pi = (Ev+p5,p), By = (B2 —pg,—p). (3.53)

The relation between the 4D and 3D free Green functions in the MNK
version is given by

GYNE(Mp;p) = 2mid(po — pf) G (Mp, p) . (3.54)

Gy (M, p) =

Using the properties of the projection operators, the free Green function of the
MNK equation can be recast in the following form

Gy (Mp,p) =

1 (+4)
= - - +E o)A _p) —
2R(pypy +a) {[(wl 1) (w2 + E2)A, (P, —P)

— (Wi E1)(we—E2) A (b, —p)— (w1 —E1) (wa +E2) A, T (p, —p) +
+ (wy — Br)(wz — B2)A, ) (p,—p)] —

— [pipy + (w1 —wo)pd (AS T (b, —p) — AL (b, —p)) +

+ <w1+w2>po+<A§§‘><p,—p>—A§;+><p,—p>>}}vé”m‘f)- (3.55)

In the limit when m; — oo, the function g)"™¥(P;p) from Eq. (3.51) is
reduced to

—2mi 5(p0)
MNK

g P;p —_—— . (3.56)

0o ( )mﬁoo = m2 2m

From Eq. (3.40) we can evaluate GY'™K(P;p) in this limit:
, +m1) ® (P2 + mo)
GMNK(p.p — 27 8(p (71 . , (3.57)
0 ( ) I ( 0) 2m1(p% . m%)

where p; and p, are defined by Eq. (3.45). Integrating this relation over pg, for
the 3D free Green function in the c.m. frame we obtain

P11+ m Po + mo
— &

) 2 -
2ma D5 — m5

Gy (Mp;p) (3.58)

mi— 00

Since the factor (1 + m1)/(2m1) tends to unity in the limit m; — oo, one
concludes that the MNK equation has the correct one-body limit.
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3.6. The Normalization Condition for the Wave Function in MW, CJ and
MNK Versions. The 3D free Green function in either of MW, CJ, or MNK
versions, in the c.m. frame can be rewritten in terms of the projection operators:

D(OLlOLQ)(MB;p)A(alaz) (1)

C~TY0(1\413’, p) = Z d(Mp; p) 12 (P,—P)y ® '762)7

041,0/2=i
p=1pl, (3.59)

where

(_)(a1+az)/2

MW : Dlae2) — , d=1,
(w1 +w2) — (1 E1 + azEs)
CcJ D(al(m) = (El + Oélwl)(EQ + Oégwg) s d= 2(’LU1 + ’LUQ)CL7
MNK : D@2 — (B, + ayw,)(Es + agwy) — (3.60)
R—-b/R-b
_Q—y <2—y + (B1 4+ aqwy) — (B2 + a2w2)> ,
d=2RB, B-= H(HM@) +a,
2y 2y

with Fy, Es, a, by, R, b, y defined above.

The equation for the bound-state wave function frequency components (3.11)
can be directly obtained from Eq. (3.3) by substituting the above expression for
the free 3D Green function and using the properties of the projection operators

[Mp — (arw; + asws)] 8451°%) (p) = A@192) (Mp;p) A5 **) (p, —p) x

d3p/ o
<o 3 [ Gy VPP BB, (6D
ajag

where, for the different versions

Mg

MW AEH =1, AP =
k) wl +w2 Y

Mp + (1w + asws)
2(11)1 + U)Q)

CJ . Alerez) =

)
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1
MNK : Al = SRE {a[MB + (cqwy + agwy)] —

R—-1b
_[MB — (a1w1 =+ 0&211)2)] T X

X (RQ—;b + (E1 + ozlwl) — (EQ + 0&211)2)) } . (3.62)

Thus, the MW, CJ and MNK equations couple all four frequency components of
the wave function: fig\z:), @;};), @;};), and &)g\;};) One can formally extend

these notations for the Salpeter (SAL) and Gross (GR) versions, defining
SAL : AGH =41 AED =9,
GR : AFH =41, A-F =9, (3.63)

It is immediately seen that Salpeter and Gross equations couple only two fre-
quency components of the wave function, other two being equal to 0.

For the derivation of the wave function normalization condition in MW, CJ
and MNK versions, let us consider the full 3D Green function that obeys the
equation

G =G+ GiVG =Gl + G'VGY, i=MW, CJ, MNK. (3.64)

In analogy with Eq. (2.13), this Green function develops a bound-state pole(s)

PIGP)IP) =D <p|®;§ iﬁ; P (pIR(P)ID). (3.65)
B B

This leads to the normalization condition in MW, CJ and MNK versions in
analogy with Eq. (2.21)

2 82 b, { o (G 0w - Vi) ) | 5
x®%, (p') = 2Mp. (3.66)
Now using the relation
(Go(Mp;p,p") ™" = (2m)°6°(p — ) (GG (M;p)) " (3.67)

and the fact that V' (p, p’) does not depend on Mp, the normalization condition
can be rewritten as

3 i . -
[ 52 B0 {7 (Comp) 8l () =201 )
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If now one substitutes here the expression for the free Green function given
by Eq. (3.59), one obtains (below, we drop the superscript «i» labeling various
versions)

d3 = (1) . .
2. / —(2;))3 ®yry (P) F150 ) (Mpip) 85727 (p) = 2Mp,  (3.69)
[e3Ne D)
where
(o1a2) 0 d(Mg; p)
Mp;p) = : 3.70
Ji2" (M p) oMp (Dala2(MB;P) 3.70)

By using the explicit expressions for D(®1®2) and d given by Eq. (3.60), we
obtain

(ara) _ 1 B1 +aoky

MW fio Mp ’
R (Elaﬁi;gj Tf;w) ’ (3.71)
I T T T e S A
_% [(MB T L ’;aQwQ)R— MT% + 2<7R _2;;MB>2 +
+(owr — apwy) (R _2;\48 + M;y)] } .

Let us note that the normalization condition (3.69) is valid for the Salpeter
and Gross versions as well, provided we choose

SAL . floen) 1 ta2
2
GR : fiy7 =1, f,7 =o0. (3.72)

Let us emphasize that the Salpeter, MW, CJ and MNK equations can be used
for the bound systems with the equal masses of the constituents, whereas the
Gross equation cannot — the particle «1» (spectator) should be heavier than the
particle «2». This is due to the approximation (3.23) that was done in the free
Green function of the Gross equation. Further, it is directly seen from Egs. (3.62)
and (3.63), that the Salpeter and Gross equations are linear eigenvalue equations
for determining Mp (the functions Aleraz2) do pot depend on Mp), whereas
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MW, CJ and MNK equations are not, and Mp enters the right-hand side of these
equations as well.

Let us now concentrate on the properties of the coefficient functions in detail.
In the case of the equal-mass constituents m; = ms = m and w; = we = w, we
obtain

Mg

MW : AED =1 AEF =
’ 2w

Y

A _Mpx2w s Mp

©J 4w 4w

(3.73)

MNK : AGH _MBE20 w1
2Mp 2

It is immediately seen that in the equal-mass case, the Mp drops out from

the equations for mixed components &)g\ﬂfj) in the MW and CJ versions — that

is, these components are redundant and can be eliminated in this case.

(ara2)

The functions fi, in the equal-mass case are given by

MW G =41, 15 =0,
++ 16w? +
cJ 1(2 ) = im 5 1(2 ) = 0, (374)

o) 2AA(Mp F2w)? = 8w?) )
MNK : fGP = Gty I —9.

From these expressions, we immediately see that in the CJ and MNK versions
the function f1(2_ ) has the second-order pole at

1
Mp —2w(ps) =0, D = Ey/M%—élmQ. (3.75)

It can be shown that in the nonequal mass case in the CJ and MNK versions
the function f1(2_ ) has the second-order pole at

1 2,2\ 2
B —uw}(p) =0, p, =3 \/Mg, + (’”ITB’"?) —2(my +m2)2, (3.76)

while the other components fl(;_ ), fl(;_ ) and f1(2_ ™) do not have any poles.
3.7. Logunov-Tavkhelidze Quasi-Potential Approach [12]. There exists the
theoretical possibility to construct the 3D analogue of the BS equation without
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using the instantaneous approximation. To this end, one may use the Logunov—
Tavkhelidze quasi-potential approach formulated in Ref. 12 for the case of two
spinless particles, and generalized in Ref. 13 to the case of two fermions.
We introduce the following definition, for any operator A(P) in the momen-
tum space,
_ [ dpo dpl

WA = [ 52T GlAP)Y) 377

Then, from Eq. (2.2) one obtains
G =Co+ GoKG, (3.78)

where Gy is given by Eq. (3.8).

Due to the fact that the operator II defined by Eq. (3.10) cannot be inverted,
the inverse operator of Gy does not exist as well. As a result, one cannot
define the interaction potential by the formula analogous to Eq. (3.33). In order
to overcome this problem, it is convenient to introduce the Green function @
defined by

Go(P;p) = i[Py—hi(p1) — hz(pz]_lvél) ®1?,

Go(P;p,p) = (2m)38(p—p')Go(Pip)) @ T, (3.79)

where 1T = H'y(gl) ® 752). R 3
Now, the inverse of the operator Go(P;p,p’) = (27m)36*(p — p’) Go(P; p)
exists, and one may define

G =Go+GoKG, (3.80)
from which follows that
G=G+G(1-Y @4{Pm). (3.81)

It is clear, that near the bound-sta}te pole the Green functions G and Q
differ only by the regular term, since G is regular in the vicinity of the pole.

Consequently, in order to derive the bound-state equation, one may use G instead
of GG, and define the interaction potential according to

1

I
=

[Go] ' - [G] (3.82)

from which it follows that

I

G=CGo+GV

5 (3.83)
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and

]

V=[G 'GKG[G]". (3.84)

For any given kernel K (P;p,p’) the interaction potential can be constructed by
using Eq. (3.84). The equation for the bound-state wave function in the c.m.
frame can be obtained directly from Eq. (3.82)

G (M) |®ar) =0, [®ary) = GV [Bary) . (3.85)

Defining the quasi-potential as

Vo(Mg;p,p') = in§" @ V(Mg;p,p'), (3.86)
we obtain

3./
Mp — hi(p) — hz(—p)} P (p) = / éT‘;g Vy(Mp;p,p') ®rr,(p').(3.87)

Note that in the instantaneous approximation (3.1), the interaction potential
reduces to

V(Mg;p,p') =" @48 (p) 1Y @48 Ka(p, ) - (3.88)

As a result, the quasi-potential equation reduces to the Salpeter equation.
The first-order quasi-potential is defined by Eqgs. (3.82) and (3.86), if in the
former the full Green function G is substituted by the free Green function G

. s 1-1 54 1A 1-1
ViV (Mpsp, p) = 5" @767 (pl[Go] ™ GoKGo [Go] T IP)  (3.89)
from which, in the static approximation one obtains

VD (Mp;p,p) = (p) 1" @457 iKy(p, p')IL(p). (3.90)

It is seen that, unlike the full quasi-potential equation, the first-order equation
does not reduce to the Salpeter equation in the static limit. Only when one may
neglect the negative-frequency component of the bound-state wave function, the
first-order equation again reduces to the Salpeter equation in the static limit. Here
we note, that the first-order quasi-potential equation was used in Ref. 14 in order
to evaluate the dynamical retardation effect in the ¢g bound system mass spectrum
(i.e., the effect that stems from the deviation of the BS kernel from the static one).

In the rest of this subsection, we consider the normalization condition for
the quasi-potential bound-state wave function. Near the bound-state pole, the 3D
Green function G(P) develops a pole (3.65). Using the fact that in the vicinity
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of the bound-state pole the Green functions G(P) and G(P) coincide up to the
regular term, it is straightforward to obtain the normalization condition

oA

3 3/ ~ ~ ~
i s G5 Ba ) | ((GoMi, ) = Ehtzp. ) )|
X B, (p) =2Mp.  (3.91)

From this equation, using the definition of the conjugate wave function (2.14)
and Egs. (3.79), (3.86), we obtain

dp d®p' - 9 ! F !

As is seen from Eq. (3.92), in the static limit the above normalization con-
dition reduces to the normalization condition for the Salpeter wave function only
if one neglects the contribution from the negative-energy component of the wave
function.

4. MESON SPECTROSCOPY

4.1. Partial-Wave Decomposition. The properties of the gg bound systems
in the 3D formalism obtained from the BS equation in the static approximation,
were studied in Refs. 11,15-35, without making any additional assumptions. Note
that these 3D equations can be written either, as in Eq. (3.9), for the 2-fermion
bound-state wave function [11,15-19,21-23,26,27,33,35], or for the fermion-
antifermion bound-state wave function [20,24,25,28-32,34] (the latter is obtained
from Eq. (2.25) in the static approximation). Further, one may write down these
equations in terms of either the frequency components of the 3D wave functions
Cf)g\jjsi)(p) and \Ilg\f:)(p) (the latter denotes the frequency components of the
fermion-antifermion wave function), or in terms of their linear combinations
Bua(p), Pup(p), etc., Uoa(p), Upy(p), etc., see Egs. (2.24), (2.26). Below,
we shall use the form of the 3D equations given by (3.61)—(3.63), with the
normalization condition given by (3.69)—(3.72) [11,26,35].

In order to rewrite the equations explicitly in either of the forms above, one
has to specify the explicit spin structure of the interaction potential. This potential
consists of several parts. First, there is the one-gluon (OG) exchange piece
dominating at short distances. In the Feynman gauge, the spin structure of this

piece is given by 75 @ v = 4V @~ — 41 @42 In accordance with the
static approximation, however, we neglect the second term in this expression [5].
In addition, there is the confinement (C) piece in the potential that dominates

at large distances and leads to the formation of the ¢q bound states. The spin
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structure of this piece is not known a priori. We choose it to be the mixture of
a scalar and the zeroth component of a vector. Further, sometimes an additional
«instanton-induced» piece, corresponding to the t’'Hooft interaction, is included
in the potential [25]. The spin structure of this term is given by the equal mixture
of scalar and pseudoscalar parts. The rationale for including the latter piece is
the following. In the absence of the proper treatment of the Goldstone nature
of light pseudoscalar bosons that is due to the spontaneous breaking of chiral
symmetry in QCD, the t’"Hooft interaction mimics this effect, leading to the large
mass splitting between the pseudoscalar and vector mesons. Note that the chiral
symmetry can be consistently incorporated in the 3D framework (see, e.g., [20]),
albeit at a cost of the more involved formalism. For example, in this case the
Hamiltonian of the free quark is replaced by

hi(p;) = aVp; + mi’yéi) — Bi(pi)aVp; + Ai(pi)')/(gi) ) 4.1

where A;(p;) and B;(p;) are determined by solving the gap equation for the
quark propagator with the static potential. Below, however, we do not consider
this approach.

Thus, the spin structure of the static potential we shall be using, is given by

Vo= ey Voalr) + @) @48 + (1 - 2)IW @ 1) Vo (r) +

+ (W@ I® 440 @) va(r), (4.2)

where the last term corresponds to the t"Hooft interaction, all potentials are
assumed to be local, and 0 < z < 1.

Let us now turn to the wave function. It is possible to «solve» the constraints
imposed on the frequency components, defining

1 1
1) (p) =N () | ai(eWp) | ©| —ax(e®p)
w1 + ay1my wa + oMo
@(C“”)(p) (4.3)
(a1a2)( )_ (a1a2)(p)
Mo P alaz)(p) ’
it (p)
where

2’LU1 2w2

arag + + a1 Qs
N1(2 )(p) _ \/wl a1mq \/w2 Q212 :Nl( )(p)NQ( )(p)’ (4.4)
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and Xﬁ;az)(p) is the unconstrained Pauli 2 x 2 spinor. For this spinor, the

following system of equations is obtained
[Mp — (cywy + aows)] XE;QZ)(P) =

) d3p' ajasal ol oy o
= A1) (Mpip) S / K Vi) (p, p (i (p'), (4.5)
afag

where
Ve(f?mzotlOtz)(p7 p/) _ Nl(;mz)(p) (Vl (p _ l:)/)Bioqotzotl%)(p7 p/) +
+V2({E; p— pl)B§a1a2a1a2)(p, p/)) +
+Vi(p — p') (BL*12%1°%) (p, p') — B{*1°2°1°%) (p p') —
_B§a1a2a1a2)(p,p/)) Nl(;laZ)(p/) (4.6)

and

Bleresaton) () g 0102010% (¢Vp)(e®p)(eMp’)(e®p)
! ’ (w1 +aimy ) (watasms) (W) +aymy ) (wh+abms)’

B{1920108) (1 11y ara) (eWp)(eWp') azah (6Pp)(e@p)

2 ’ (wi+ axmq)(wi+ afymy) — (we+ agme)(wh+ ahms)’
B(alaza'la'z)(p p/) _ o (a'(l)p)(a-(Q)p) n ool (o-(l)p/)(a-(Q)p/) -
3 ’ (w1+ armi)(we+ agma)  (w)+ aymq)(wh+ ayms)

0104 (0 Vp)(e®p) afos (0Vp)(o®p) .
(w1 4+ army)(wh + abma) (W] + &fymy) (w2 + agms)’ '
Vi=Vog+ Vo, Vg(l‘) =Voc + (2x — 1)VC . (4.8)

The functions Vog(p—p’), Vo(p—p’) and Vi (p — p’) are the Fourier-transform
of the local potentials Vo (r), Vo (r) and Vr(r), respectively.

The normalization condition for the Pauli spinors XS\?;C”) (p) follows from
(3.69)

d°p ) : :
> / Gy it ) 15 () G5 (B) = 2Ma (4.9)

[e2Res)



1086  KOPALEISHVILI T.

The partial-wave expansion of the Pauli spinor Xﬁ;a”(p) is given by

10 1 1 p
e ip)= 30 xlusi (m= Y (m|LSIM)REES (p), n==,(4.10)
LSJM j LSJM y p

where R(Laslfz)(p) denote the radial wave functions, and L, S,.J, M stand for
the total orbital angular momentum, total spin, total angular momentum, and the
projection of the total angular momentum of the gg system, respectively.

The partial-wave expansion of the potentials reads as

Vip—p)=2n)?° > (n|LSIM)Vi"(p,p'){LST M),

L5Ji1; (4.11)
I1=0G,C,T,
where
L / 2 > . . /
Vi“(p,p') = ;/ r2dr ji (pr) Vi(r) jz (') , (4.12)
0

jz being the spherical Bessel function.
Using the fact that for the spherical potentials Vi(p —p’) = Vi(|[p—p’
may write

_ 1 1
Vit (p,p) = o= / ) dz Pr(z) V’I(\/p2 +p? - 2pp’2) , (4.13)

where P;(z) denotes the Legendre polynomial. The above form is convenient
when the function Vi(p,p’; z) can be written in the analytic form.
In order to carry out the partial-wave expansion in the bound-state equation, it

), one

1 1
is convenient to introduce the operators S = 5(0(1) +a(2)), o= 5(0'(1) —0'(2)),

instead of the individual spin operators o), i = 1,2. At the next step, one uses
the known values of matrix elements of the operators Sn, on, and the tensor
operators

S1o = 3(eWn)(e®@n) — (cWa?)) = 6(Sn)? — 282,

(4.14)
(M) =282 -3

between the different spin-angular momentum states
syl (5B |\wsry) =
I\ on J

= 8y dnnyan, (ARSI (5 ) 187 WLLSS 1))
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(L||n||L") = V2L + 1 (L'100|L0),

(SIIS]|S") = dss//(25 +1)S(S +1), (4.15)
(Slle]|S") = (=1)5+'V/3dg15 1),

(LSJ||Si||L'S"T")
V2T +1 B

(LSTM;|S1o|L'S" T M) = 65560, 01,

= (1) §518551/120(2L" + 1)(L'200|LOYW (LJ21’;1L") ,

where W stand for the conventional Racah coefficients. The bound-state equations
for the radial wave functions R(La§;2) (p) are then obtained straightforwardly

[Mp — (a1w1 + azws) | Rf}?lfl()z)) (p) = A192) (M p) Z/ 2y %

! aras

X{KW 519 (PN () + arasa ab N * ) (p) x
N( 0‘1 az ( '))Vf](p,p'H-
el N ) (DN 19 (1) + aab NS ()N ST (') x

Vi V) ) R 1)

—(aaf Ny P (N 2 () — anah N5t (p) x

NG Vs B 00|+

+[((N‘W(p)/v‘“’l“’”(p')+a1a2aaa2/v‘ =) (A (o))
(102N ™7 (p) + afab N T () Vi (p,pf) —

—(@ah Ny ™ (NS5 2 () + anah N5~ ()NS5 (')

HanasA ) )+t N D ) ><p,p'>) Rf,“('1°:1)'2>)J<p'>+

+ (<a1a1N12 92 (PN ) () — anap NS T (NS D () F

Flona ™ )iy P ) Vo ) ) B 01
(4.16)
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[MB — (aqwy + Oé2w2)} Rg(lilftlzj( ) = Ale1e2) (Mp; p) Z / de .

[e3Ke D)

{|:(N(Oz1a2 ( )Nf;la”(p')‘/l‘]q:l(p,p/)-|—0410420/1a2./\f( ay—a2) (p)><

XN D Ve (1) + (anad Ny D (N %) )+
+asah NGO (p)Nfél/la/z)(p’))Vz"(x;p,p’O RET () +
+(arant g NG ) P Vi ) ) R 00 +
(A N ) (0r00AE5 7 )+ bV )
XSV 00) + arcnat b MG ™ (NG ) x
XVirgrana (p.7') = (a10f ATy ) (PN 1 )+

+a2a2N(a1 0t2)( )N(al_az)( M+ (ozlonJ\/'( 01&2)( )N(%—%)(p )+

70{’ Otl ]- [aPNe}
+asd N0 ()N 1 (1)) Wi (p.p') ) RS2 (0')+
2J+1
+ (et ap NG NG )2

(a1 N5 (DINS; (1) + anap Nt (p) x

Vres(p,p')—

2/J(J+1)

57 VA ) F (s N T ()N )+

XN (1))

a1—as —alal, 2/ J(J+1 ool
+ana A NG o) DT v ) ) BB 00|
4.17)
where

i 1 J _ J+1

VA(@J)(p7p/):m|:(J+1)VA] 1(papl)+ ( J )VA]+1(papl):|a
JU+D .,
Vacs(p,p') = Tl) {VA] Yp,p) — VA]H(Z?,I?')],

1
Vau+ns(pp') = @I+ 1p [VA]il(P,P/) +4J(J + 1)VA]$1(P7P')}

A=1,2T. (4.18)
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The normalization condition in terms of radial wave functions has a particu-
larly simple form

d [e5e3) a1 a2 2
ZZ/ 5 18 (M) [RQSJ ' )} —2Mp,  (419)

LS ajaz

where LS = JO, J1 or J £ 11 corresponding to the system of equations (4.16)
and (4.17).

4.2. Dynamical Input. For solving the bound-state equation, one needs
further to specify the interquark potentials Vog, Vo, Vr, introduced above.
Let us start from the confining part of the potential. It is believed that the
explicit form of this potential (i.e., its dependence on the interquark distance) is in
principle, derivable from QCD. At present, however, the only tangible theoretical
constraint on the form of this potential is the linear growth at large distances
obtained within the quenched lattice QCD [36]. Less compelling arguments
based on the background field technique, were provided to justify the harmonic
oscillator-type (~ r2) behavior of the confining potential at small distances. With
no rigorous solution of the problem in sight, one may use the potential that
interpolates between the «known» behavior of the potential in different limiting
situations [38,39] (for a slightly modified version, see [26])

4 H12WT )
Ve(r) = = ag(m? Vo l, 4.20
olr) = g es(mis) (NW 0 (420
12 2N\~ mim
ag = ~_(m ? , Mg =my +ma, iz = ——2,  (4.21)
33 —2ny Adep mi2

. 4
where Q2 is the momentum transfer squared, and the factor — comes from the

color-dependent part of the ¢q interaction. ny is the number of flavors (ny = 3
for u,d, s quarks; ny = 4, for u,d, s, c quarks; ny = 5, for u,d, s, ¢, b quarks).
wo, Vo, Ao, Aqcp are considered to be the free parameters of the model.
The potential given by Eq. (4.20), effectively reduces to the harmonic oscillator
potential for the light quarks u, d, s, and to the linear potential for the heavy b, ¢
quarks, that meets our expectations. In these limiting cases, the potential takes
the form

w% mimso

3

4
LINEAR : == 2
R Vel = gastndy) (5o [

r— VO) =ai + bir,

2
HARMONIC vc(r)—;‘as(mu)<% 2 V0>=a2+b27"2. 4.22)
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The one-gluon exchange potential is given by the standard expression [26]

4 2
Voa(r) = das(miy) _y -1 (4.23)
3 T
Noting that
o e~ nr
" = lim (=) 4.24
r n%()ann(r>’ (4.24)

one can rewrite the potentials in the momentum space

LINEAR : Vo(p—p')=ai(27)%6°(p—p) +

02 4
by lim — (— ), 425
17,_>08772<|p—p’|2+772> ( )

HARMONIC : Vo(p—-p/)= <a2 - bgAp,> (27)%63%(p — p’), (4.26)

4

ONE-GLUON : Ve(p-p')=b_ 5
p—p|

(4.27)

In order to investigate the properties of the gq bound systems, the linear
potential was used both in the configuration space [15,20,23,31], and in the
momentum space [21,22,33,40]. In the latter case, a special numerical algorithm
based on the regularization (4.25), was utilized [22,40]. In Refs.25,28-30,32,
the matrix elements of Vi (r) were calculated in the configuration-space basis, in
order to encompass the difficulties related to the singular character of the linear
potential in the momentum space.

The investigation of the ¢g systems in the framework of Salpeter equation
was carried out [17-20,26], using the harmonic confining potential. MW, CJ and
MNK equations with the harmonic confinement were considered in Refs. 11, 35.

Some mathematical problems arise if the one-gluon exchange potential with
the fixed coupling constant b_; is used for the calculation of the characteristics
of gq bound systems. Namely, as it was shown in Ref. 28,20, in this case the
Salpeter wave function is divergent at » — 0. For the running coupling constant
this divergence is less pronounced but still present — now, the problem occurs in
the decay observables which depend on the value of the wave function at » — 0.
In order to cure this divergence, in Refs. 28,30 the following regularization was
proposed

4 ag(r)

Voa(r) =—= , for r > rg,
r

w

Voa(r) = agr2 + by, for r < g, (4.28)



BOUND g¢g SYSTEMS 1091

where

B A In(21In(e="2/a 4 e'/?))
~ 2In(e=(r+ha) /g + A/ 2asar)) 2In(e=fa/q + eB/2)

as(r)

,(4.29)

where a = Aqcpr, v = 0.577215... is the Euler—-Mascheroni constant, and
asat = 0.4, p =4, i = 20. Further,

127 _ 6(153 — 19ny)

A= — Bt S
33— 2n;° (33 — 2ny)?

(4.30)
Note, that in Ref. 23, the choice B = 0 is adopted. The constants a4 and by from
Eq. (4.28) are determined from matching of the potential and its first derivative
at r = ro. It turns out that the dependence of the g system mass spectrum on
the regularization parameter ro is very weak provided the latter is chosen to be
sufficiently small.

4.3. t’Hooft Interaction. The t’Hooft interaction is used in the form suggested
in Ref.25. The point-like potential in the configuration space would lead to the
divergences. For this reason, the following regularization of the potential is
considered

. 1 r?
Vo(r) = 4GV reg (T A) ;- Voreg (15 A) = TWE exp (—F) . 43D

In the momentum space, we have

A2 /)2
Vi reg(P — P'sA) = exp (—%) . (4.32)
Now, using the following representation of the Legendre polynomials
S n
P,(z) = Sl dom (z==1)", (4.33)

with the use of the identity

/e“zz"dz = 8—/e“zclz7 (4.34)
dan

after the partial-wave expansion of the t’Hooft potential we obtain
lim Vit rog (0,05 M) = 670V reg (0 13 0) (4.35)

that reflects the point-like character of the t’Hooft interaction. Here,

exp(-A? + %)) 4 A%

4.36
472 A2pp/ 2 (4.36)

V’IQ,reg (pv p/; A) =
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In accordance with the Eq. (4.35), all partial waves except L = 0 in the partial-
wave expansion of the t"Hooft potential are neglected even at nonzero A.

As was mentioned above, the t’Hooft interaction was introduced in order to
provide the mass splitting between the pseudoscalar and vector octets within the
framework of the constituent quark model, which in QCD is due to the sponta-
neous breaking of chiral symmetry. The quantity ¢ that appears in Eq. (4.31),
is the matrix in the flavor space. The matrix elements of this matrix between
various meson states

mop, K, w=mn, = (vt +dd), ® =ns = s§ (4.37)

Nis

are [25]

(rlglm) = —g = (pldlp), (K|9|K)=—g

A ” ) ) (4.38)
Msldlns) =0, (aldlmn) =g,  (Maldns) = V29’ (nsdlnn),

where g and ¢’ are two independent coupling constants that are considered to be
the free parameters of the model.

The 1 and 7’ mesons are the superpositions of 7, and 7s. In order to take
the mixing into account, we introduce the matrix notations

‘i’MB (p) = ((Ifn’MB (p)) )

@, 0y (P)
- L Gn,o(MB;p) N 0
Go(Mp;p) = < 0 Gso(Mp;p) )’ (4.39)
Voa(p, 0 |
VA(pvp/)— < A(Op p) VnAp /) ) R A:C;OGa

The radial wave functions R;(f(}(f(‘f)(p), f = n, s describing the n and r’ mesons,

obey the following system of equations
[ Mp — (avwr + asws)| Rifose (0) = AY 2 (Mpip) ¥ 0y Jo~ 0 dp!x
{ | W ONE 0) + aranat AT AT )
XVP(p.p') + (anai N} 35 (DN 152 )+

+anah N[y D (INSS, 2 (0)Va (0, 1) |
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<RG0 )+ 32| N 0+

+oz1agoz1a2./\/f - a2)( )./\/'(:fgi%)(p/)—l-

+ 061062./\/'; 1;1 az)(p) + 0/1042]\/';/ il21 as) (p/)) %
X V2 o (0,13 M) (1 |4§|77f/>} Ried )} - (4.40)

The functions R;?‘(}(f(‘f)(p), f = n, s satisfy the normalization condition
/ > pdp
o (2m)3

2
79 (M, p) (Riﬁ“&o%%)) } ouy. (4.41)

2
70 (M, p) (R%&%)) n

where Mp is either M, or M,,.

The equations for other mesonic states can be obtained, replacing (ns|4g|ns ),
f, f' = n, s by the corresponding matrix elements from Eq. (4.38).

Note that the mixing in ® — w and 1 — 1’ systems has been recently also
investigated in Refs. [41] within the Nambu—Jona-Lasinio (NJL) model, with an
account of the relativistic confinement potential (Lorentz vector structure only)
and the t’Hooft interaction.

4.4. Solution of the Equations. One has to specify the numerical procedure
for the solution of the system of radial equations (4.16)—(4.17). A possible
algorithm looks as follows. One chooses the known basis functions denoted by
R, (p). The radial wave functions are expanded in the linear combinations of
the basis functions

R399 (p) = \/2Mp(27)3 R9D (p) =

= /2Mp(2n)? Zcﬁg} (p), (4.42)

where cglofgj) are the coefficients of the expansion. The integral equation for

the radial wave functions is then transformed into the system of linear equa-
tions for these coefficients. If the truncation is carried out, the finite system
of equations is obtained that can be solved by using conventional numerical
methods. The convergence of the whole procedure, with more terms taken into
account in the expansion (4.42), depends on the successful choice of the basis. In
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Refs. 24,25,28-32,34, where the linear confining potential is assumed, the basis
functions are chosen in the following manner

Rop(y) = Nary"L2EP2(y)ev/2 . y=pp, (4.43)

where L2E+2(y) are the Laguerre polynomials, and /3 is the free parameter. In
Refs.15,27, 33, the nonrelativistic oscillator wave functions (again containing the
free parameter), were used in spite of the fact that the linear confining potential
was assumed. In Refs. 11,17-19,21,35, the same basis functions were used,
but without the free parameter, due to the fact that the confining potential was
taken in the harmonic form, with the parameters already fixed. Finally, in Ref. 26,
the harmonic oscillator basis was used, whereas the confining potential had the
general form given by Eq. (4.20).

To clarify the choice of the basis functions, let us consider the nonrelativistic
limit of the equations (3.61). In this limit, one can replace 9 — 1, 75 — O,
v — 0. Consequently,

V —Vog+Vo+Vr. (4.44)

Further, to derive the nonrelativistic limit of the equations, we expand the kinetic
term ajw; + asws in Eq. (3.61), retaining terms up to (including) O(p?/m?). In
the right-hand side of this equation, the function A(®1%2) (Mp;p) can be replaced
by its value at p = 0. In the result, we obtain

= (x ~(——
Bane(P) =0, @) =0, (4.45)
2 3./
P | gt A (A / d’p ,
-5 — P = A M Bl _
[EB 2M12] enNR(P) (Mp;0) (27)3 [Voa(p —p') +
+Velp-p) + Velp-p)] el RR0), (4.46)

where eg = Mp — m12, and
SAL, GR, MW : AYH)(Mp;0)=1,

1 M
CJ : AP (Mp;0) = 5 (1 + m—B) : (4.47)
12

The nonrelativistic limit in the MNK version is more tricky. For a general Mp,
there emerges an arbitrary function of the ratio Mp/mi2. However, if one uses
the nonrelativistic approximation also for the bound-state mass Mp = mjs, then

AH)(Mp;0) = 1 for both the CJ and MNK versions. Below, we shall use this
approximation.
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Since in the nonrelativistic limit (see Eq. (4.3))

++ ++
&R 0) = xR Rp), (4.48)

the nonrelativistic limit of Eq. (3.61) with the harmonic confinement poten-
tial (4.22) only, is given by

2 4 w
[53 - 2212 T3 as(mm)(”” = Op V)] X TRe(P) =0, (449

Performing the partial-wave expansion of Eq. (4.49), we obtain the equation for
the radial wave functions

d? 2 d L(L+1) 9 2 3 (n) , 4 9
i A ° Vi
[sz z dz 22 o wo \| dag(miy) n T 3 as(mi)Vo ||

xRp(z) =0, (4.50)

L(
where z = p/p, and p = \/mgwo —as m12 The solutions of this equation
with the energy spectrum

. 4
e =~ as(m)Vo +

1 3
. —as(m%Q)wo(2n+L+§), @51)

3

are the well-known harmonic oscillator wave functions

Rar(p) =p **Rup(2),

2 3
R.r(z) = Cnnz” exp(—%) 1Fy ( —n,L+ 2 22) ,

o \/QI‘(n +L+3/2) 1 s

I'n+1) I'(L+3/2)’

where 1 F} denotes the confluent hypergeometric function.
The functions R,z (p) can be used as a basis for the expansion in the general
case (4.42). The system of equations for the coefficients is given by

MpeGs? =3 SN BIGENSE, (Mp)cSEE),, (4.53)
ol o L'S" n'

where the matrix H(Mpg) is given by the convolution of the potential and various
kinematic factors that appear in Eqgs. (4.16)—(4.17), with the wave functions of
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the basis. From Eq. (4.53) it is immediately seen that, in general, the eigenvalue
equation for Mp is not a linear one, and should be solved, e.g., by iterations.

In order to actually solve the system of equations (4.53), one has to truncate
it at some fixed n = Npax. Then, C(Lasf?) are determined from the system of
4(Npmax + 1) (2(Nmax + 1) in Salpeter and Gross versions) linear equations. This
procedure determines the eigenvalue M p as well, either directly, when the matrix
H(Mg) does not depend on Mg, or by using the iterative procedure. Having
solved the eigenvalue problem at a fixed value of Ny, one has then to check the
stability with respect to the change of Ny,.x — if the calculated eigenvalues do
not converge with the increase of Ny, the original system of integral equations
is declared to have no solutions.

Note that the system of equations (4.53) is homogeneous in c(LSlJQ). This
means that the solution of the eigenvalue problem determines these coefficients
up to an overall factor that can be fixed from the normalization condition

STNT N s /0 pRdp 157 (Mg; p) Rur (p) Ruv1.(p) = 1.(4.54)

LS ayaz nn’

In the CJ and MNK versions, the function f1(2_ _)(M B;p) has the second-order
pole, so in the normalization condition one encounters singular integrals of the

following type
_ [T f@)da
I(QC()) - /0 (.13 — xO)Q ) (4.55)

where f(x) is the regular function that obeys the conditions f(0) = f(oc0) = 0.
The integral in (4.55) can be regularized according to

< flayde 2 (f'(x) = f(wo))da > f'(x)dx
/0 o m)? 7/0 + . (4.56)

(x — x0)? T — o 229 £ — Lo

The first question, which one may be willing to investigate, is the manifesta-
tion of the Lorentz structure of the confining interaction in the bound-state mass
spectrum, especially in the case of light quarks. This question was addressed,
e.g., in Ref. 18, where the scalar, timelike vector, and their equal-weight mixture
were studied on the basis of Salpeter equation (this corresponds to the choice

= 0;1;0.5 in Eq. (4.2), respectively). It was demonstrated that the stable
solutions of the Salpeter equation in the light quark sector do not exist for the
scalar confining potential x = 0, and do exist for x = 0.5 and x = 1. Further, in
Ref. 18, the structure 'y( ) ® ") was considered as well — it was demonstrated
that in the case the stable solutions do not exist. In Ref.21, more general con-
clusion was obtained — it was demonstrated that the stable solutions in the light
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quark sector exist for any x from the interval 0.5 < x < 1. This result was con-
firmed in Refs.27,31. Further, in Ref. 19, it was shown that in the heavy quark
sector nothing really depends on the mixing parameter x — the solutions exist
everywhere and practically do not change when x varies in the whole interval
0 < x < 1. This result is easy to understand. Indeed, the projection operator
(A(JH - Agg_))'yél) ® 752), that is present in the Salpeter equation, in the heavy

1
quark limit is equal to 5(7(()1) + 7(()2))7(()1) ® 7(()2), so that the confining interaction

in this limit equals
-\ (1 2 1 2
A" = AL g @967 e @967 + (1= )1V @ IP]Ve(p ~ p') —

1
— 5067 + %) Velp —p) (@57)

at mi,mo — o0, and does not depend on x at all. Note that in the literature
we encounter the different choice of the parameter z: = = 1 [15,20,27], z =
0.5 [28,30,32], = = 0 [20,25,28]. Note also, that, as it was shown in Ref.26,
the nonexistence of the stable solutions at small x in the light-quark sector is
related to the presence of the «negative-energy» component in the Salpeter wave
function.

The same question can be studied in other — GR, MW, CJ and MNK —
versions that, unlike the Salpeter equation, have the correct one-body limit. For
the MW and CJ versions the investigations were carried out in Ref.23. Here, the
problem was studied in the configuration space, and for the confining potential
the following Lorentz structure was assumed: Vo(p,p’) = [x'y,(f) @y (1 -
2)IM ® I®] Ve (p — p'), where for Vo(p — p’) a linear form was chosen. It
was demonstrated that this potential should be «more scalar than vector» in order
to provide the existence of the stable solutions. More detailed study of MW, CJ
and MNK versions in the momentum space was carried out in Refs. 11, 35, where
the harmonic confining potential was used, with the Lorentz structure given by
Eq. (4.2). The following states d5 : 'Sg,3S1,' P1,2 Py,> P> P,,' P,,> D1,® D3,
ci and ¢5 : 'S;,' P13 P>, were considered. It was demonstrated, that in all
versions the solutions always exist at x = 0, whereas for x = 1 for the majority
of the states there is no solution. This is just the opposite to the Salpeter
equation case (see above) — there, at x = 1, there are the solutions, whereas
at z = 0, the solutions for majority of states cease to exist. Put differently,
the existence/nonexistence of the solutions depends critically on the value of =z,
and the criteria vary from version to version. In addition, the criteria depend
on the details of the potential — in particular, on the strength parameter wy
introduced in Eq. (4.22). Note that the instability mentioned, is now caused by
the admixture of the mixed (+—),(—+) frequency components in the bound-
state wave function. One may look for the admissible window in the parameter
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space, where the solutions of all versions simultaneously exist and approximately
coincide. In this way, one may judge on the Lorentz structure — assuming that
the whole physical picture of the ¢g bound states based on the 3D reduction of
the BS equation, is viable. From this study, one has to reject the MW version
that poorly agrees either with other versions or with data. Further, on the basis
of SAL, CJ and MNK versions, one can determine the acceptable interval for the
mixing parameter x: 0.3 < x < 0.6.

Both the fine structure (P-wave splitting), and the hyperfine structure (3S; —
3D, splitting) of the ¢q states depends on the value of the mixing parameter .
As was shown in Refs. 25,33 on the basis of Salpeter equation, the spin-orbit
splitting in the light quarkonia can only be described by the mixture of scalar and
timelike vector confinement. However, as was shown in Ref. 33, the fine structure
and the hyperfine structure cannot be simultaneously described by simply varying
the value of the mixing parameter. Finally, in Ref. 35, more general — and
pessimistic — conclusion was drawn: neither of the versions — SAL, MW, CJ
or MNK — with the dynamical input specified above, does not describe even
qualitative features of the whole mass spectrum of ggq bound states with x inside
the interval 0.3 < 2 < 0.6. Clearly, the problem calls for the further investigation.
Note that some aspects of the dependence on x the existence of stable solutions
of the different three-dimensional relativistic equations is studied in Refs. 44, 45.

5. DECAYS OF THE MESONS IN THE C.M. FRAME

Further information about the bound ¢g systems may be gained, investigating
their decays. Below, we consider exclusively the decays that proceed into the
c.m. frame of the bound state*. These are: the weak decays of the pseudoscalar
mesons P — pw, the leptonic decays of the neutral vector mesons V — ete™,
and the two-photon decays M — 7. The corresponding characteristics are: the
weak decay constant fp, the leptonic decay width T'(V — e™e™) (or the leptonic
constant fy), and the two-photon decay width T'(M — ~).

The expressions for the quantities fp and I'(V — eTe™) were obtained in
I}efs. 18,25328,29 in Ehe framewgrk of Salpeter equati~0n, directhy in terms of
®F)(p) = Bga(p) = Pip(p), or Yuo(p) = ) (p), Upy(p) = @) (p) (see
above). In Ref. 35, these quantities were evaluated in the framework of SAL,
CJ and MNK versions written in the form (4.5)—(4.1), that corresponds to the

*The treatment of the decays which cannot be confined to the c.m. frame, implies the specifica-
tion of the Lorentz-transformation rules for the instantaneous potentials and 3D wave functions. Due
to the Lorentz covariance, the dependence on the 0-th component of the relative momentum emerges
into the transformed wave functions, that renders the problem extremely complicated, and the further
assumptions are necessary. We do not consider such processes here.
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representation of the wave function in the form (4.3)—(4.4). The main conclusion
that comes from this investigation, is that the results do not depend much on the
choice of the different 3D reduction scheme. The quantity I'(M — ~v) was
evaluated in Refs. 28,29, 32,34 for the systems (,7, 7). Below, we shall follow
the derivation presented in Ref. 35.

For the calculation of the quantities listed above, we need the wave function
Q(Lagyi}J( ) which, according to Eq. (4.3), is expressed via )Z(Laslﬁ/}J (p). The
partial-wave expansion for the components of the wave function reads

[81292) (9)],, = MILSTMs) N5 (p) B2 (),
[@$a52) (P)],, = —(sn—on)(n|LSJM,) % RIS (),
B W, = nkom) (nizs) SN0 )
[B55%) 0)],, = —S”%meww x

oz1042p2j\/'1(;1a2) (p) R(LOE;I;Z) (p) 7 (5.1)

(w1 + aymy)(wa + aams)

where S = (o™ + 0@), o0 = 2(c — 0(?), and the operators S;» and
oMo ?) are given by Eq. (4.14). K
Using now the identity which is valid for any operator O

O(cW, 6@ n)(n|LSTM;) =
= Y (n|L/S'JMy)(L'S'" T My|O|LSIM,), (5.2)
L'S'J' My

and the expressions for the matrix elements of the operators Sn, on, Si5 (4.15),
from Eq. (5.1) it is straightforward to obtain

(@092 ()], = (m|LSIMs) N (p) RE2S? (p),

[&)QI?)JMJ }
J+1
= | ( J )<n|J+11JMJ ( ) (n|J —11JMy) | x

2J+1
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x i) BT ).

(3

[&)EIO;:Iﬁz}MJ (P)] ab

J J+1
Tl Cat) (75h)
o 2J +1 2J +1
x aeNS ) () RS2 (p)

[éga(1?2>)JMJ ®)],, =

(n|J1JM;) F <n|JOJMJ>] x

J+1 J
—[_ M<H|J+11JMJ>Z|Z @MJ—HJMJ)]X

2J +1 2J +1
(—a1a2) (araz)
X 1Ny (p)RJ< 0 )J(p),
[Q)L(]O;:lf[f}MJ (p)]ba =
J J+1
= | — M@lUlJMFF umUOJM) %
2J + 1 J 2J +1 J

x arN5 ™ (p) RS2 (p)

[&)S’(l?)) JM, (P)],, = i<n|‘]( (1) )JMJ> a1 NG T (p) R

[éfloiflz}MJ (p)]bb =

( (1)2))J(p)a

(a1
J

2/ T (T +1)

n|J £ 1TMy) = =

4=
2J-|—1<

><Ot1042J\/1(2_a1_a2) (p) Rf;llff} (p) -

(n|J ¥ 11JMJ)] x

(5.3)
With the use of these expressions, we can explicitly calculate the quantity
:(alaz) ~(a1a2) . ..
I:QLSJMJ(p)} ij = [(I)LSJMJ (p)}ij(—ldy) ) 1,] = avba (54)

as a 2 X 2 matrix in the fermion spin space. To this end, we explicitly introduce
the fermion spin coordinates o1 and oy (0; = +1/2, i = 1,2). Then, we have

<II|LSJMJ> = <IlO'10’2|LSJMJ> =
11
= Z (LSmpmg|JMy) (5 50102|Sm5> (n|Lmyp). (5.5)

mrms
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Further, with the account of the following relations

11 ) 1 1 0 .

<220102|00)(—wy) = 3 ( 0 1 ) = §I= ©o0 ,

11 . 1 1 0 1 .

<§§O’10’2|10>( ZO'y) = _2 < 0 —1 > = _2 0z = ¥10, (56)
11 _ 0 o
<§§Ula2|1i1>(_wy) = ( ( 0 ) ( 8 ) ) =

1 1 R
= B} (Foo — wy) = —2 O+ = Q141

it follows that
(n|LSTM;) = > (LSmpms|JM;) (n|Lmp) Gsms

mrms

= ((n|L) ® ¢g)"™M7 . (5.7)

2 (1a2)

For the quantity ® 1727, (p) = Y aras Prsun, (P) we obtain

[®rssar, (P)],. = (L) @ ¢s)"™M7 S, N (p) R (p),

8, 1 ), @)l = [P\ 7 g (nld D5 )04
(7
+ Tﬂunu—wwl)”ﬂ asas 02N @) BT (),
: (s41)
(@ 41100, (P)],, = l YA (n|J) ® ¢1)" M7
(7))
J A NJM ap—az) (1a2)
T\ 2Ur 1 ((n]-7) @ o) J] Do O‘QN1 (p) Ryiiry(p),

. ( J:]f—l )
[&)J( 0 )JMJ(P)];,@ = l_ 27 1 (n]J 4+ 1) @ @)/ M7+

J+1
(2(]7{’_1) (<1’1|J - 1) & @1)JJMJ‘| Ealaz N( o1.2) (p) R‘(]OEIO:;))J(p)7
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J
[(%JillJMJ ®)],, = l— @ ((n|lJ) @ ¢1)"M7

2J+1
(5

F\ gy (@) @ @)™ 3 ey ) RIS (0)
~ @ JMJ
4 0
o o= [ ()"
* 2 menhiy TR ) (5.8)
= _ o NJMy _
(@ ys1150, (P)],, = 57 11 (n|J+1) ® ¢1)
2 J J+]. ~ —Q] —Q2 Q12
ST D (i sy WMJ] D 2Ny T ) RTLT().

In order to evaluate the constants fp and fy,, we need the bound-state wave
function of the ¢q state at r = 0

- - Bo -
Visim, (r=0)=Yrg5m,(r=0,01,02) = / ﬁ Ursim, (P) =
_ [ &@p -
- / G P (p.o1). (5.9)
where, according to Egs. (2.26), (5.7) and (5.8)
T, &) a &) aa
B pomm (@) = < (@rssat,(PNa (L, (P)) ) | 5.10)
(Prssn, (P (Prssn, (P))ba

The decay constants fp and fi for the pseudoscalar (L =S = J = 0) and
vector (L =0, S = J = 1) mesons, respectively, are given by [46]

Su0Mp fp = V3tr [Uogoo(r = 0)7*(1 —%)],
fv(N) = V3t [Toria(r = 0y e, (N), A==£1,0,

where the factor v/3 stems from the color part of the wave function, and en(N)
is the polarization vector of the vector meson [47]

(5.11)

1
eu(A==1)=F—=(0,1,44,0), ,(A=0) = (0,0,0,1), in c.m. frame. (5.12)

V2
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Now, using the equations (5.9)—(5.11), we obtain

(o)
241 p2dp ala —a1a—2 ara
o= | >IN0 - anead ™ 0] R )
0 2 y
_ p-ap (a1 c2) 102 (—ara—2)
e = —onoVBTE [ 57 M)+ AL 0]
0 a1
< R§11% (p) = 8x0fv-
(5.13)
The leptonic decay width of the vector mesons (p°,w, ®) is given by
2 2 2
+ -\ aﬂl 2_47Taﬂ|fV|
IV —ete )f47r]\;% 3 > v *W (5.14)
A=+1,0
where
_ _ _ 111
alg = o’ey, €q = €q/e, el = (5, TR §> (5.15)
for p°,w,® mesons, respectively. g e

Here, ¢, denotes the expectation value

of the quark charge in the units of the

elementary charge e. M
In order to explain the reason,

why the quantity e, appears in the ex-

pression (5.14), let us note that the q

leptonic decay of the vector meson in

the lowest order in e is described by Fig. 1. Decay of the meson into electron-

the diagram depicted in Fig. 1. Taking positron pair

into account the flavor structure of the

wave functions

e+

1 - 1
O~ — (ut — dd), w~ — (utt 4 dd), d ~ 55, 5.16
p \/5( ) \/5( ) (5.16)

we obtain, that the transition amplitudes of the vector mesons into the photon are
proportional to

0 e

(p —>7)~57 (w—w)Nﬁ,

from which the Eq. (5.15) follows directly.

e
(P —7v)~ —3 (5.17)
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Further, taking into account Egs. (4.42), (4.52) and (4.54), we can express
the quantity fp and the leptonic decay width in terms of the dimensionless wave
functions R{%%%(z)

3/2
= Z/ 202 [N 5. 2) a7 2| R )
804e p3
IV —ete) = WJ\?Q g /dex

ai1az
2

oo _ (05K e%) o —o ao
<A .20+ A )| R )
(5.18)
where the functions
RiG7? () = Y Crds) Rur(2) (5.19)
n=0
satisfy the normalization condition
2
ZZ/ 22dzf5?) (Mg p, ){R(L(’Sl}m( )] -1, (5.20)
LS araz
a - b
Next, we consider the two-
photon decays of the neutral
> > mesons. The amplitude of the two-

A 2 y 7 photon decay of the ¢g bound state
with equal-mass quarks in the low-
est order in the coupling constant e
is given by the diagrams depicted
in Fig. 2. In the c.m. frame,
where P = (Mg, 0), this amplitude
is equal to [24]

Fig. 2. Two-photon decay of the meson

T(A1A2)=i\/§e§/(s;2)’4 tr{\I/MB( ){ﬁ (P +p— k;1> o +

+ ¢25< +p- k2> gz/l] }, (5.21)

where Wy, (p) is the BS amplitude of the ¢g bound state which satisfies
Eq. (2.25) and is written in the form (2.26). Further, k&; = (Mp/2,k) and
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ko = (Mp/2,—k), where k is the relative 3-momentum of photons in the c.m.
frame directed along the z axis, and ¢; = €(\;) are the polarization vectors for the
emitted photons. Due to the fact that the emitted physical photons are transversely
polarized, one needs to consider only the values A\; = &1 for which

1 1
A ==£1) = F—(0,1,£4,0), e(ho==£1)=2—(0,1,F4,0), (5.22
e(M ) qtﬁ( )y e ) \/5( Fi,0), (5.22)

and
¢(/\1 = il) = % (i’yx + Z"Yy) , ¢(/\2 = il) = % (:F'Y;c + ivy) . (5.23)

Further, one may rewrite the expression, entering the integrand in Eq. (5.21) in
the following manner (below, we follow the derivation given in Ref. 48)

fu(p, k) =—i /1S (g +P—/€1) fo— i ¢S (g +p—k2) ¢ =

_ aPp-Kk aly (P — k)
po—w(p—k)+i0 po+w(p-—k)—i0

a5t (p + k) a5 (p+ k)
po—wpP+k)+i0 po+w(p+k)—i0’

where w(p £k) = /m? + (p £ k)?, and

a3 (p—k) =AAD (P K)o o, asy (p+k) =A@ (p + k) fi. (5.25)

(5.24)

Note that, of course, the relation of the BS amplitude W, (p) and the 3D
amplitude W/, (p) is different in different versions of the 3D reduction. In
particular, in the Salpeter version,

Vs (p) =S (g +p> I'(p)S <—§ +p> , (5.26)

where, taking into account Eq. (2.26), we have

34/ _
F(p) = _Z/éTp)gV(pap,) \I/]WB(p/)v
oo Bal®)e, dul®)o,
s (P) = ( oo(P)oy  Pua(P)oy > 627
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On the other hand, from Eq. (5.26) one may obtain

=) (p) 1 1
U (p) = — - — +
_ M M
Mpg — 2w + 10 Po — 2B+w_i0 Do+ 23_w+2.0
=+ 1 1
+ M +(§13) < Mp B Mp ) +
B po— = Fw—i0 pot—= —w+io

N T+ (p) < 1 - 1 ) .

Mz PO—%—M'FZ'O po+%—w+z’0
N F(;\;;(P) ( MBl - MBl ' ) 5.28)
pO—T—I—w—zO po—l—T—l—w—i—zO
where
L7 (p) = A (P30l (p)10A” (-p) - (5.29)

After integrating Eq. (5.28) over py, we obtain the Salpeter equation for the
equal-time amplitude

; T ) ()
¥ - . 530
M5 (P) Mp—2w+i0 | Mp+ 2w (5.30)

Now, substituting (5.28) into the expression of the two-photon decay ampli-
tude (5.21) and integrating over pg, we obtain: T'(+F) = 0 and

T(4+) = iV3¢ / (27)3 { TME — (wtw(p k)2

|5 (T4 9(p) = T @) o F 0.+

Mg
5 1=h
Mg + 2w (p)+

(5@ -+

—H’(% +w+w(p — k))> Wy (P)) X
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X ﬁ (T £957072)m + (7= F57) (02 — k)| +
1
2

e (3 ) TG )+

1 __ M _
5 TED () + T () + <7B r~+(p) +

Mg + 2w
(% w+w p—f—k)))\ilMB(p)) X
Xm (1 F 757072)m + (7= F 1570) (P2 + k))] } (5.31)

For the further transformation of this expression, one may use the fact that the
static potential V' (p, p’) has the Lorentz structure given by Eq. (4.2). Then,

V(p, )V, (p') = Voc(p — P)v0 ¥, (P)v0 + Ve(p — p') x
x (xvo\ffMB (P')v0 + (1 — 2) W, (p')) +

+Vr(p — )44 (tr (Par, (P)) + ystr (P ary (P)75))- (5.32)

From this, one can directly obtain

34/ i / g /
F(aﬁ) (p) = —iA(a)(p)/ (d2753 [Voc(p _ p’) ( (g)ab p) gaa(p) ) +

, bu(@) (22— 1)ea(D))
Ve — Y A
Flelp p)<@x—mawv> FraD) >+

+wm—m@<“@@w+@&ﬂ>—M@AM+ﬁmm>}x
—tr (¢aa (p/) + ¢bb(p/)) tr (¢ab p/) + ¢ba(pl))

where

$0p(P) = —idas(p)oy (5.34)

are the components of the meson amplitude in the spin space. After performing the
partial-wave decomposition of these amplitudes, the expression for the quantity
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T(AA2) takes the form (note that we have replaced t’Hooft interaction by its
regularized version).

LS, state:

T(++) = i(ﬁi /Ooo p;ip /p’de’{ [<J\M;4+uj|—2w) Jo(Mp;p)+

2mw
Mpgp

2

2mw
+ 2 B3 ) Ve 0.0 Rt ) = (20 = 1)
BP

+ Ii(Mg;p)

2

2
. m 2w 2w
———— ) Jo(Mp; (Mg 2 L (Mn:
X(<M3+p(MB+2w)) of B’p)+MB 1( Byp)-i-M% 2( B,p))x

xVE(p, ") Rooo(aa—sw) (P')+

muw
22—1)———Jo(Mp; p)V3(p,p )R / =1, Ve—Ve
+(2z >p(MB+2w) o(Mp;p)Va (p, ) Rooo(aa+sb) (P )]4—[3: , Va—Vog]+

2muw

49| ———5—Jo(Mp; p)V7 A —on) (P
+ g{p(MB—i—Zw)JO( va)VT,reg(pvpv )ROOO(aa bb)(p )]+

[ m Mp
L (Mn: — 19 (Mg:
+MB [ ) 3(Mg; p) Rooo(ab+ba) (P) +( o 3(Mg;p)) +
+I3(Ma3 ) ) Roooaa—th) (p)} } : (5.35)
3 P, state:

(v/2m)® w? Mg \pMp ' Mp+2
2mw 2mw mp
I9(Mp; I,(Mpg; ——I3(M X
T (M) + s F(Mpi) + s i) )
Am2w
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2 2
P m 2 . Ti, o N (om
+2(M]23+MB(MB+2w))12(Mva)>VC(pap)Rllo(aabb)(p) (2 — 1)x

MB 2m 2 mauw
— Jo(M I5(Mpg;p)) — I, (Mg:
(MB+2 M2 (Jo(Mp;p) — 15(Mp;p)) Mpp 2( va)>><

x V& (p, p') Rito(aaton) (P) | + [2 =1, Ve — Voc]+

3

. mw m
+89[4(—Bp I?(MB§p)+M—2pJO(MB;p) Iz(MB, p)+
B

M
+ <2—;I3(M37p) - Ig(MB,p)> RllO(aa—bb) (p)] } s (536)

where

RLs7(aa+br)(P) = RE:J;})( )+R(L_S})( ), (5.37)

m —— P
Rs5(aa—it) () = —(Ris) (0) = Risy () + (R (0) + Ris) (0),

p ——
Rus i () = 7 (RESY (0) = B () + T (RES) (0) + R 0).
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and

2w+ wy) — Mp In 2w+ w_) — Mp

Jo =1 —
0 n2(w+w+)—|—MB 2(w+w_)+ Mp

)

2w(w + wy) + Mpp

J =

n2w(w—|—w,)—MBp7

1 w
N = 252y
! 27 Mp """

4w w? w

L o= 1- n J-Y .
! wy +w_  Mpp 2p”°

2M
L = ——2 "y (5.38)

wy tw-p

2w 25w —1ME+wiw.  w?
o= =42 1B — o,

p 3 plwy +w-) p
IO _ 2(w+UJ+)—MB
5 2(w+w_)— Mg’

Mp —2

wy tw-p

2 o w+(MB—2w)(w2+%M%—w+w_+3MBw) w2I0
T 3Mpp(wy +w-) p? %

with wy = \/w2 + I M3 + Mpp.

Now, we consider other versions of the 3D equations. Since we consider the
equal-mass case, the Gross equation cannot be used. For this reason, we shall
restrict ourselves to the study of two-photon decay processes in CJ and MNK
versions. In these versions, there exists a relation between 4D and 3D free Green
functions given by Eqgs. (3.46) and (3.54). This relation can be immediately
translated into the relation between the 4D and 3D wave functions

U s, (p) = 278 (po) ¥y (P) (5.39)

where for the MNK version the equality pf{ = 0 holds for the equal-mass case.
As to the MW version, here the relation between Wy, (p) and ¥y, (p) does
not exist due to the definition of GY™W (Mp,p) (3.31). For the above reasons,
below we restrict ourselves to the CJ and MNK versions only. Substituting the
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expression (5.39) into Eq. (5.21), with an account of (5.24) one obtains

3 - a P (p— oo —
T(MA2) =i 363/ (;1;))3 tr {\IIMB (p)[ ;j(r()P_ kl)() _ ;j(ép_ kl)() i

ol (p + k) aé;><p+k)”

w(p + k) w(p + k)

From this equation one readily obtains

(5.40)

T(+,+) = +iv/3e? / (;i‘))g tr{\i/MB (p) x

" [(1 +95707:)m + (V= F ¥57%0) (p2 — k) N

w?(p — k)

+

(L F v57072)m + (72 £ ¥570) (P2 +’€>] } (5.41)

w?(p + k)

Substituting W/, (p) in the matrix form given by Eq. (5.10), we finally obtain
for the CJ and MNK versions

1S, state:

[e )

. 2 w? + LMZ .
0

m 2p  w?—1IME .
X ——Rooo(ab+ba) () + <— -

Mg Mp 2M2 (MB;P)>Rooo(aa—bb) (p)] (5.42)

3P, state:

. 2 T ~ m
T(:l::l:) = —Z\/geg (271’)5/2 /pdp |:J(MB,p) —MB RllO(ab+ba) (p)+
0

w2 —1MmM2 wt— LmA .
"’2( Mé £ 2Ml§p BJ(MB;I?)) R110(aa—bb) (p)} (5.43)
B B

~ 24 iz o
J(MB;p)zlnw2+‘11 §+ BP.
w? + Mg — Mpp

(5.44)
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It is important to note that in the Salpeter version the two-photon decay amplitude
depends on the potential both directly and indirectly, through the radial wave
functions, whereas in CJ and MNK versions this dependence enters only through
the radial wave functions.

For a given meson, the two-photon decay amplitude can be rewritten as

T(Ai)2) = €262 V3T (MAa; LSTMy). (5.45)

The decay width is given by

2

2
1 .
I'(meson—yy) = 7 S — Z é;eHT(Al)\g; LSJTMjy)| , (5.46)

Mp 2027 +1) &=

where ég’eﬂ depends on the choice of the meson flavor wave function. If this
function has a simple form ¢g, then & ; = é2. However, if the meson wave
function is made up of different flavor states aqiq1 + B¢2q2, the expression for
éi}eﬂp is more complicated. Consider as an example calculation of this factor for

79 and 7, states. The flavor structure of the wave functions is given by

1 - 1 _
0 _ _
T~ ut — dd) , n ~ — (uu + dd) . 5.47
It follows then straightforwardly that é2 . = 1 and €2 . = 5 for 7° and
aeff 3\/5 ¢eft 9\/5

7, states, respectively. Further, the decay amplitudes for the physical n and 7’
mesons are the linear superposition of the ones corresponding to n,, and 15 ~ s5
states.

Note that the two-photon decays of 7°, 7, 1’ mesons were also studied in
the NJL model, taking into account the relativistic confinement and the t’Hooft
interaction [42].

Acknowledgements. The author thanks T.Babutsidze and A.Rusetsky for
useful discussions.
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