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Five different versions of the three-dimensional (3D) reduction of the BetheÄSalpeter (BS)
equation in the instantaneous approximation for kernel of BS equation for the two-fermion systems
are formulated. The normalization conditions for the bound-state wave function in all versions are
derived. Further, the 3D reduction of BS equation without instantaneous approximation for the
kernel of BS equation is formulated in the quasi-potential approach. Except for the Salpeter version,
other four versions have the correct one-body limit (Dirac equation) when mass of one of constituent
fermions tends to inˇnity. Application of these versions for investigation of the different properties
of the qq̄ bound systems are considered.

‘Ëµ·³Ê²¨·µ¢ ´Ò ¶ÖÉÓ · §²¨Î´ÒÌ ¢¥·¸¨° É·¥Ì³¥·´µ° ·¥¤Ê±Í¨¨ Ê· ¢´¥´¨Ö �¥É¥Ä‘µ²¶¨É¥· 
(�‘) ¤²Ö ¤¢ÊÌË¥·³¨µ´´µ° ¸¨¸É¥³Ò ¢ µ¤´µ¢·¥³¥´´µ³ ¶·¨¡²¨¦¥´¨¨ ¤²Ö Ö¤·  Ê· ¢´¥´¨Ö �‘. �µ-
²ÊÎ¥´Ò Ê¸²µ¢¨Ö ´µ·³¨·µ¢±¨ ¢µ²´µ¢µ° ËÊ´±Í¨¨ ¸¢Ö§ ´´µ£µ ¸µ¸ÉµÖ´¨Ö ¤²Ö ¢¸¥Ì ¢¥·¸¨° ·¥¤Ê±Í¨¨.
‘Ëµ·³Ê²¨·µ¢ ´  É ±¦¥ É·¥Ì³¥·´ Ö ·¥¤Ê±Í¨Ö Ê· ¢´¥´¨Ö �‘ ¢ ±¢ §¨¶µÉ¥´Í¨ ²Ó´µ³ ¶µ¤Ìµ¤¥ ¡¥§
¶·¨³¥´¥´¨Ö µ¤´µ¢·¥³¥´´µ£µ ¶·¨¡²¨¦¥´¨Ö ¤²Ö Ö¤·  Ê· ¢´¥´¨Ö �‘. ‚¸¥ ¢¥·¸¨¨ ·¥¤Ê±Í¨¨ ¨³¥ÕÉ
¶· ¢¨²Ó´Ò° µ¤´µÎ ¸É¨Î´Ò° ¶·¥¤¥² (Ê· ¢´¥´¨¥ „¨· ± ), ¢ ±µÉµ·µ³ ³ ¸¸  µ¤´µ£µ ¨§ ¸µ¸É ¢²ÖÕ-
Ð¨Ì Ë¥·³¨µ´µ¢ Ê¸É·¥³²Ö¥É¸Ö ¢ ¡¥¸±µ´¥Î´µ¸ÉÓ, §  ¨¸±²ÕÎ¥´¨¥³ ¢¥·¸¨¨ ‘µ²¶¨É¥· . � ¸¸³µÉ·¥´µ
É ±¦¥ ¶·¨³¥´¥´¨¥ ÔÉ¨Ì ¢¥·¸¨° ¤²Ö ¨¸¸²¥¤µ¢ ´¨Ö · §²¨Î´ÒÌ ¸¢µ°¸É¢ ¸¢Ö§ ´´µ° qq̄-¸¨¸É¥³Ò.

1. INTRODUCTION

After having ˇrmly established the quark structure of mesons and baryons,
there naturally arises the question: how to describe the properties of hadrons in
terms of explicit quark and gluon degrees of freedom. The main feature of QCD at
low energy Å conˇnement of quarks and gluons into a colorless bound states Å
is still understood very little. For this reason, one has to resort to various kinds of
QCD-inspired models. The simplest one is the so-called constituent quark model,
where quarks have a given ®constituent¯ mass, and the interactions between
the ®constituent¯ quarks within mesons qq̄ and baryons qqq are described by
®conˇning potentials¯, growing to inˇnity at the inˇnite quark separation. At the
ˇrst stage, this intuitive picture has been implemented within the nonrelativistic
approach. Despite the evident success of the nonrelativistic potential model,
it has been understood long time ago, that one has to include the relativistic
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effects, at least when describing hadrons consisting of light u, d, s quarks. Field-
theoretical BetheÄSalpeter (BS) equation provides a natural basis for a relativistic
generalization of the potential model, where both light u, d, s and the heavy
quark c, b bound states can be treated on the equal footing. A more sophisticated
approach is based on a coupled set of DysonÄSchwinger (DS) and BS equations,
that can be derived at QCD level [1Ä3]. In such an approach, one uses a model
gluon propagator that through the solution of the DS equation leads to the quark
propagator which is an entire function in a complex p2 plane and therefore is
believed to correspond to the conˇned quark. A full content of underlying QCD
symmetries which are important at low energy, can be consistently embedded
within this approach. In particular, the Goldstone bosons are properly described,
and in the limit of the vanishing quark masses, the masses of Goldstone bosons
obtained through the solution of the coupled DS and BS equations, also vanish
(note that it is not the case in the simple potential-type models with quarks having
the constant ®constituent¯ mass).

In the following, we shall review the potential model based solely on the BS
equation, which is the subject of intensive investigations during last
twenty years.

2. BETHEÄSALPETER EQUATION
FOR THE TWO-FERMION BOUND STATE

To set up the notation, in this section we give a brief survey of the covariant
BS approach to the two-fermion (fermion-antifermion) bound states. In order
to derive the BS equation for the two-fermion bound state, we consider the full
4-fermion Green function G which in the momentum space is given by

G(p1, p2; p′1, p
′
2) = i2

∫
dx1dx2dx′

1dx′
2 eip1x1+ip2x2−ip′

1x′
1−ip′

2x′
2 ×

× 〈0|Tψ1(x1)ψ2(x2)ψ̄1(x′
1)ψ̄2(x′

2)|0〉 , (2.1)

where, for simplicity, the fermions 1 and 2 are assumed to be distinguishable,
and the spinor indices are suppressed.

The Green function satisˇes the BS equation in the momentum space

G = G0 + G0KG = G0 + GKG0 , (2.2)

where G0 stands for the free 4-fermion Green function (the direct product of two
fermion propagators), and K denotes the kernel of BS equation, given by the sum
of all two-particle irreducible Feynman graphs.



BOUND qq̄ SYSTEMS 1063

In the momentum space, it is convenient to deˇne the centre-of-mass (c.m.)
and relative 4-momenta according to the following relations (with arbitrary α
and β)∗

P = p1 + p2, p = βp1 − αp2, α + β = 1,

or p1 = αP + p, p2 = βP − p . (2.3)

For the basis vectors in the momentum space, the following notation is used

|p1〉 ⊗ |p2〉 = |p1p2〉 = |Pp〉 = |P 〉 ⊗ |p〉 . (2.4)

These vectors satisfy the completeness and orthonormality conditions∫
|pi〉

d4pi

(2π)4
〈pi| = 1 for i = 1, 2 ,

∫
|P 〉 d4P

(2π)4
〈P | = 1 ,∫

|p〉 d4p

(2π)4
〈p| = 1 ,

(2.5)

〈pi|p′j〉 = δij(2π)4δ4(pi − p′j) ,

〈P |P ′〉 = (2π)4δ4(P − P ′) , 〈p|p′〉 = (2π)4δ4(p − p′) . (2.6)

In these notations, we can write

〈Pp|O|P ′p′〉 = (2π)4δ4(P − P ′)[〈p|O(P )|p′〉 ≡ O(P ; p, p′)],

O = G, G0, K . (2.7)

Further,

〈p|G0(P )|p′〉 ≡ G0(P ; p, p′) = (2π)4δ4(p − p′)G0(P ; p) , (2.8)

G0(P ; p) = S1(p1) ⊗ S2(p2) = −(�p1 + m1) ⊗ (�p2 + m2) g0(P ; p) , (2.9)

where Si(pi) = i(� pi − mi)−1 stands for the free fermion propagator with the
mass mi, and the quantity g0(P ; p) is deˇned as follows

g0(P ; p)=
1

p2
1 − m2

1 + i0
1

p2
2 − m2

2 + i0
=

1
p2
10 − w2

1 + i0
1

p2
20 − w2

2 + i0
, (2.10)

with wi =
√

m2
i + p2

i .

∗We choose the system of units, where � = c = 1. Any 4-vector has the components
a = (a0, a), and the metric is gµν = diag (1,−1,−1,−1).
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The stable bound state with the mass MB in quantum ˇeld theory is described
by the 1-particle state vector in the Fock space

〈PB |P′
B〉 = (2π)3 2wB δ3(P − P′) , wB =

√
M2

B + P2 . (2.11)

However, there is no interpolating ˇeld in the Lagrangian corresponding to the
bound state particle. The completeness condition of the Fock-state vectors in the
presence of bound states reads

1 =
∫

|PB〉 d3PB

(2π)3
〈PB| + · · · , (2.12)

where dots stand for the contributions of the states with elementary particles and
from the multiparticle scattering states.

Using the completeness condition (2.12), it is straightforward to single out
the bound-state contribution to the Green function (2.1) when P 2 → M2

B (equiv-
alently P 2

0 → w2
B). The quantity 〈p|G(P )|p′〉 exhibits the pole behavior at this

point

〈p|G(P )|p′〉 = i
〈p|ΦPB 〉〈Φ̄PB |p′〉

P 2 − M2
B

+ 〈p|R(P )|p′〉 , (2.13)

where 〈p|R(P )|p′〉 denotes the regular remainder of 〈p|G(P )|p′〉 at the bound-
state pole that emerges from the contribution of other states in the sum over
Fock-space vectors. Further, 〈p|ΦPB 〉 stands for the BS wave function of the
bound state

〈p|ΦPB 〉 ≡ ΦPB (p) =
∫

dx eipx 〈0|Tψ1(βx)ψ2(−αx)|PB〉,

〈Φ̄PB |p′〉 ≡ Φ̄PB (p′) =
∫

dx e−ip′x 〈PB |T ψ̄1(βx)ψ̄2(−αx)|0〉 =

= Φ+
PB

(p′) γ
(1)
0 ⊗ γ

(2)
0 .

(2.14)

The bound-state equation that can be derived for the state vector |ΦPB 〉 by
substituting Eq. (2.13) in the BS equation for the Green function (2.2), formally
resembles the nonrelativistic Schréodinger equation for two fermions

G−1(PB)|ΦPB 〉 = 0 , 〈Ψ̄PB |G−1(PB) = 0 ,

with G−1
0 (P ) − G−1(P ) = K(P ) , (2.15)

or

|ΦPB 〉 = G0(PB)K(PB)|ΦPB 〉 , 〈Φ̄PB | = 〈Φ̄PB |K(PB)G0(PB) . (2.16)
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Here PB = (wB,PB). Explicitly, in the momentum space, we arrive at the
following equation for the bound-state wave function [4]

ΦPB (p) = G0(P ; p)
∫

d4p′

(2π)4
K(P ; p, p′)ΦPB (p′) ,

Φ̄PB (p) =
∫

d4p′

(2π)4
Φ̄PB (p′)K(P ; p′, p)G0(P ; p) .

(2.17)

This equation should be solved in order to obtain the mass MB of the bound state.
It is obvious that both equations: for ΦPB (p), and for its conjugate Φ̄PB (p), lead
to the same bound-state spectrum.

Next, we derive the normalization condition for the BS wave function. To
this end, it is useful to start from the following identity

G(P )G−1(P )G(P ) = G(P ) ⇒ G(P )(G−1
0 (P ) − K(P ))G(P ) = G(P ). (2.18)

If P 2 is close to M2
B , one can neglect the contribution from R(P ) in Eq. (2.13).

We substitute the latter into Eq. (2.18), and perform the integration along the
closed contour C that encircles only the bound-state pole at P0 = wB , in the
complex P0 plane.

i

∫
C

|ΦPB 〉〈Φ̄PB |
(G−1

0 (P ) − K(P )) dP0

(P0 + wB − i0)2(P0 − wB + i0)2
|ΦPB 〉〈Φ̄PB | =

=
∫

C

|ΦPB 〉
dP0

(P0 + wB − i0)(P0 − wB + i0)
〈Φ̄PB | . (2.19)

From the Cauchy's theorem, one has∫
C

f(z) dz

(z − zS)n
= ±2πi

1
(n − 1)!

dn−1

dzn−1
f(z)

∣∣∣∣
z=zS

, (2.20)

where the function f(z) is analytic inside the contour C, and the choice of the ±
sign depends on whether one integrates counterclockwise (+) or clockwise (−)
along the contour. With the use of the above formula, from Eq. (2.19) one readily
obtains the normalization condition for the BS wave function

i

∫
d4p

(2π)4
d4p′

(2π)4
Φ̄PB (p)

[
∂

∂P0
(G−1

0 (P ; p, p′) − K(P ; p, p′))
]

P0=wB

×

×ΦPB (p′) = 2wB. (2.21)

The equations (2.17), together with the normalization condition (2.21), completely
determine the BS mass spectrum and the BS wave function.
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At the end of this section, we shall consider in some detail the spin content
of the BS wave function. In particular, we shall demonstrate that one can rewrite
this equation in terms of ®fermion-antifermion¯ rather than ®two-fermion¯ wave
function.

We work with the following representation of Dirac γ matrices

γ0 = γ0 =
(

I 0
0 −I

)
, γ = γ0

[
α =

(
0 σ
σ 0

)]
= −αγ0. (2.22)

The free two-fermion Green function given by Eqs. (2.9), (2.10), can be
written as

G0(P ; p) =
(

Gaa(p1) Gab(p1)
Gba(p1) Gbb(p1)

)
⊗
(

Gaa(p2) Gab(p2)
Gba(p2) Gbb(p2)

)
, (2.23)

where Guv(pi), u, v = a, b is the 2× 2 matrix (operator) in the spin space of the
i-th particle. Further, the BS wave function of the two-fermion system can be
written as a column

ΦPB (p) =




Φaa(P ; p)
Φab(P ; p)
Φba(P ; p)
Φbb(P ; p)


 , (2.24)

where, again, the components Φuv(P ; p), u, v = a, b are the 2 × 2 matrices in
the spin space of two fermions.

Now, it is straightforward to ensure that the BS equation (2.17) can be
rewritten in terms of ®fermion-antifermion¯ wave function ΨPB (p)

ΨPB (p) = S(1)(p1)
∫

d4p′

(2π)4
K(P ; p, p′)ΨPB (p′)S(2)(−p2) . (2.25)

The wave functions ΨPB (p) and ΦPB (p) are related by (see [5])

ΨPB (p) =
(

Φaa(P ; p) Φab(P ; p)
Φba(P ; p) Φbb(P ; p)

)
C =

= −i

(
Φab(P ; p)σ2 Φaa(P ; p)σ2

Φbb(P ; p)σ2 Φba(P ; p)σ2

)
, (2.26)

where

C = iγ2γ0 =
(

0 − iσ2

−iσ2 0

)
(2.27)

denotes the charge conjugation matrix.
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3. THREE-DIMENSIONAL REDUCTIONS OF THE BS EQUATION

One of the reasons why the three-dimensional (3D) reduction of the BS
equation is necessary, is the absence of the usual quantum-mechanical probability
interpretation for the wave function ΦPB (p) due to the dependence of the latter
on the 0-th component of the relative 4-momentum. Further, in the presence
of the conˇning interactions, it is extremely difˇcult to construct a ®reasonable¯
kernel K in four dimensions that describes these interactions Å we are not
aware of any, completely successful attempt. On the other hand, the concept
of static (3D) conˇning kernels that corresponds to an intuitively clear picture
of inˇnitely rising potentials in the coordinate space, has been extremely useful
in many semiphenomenological applications to study, e.g., the characteristics of
heavy quarkonia, etc.

For this reason, below we shall mainly consider the static BS kernels (i.e.,
the kernels which do not depend on the c.m. momentum P and on the 0-th
components of the relative momenta p0, p′0)

K(P ; p, p′) → Kst(p,p′) ≡ −iV (p,p′) . (3.1)

In this approximation, there are still different versions of the 3D equations for
the bound-state wave function. Below, we shall consider these versions in detail.

3.1. The Salpeter Equation [6]. In the approximation (3.1), from Eq. (2.17)
it is straightforwardly obtained

ΦPB (p) = G0(P ; p)
∫

d3p′

(2π)3
Kst(p,p′) Φ̃PB (p′),

Φ̄PB (p) =
∫

d3p′

(2π)3
˜̄ΦPB (p′)Kst(p′,p)G0(P ; p),

(3.2)

and

Φ̃PB (p) = G̃0(P ;p)
∫

fracd3p′(2π)3 V (p,p′) Φ̃PB (p′) ,

˜̄ΦPB (p) =
∫

d3p′

(2π)3
˜̄ΦPB (p′)V (p′,p) G̃0(P ;p) ,

(3.3)

where

Φ̃PB (p) =
∫

dp0

2π
ΦPB (p) , ˜̄ΦPB (p) =

∫
dp0

2π
Φ̄PB (p) ,

G̃0(P ;p) =
∫

dp0

2πi
G0(P ; p) .

(3.4)

At the next step, we introduce the projection operators

Λ(±)
i (pi) =

wi ± hi(pi)
2wi

, hi(pi) = α(i)pi + miγ
(i)
0 , i = 1, 2 (3.5)
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with the properties∑
αi=±

Λ(αi)
i = 1, Λ(αi)

i Λ(α′
i)

i = δαiα′
i
Λ(αi)

i , hi(pi)Λ
(±)
i = ±wiΛ

(±)
i . (3.6)

With the use of the following identity

�pi + mi =
{

(pi0 + wi)Λ
(+)
i (pi) + (pi0 − wi)Λ

(−)
i (pi)

}
γ

(i)
0 , (3.7)

it is straightforward to obtain

G̃0(P ;p) =
{

Λ(++)
12 (p1,p2)

P0 − w1 − w2 + i0
− Λ(−−)

12 (p1,p2)
P0 + w1 + w2

}
γ

(1)
0 ⊗ γ

(2)
0 =

=
[
P0 − h1(p1) − h2(p2)

]−1(Λ(++)
12 (p1,p2) − Λ(−−)

12 (p1,p2)) γ
(1)
0 ⊗ γ

(2)
0 ,(3.8)

where Λ(α1α2)
12 (p1,p2) = Λ(α1)

1 (p1) ⊗ Λ(α2)
2 (p2).

Now the Salpeter equation (3.3) in the c.m. frame (PB=0) can be written as[
P0 − h1(p1) − h2(p2)

]
Φ̃MB (p) =

= Π(p)
∫

d3p′

(2π)3
γ

(1)
0 ⊗ γ

(2)
0 V (p,p′) Φ̃MB (p′) , (3.9)

where

Π(p) = (Λ(++)
12 (p1,p2) − Λ(−−)

12 (p1,p2)) =
h1(p)
2w1

+
h2(−p)

2w2
. (3.10)

Introducing the ®frequency components¯ of the wave function according to

Φ̃PB (p) =
∑
α1α2

Φ̃(α1α2)
PB

(p) , Φ̃(α1α2)
PB

(p) = Λ(α1α2)
12 (p1,p2) Φ̃PB (p) , (3.11)

the Eq. (3.9) can be reduced to the following system of equations

[
MB ∓ (w1 + w2)

]
Φ̃(±±)

MB
(p) =

= ±Λ(±±)
12 (p,−p) γ

(1)
0 ⊗ γ

(2)
0

∫
d3p′

(2π)3
V (p,p′) Φ̃MB (p′) , (3.12)

with additional conditions

Φ̃(±∓)
MB

(p) = 0, Φ̃MB (p) = Φ̃(++)
MB

(p) + Φ̃(−−)
MB

(p) . (3.13)
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The normalization condition can be readily obtained from Eq. (2.21) by using
the approximation (3.1) for the kernel, the relation between 4D and 3D wave
functions (3.2), and the decomposition of the wave function (3.11), (3.13)∫

d3p
(2π)3

{
|Φ̃(++)

MB
(p)|2 − |Φ̃(−−)

MB
(p)|2

}
= 2MB . (3.14)

Note that the wave function Φ̃MB (p) can be represented in a form analogous
to (2.24)

Φ̃MB (p) =




Φ̃aa(p)
Φ̃ab(p)
Φ̃ba(p)
Φ̃bb(p)


 . (3.15)

The constraints (3.13) can be considered as equations for the components Φ̃ab(p)
and Φ̃ba(p). The solution of these equations gives

Φ̃ab = (m1w2 + m2w1)−1
{
w1(σ(2)p2)Φ̃aa − w2(σ(1)p1)Φ̃bb

}
,

Φ̃ba = (m1w2 + m2w1)−1
{
w2(σ(1)p1)Φ̃aa − w1(σ(2)p2)Φ̃bb)

}
.

(3.16)

For the ®frequency components¯ Φ̃(α1α2)
xy = Λ(α1α2)

12 (p)Φ̃xy(p), x, y = a, b, we
obtain the following relations

Φ̃(±±)
aa = ±(2(m1w2 + m2w1))−1 ×

×
{
(w1 ± m1)(w2 ± m2)Φ̃aa − (σ(1)p1)(σ(2)p2)Φ̃bb

}
,

Φ̃(±±)
bb = ±(2(m1w2 + m2w1))−1 ×

×
{
(σ(1)p1)(σ(2)p2)Φ̃aa − (w1 ∓ m1)(w2 ∓ m2)Φ̃bb

}
, (3.17)

Φ̃(±±)
ab = ±(2(m1w2 + m2w1))−1 ×

×
{
(w1 ± m1)(σ(2)p2)Φ̃aa − (w2 ∓ m2)(σ(1)p1)Φ̃bb

}
,

Φ̃(±±)
ba = ±(2(m1w2 + m2w1))−1 ×

×
{
(w2 ± m2)(σ(1)p1)Φ̃aa − (w1 ∓ m1)(σ(2)p2)Φ̃bb

}
.

The normalization condition (3.14) can be rewritten as∫
d3p

(2π)3
2w1w2

m1w2 + m2w1

{
|Φ̃aa(p)|2 − |Φ̃bb(p)|2

}
= 2MB . (3.18)
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At the end of this subsection, we shall consider the existence of the one-
body limit in the Salpeter equation. From the physical point of view, it is clear
that if the mass of one of the particles in the two-particle bound state tends to
inˇnity, the equation for the wave function should reduce to Dirac equation for
the light particle with a given interaction potential. Let us check this property for
the Salpeter equation assuming, e.g., that the mass of the ˇrst particle tends to
inˇnity. In this limit:

m1 → ∞ ⇒ w1 → m1, γ
(1)
0 → 1, h1 → m1 . (3.19)

Then, the Salpeter equation for the bound-state vector |Φ̃MB 〉 is reduced to
(E2 ≡ MB − m1)

(
E2 − h2

)
|Φ̃E2〉 =

1
2

(
1 +

h2

w2

)
γ

(2)
0 |Φ̃E2〉 . (3.20)

Due to the presence of the prefactor (1 + h2/w2)/2, this equation differs from
the Dirac equation for the particle 2 moving in the potential V Å that is, the
Salpeter equation does not possess the correct one-body limit.

Now there arises an important problem to solve. We are willing to obtain
the 3D reduction of the BS equation in the static approximation, that correctly
reproduces the dynamics of the system in the one-body limit Å this property
might be important for the description, e.g., the heavy-light qq̄ bound states.

Below, we shall consider several versions of the 3D reduction procedure,
which lead to the correct one-body limit.

3.2. The Gross Equation [7]. In the derivation of the Gross equation, ˇrst
we assign α = 0 and β = 1, in the deˇnition of the c.m. and relative momentum
variables (2.3). Physically, this means that the whole c.m. momentum is carried
by the particle 2. The free Green function has the form

G0(P ; p) = −(�p + m1) ⊗ (�P− �p + m2) g0(P ; p) ,

g0(P ; p) =
1

p2 − m2
1 + i0

1
(P − p)2 − m2

2 + i0
. (3.21)

The ˇrst propagator can be rewritten as

1
p2 − m2

1 + i0
= P

1
p2 − m2

1

− iπδ(p2 − m2
1) , (3.22)

where the symbol P stands for the principal-value prescription. The approxima-
tion that leads to the Gross equation, consists in the substitution

1
p2 − m2

1 + i0
⇒ −2πi

δ(p0 − w1)
2w1

. (3.23)
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This approximation is called the ®spectator approximation¯. Note that in this
approximation it is not only the principal-value term in the propagator of the ˇrst
particle that is neglected, but also the term containing δ(p0 + w1) that emerges
from δ(p2 − m2

1). Consequently, in this approximation the particle 1 always
stays on its mass shell deˇned by the equation p0 = w1. In a result of this
approximation, the free Green function in the c.m. frame (Pµ = (P0,0)) can be
rewritten in the following form

GGR
0 (P0; p) = 2πiδ(p0 − w1)G̃GR

0 (P0;p) = 2πiδ(p0 − w1) ×

×
{

Λ(+)
1 (p) ⊗ Λ(+)

2 (−p)
P0 − w1 − w2 + i0

+
Λ(+)

1 (p) ⊗ Λ(−)
2 (−p)

P0 − w1 + w2 + i0

}
γ

(1)
0 ⊗ γ

(2)
0 , (3.24)

where the functions GGR
0 (P0; p) and G̃GR

0 (P0;p) are related by Eq. (3.4).
After substituting Eq. (3.24) into (2.16) and integrating over the variable p0,

in the c.m. frame (now Pµ = (MB,0)) we arrive at the Gross equation for the
3D bound-state wave function

Φ̃MB (p) = G̃GR
0 (MB;p)

∫
d3p′

(2π)3
V (p,p′) Φ̃MB (p′) ,

˜̄ΦMB (p) =
∫

d3p′

(2π)3
˜̄ΦMB (p′)V (p′,p) G̃GR

0 (MB;p) .
(3.25)

Now, using again (3.24) together with (3.6), we arrive at[
MB − h1(p) − h2(−p)

]
Φ̃MB (p) =

=
1
2

(
1 +

h1

w1

)
γ

(1)
0 ⊗ γ

(2)
0

∫
d3p′

(2π)3
V (p,p′) Φ̃MB (p′) , (3.26)

which has the correct one-body limit when m1 → ∞.
The normalization condition for the 3D wave function that satisˇes the Gross

equation, cannot be obtained in a standard manner, by using Eq. (2.21). In order
to demonstrate this, note that according to Eqs. (2.16), (3.24), and (3.25), 4D and
3D wave functions are related by

ΦMB (p) = 2πδ(p0 − w1) Φ̃MB (p), Φ̄MB (p) = 2πδ(p0 − w1) ˜̄ΦMB (p). (3.27)

Now if in the normalization condition (2.21) with the static kernel (3.1), the
relation (3.27) between the 4D and 3D wave functions is substituted, one arrives
at the ill-deˇned expression containing the product of δ functions with the same
argument. For this reason, instead of the rigorous derivation, from the analogy
with the Salpeter equation, one merely assumes that the solutions of the Gross
equation satisfy the following normalization condition∫

d3p
(2π)3

{
|Φ̃(++)

MB
(p)|2 + |Φ̃(+−)

MB
(p)|2

}
= 2MB . (3.28)
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3.3. The MandelzweigÄWallace Equation [8]. In the derivation of the
MandelzweigÄWallace (MW) equation, the parameters α and β in the expres-
sion of the c.m. and relative momenta (2.3) are deˇned according to Wightmann
and Garding

α=α(s)=
s+m2

1−m2
2

2s
, β=β(s)=

s−m2
1+m2

2

2s
, s=P 2=P 2

0 − P2. (3.29)

In the c.m. frame, from Eqs. (2.3) and (3.29) it follows

p1 = (E1 + p0,p) , p2 = (E2 − p0,−p) ,

E1 =
M2

B + m2
1 − m2

2

2MB
, E2 =

M2
B − m2

1 + m2
2

2MB
, (3.30)

E1 + E2 = MB , E1 − E2 =
m2

1 − m2
2

MB
.

Further, we deˇne in the c.m. frame

G̃MW
0 (MB;p)=

∫
dp0

2πi

[
G0(p1, p2) + G0(p1, p

cr
2 )
]
, pcr

2 =(E2 + p0,−p), (3.31)

where G0(p1, p2) is given by Eqs. (2.8), (2.9), and (2.10). After integrating over
p0, we obtain

G̃MW
0 (MB;p) =

{
Λ++

12 (p,−p)
E1 + E2 − w1 − w2 + i0

+
Λ+−

12 (p,−p)
−E1 + E2 + w1 + w2

+

+
Λ−+

12 (p,−p)
E1 − E2 + w1 + w2

− Λ−−
12 (p,−p)

E1 + E2 + w1 + w2

}
γ

(1)
0 ⊗ γ

(2)
0 . (3.32)

The MW equation is obtained from the BS equation in the static approximation,
by using the combination G0(p1, p2) + G0(p1, p

cr
2 ) instead of G0(p1, p2) alone.

Unlike the Salpeter version, now all four possible projection operators Λ(++)
12 ,

Λ(+−)
12 , Λ(−+)

12 , Λ(−−)
12 , enter the expression of G̃MW

0 (MB;p), Eq. (3.32). For
this reason, the inverse operator for the free Green function in the 3D space
exists. Further, in analogy with Eq. (2.15), we can deˇne the inverse of the full
Green function in 3D space according to

[
G̃MW

0

]−1(MB;p,p′) −
[
G̃MW

]−1(MB;p,p′) = V (p,p′) , (3.33)

where

G̃MW
0 (MB;p,p′) = (2π)3δ3(p − p′) G̃MW

0 (MB;p) . (3.34)
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The MW equation for the bound-state vector |Φ̃MB 〉 is given by

[
G̃MW

]−1|Φ̃MB 〉 = 0 ⇒ |Φ̃MB 〉 = G̃MW
0 V |Φ̃MB 〉 . (3.35)

Note that we can rewrite the inverse of the free Green function in the MW
equation as

[
G̃MW

0

]−1 = γ
(1)
0 ⊗ γ

(2)
0

[
(E1 − h1) ⊗

h2

w2
+

h1

w1
⊗ (E2 − h2)

]
. (3.36)

With the use of this identity, one can rewrite the MW equation as[
(E1 − h1) ⊗

h2

w2
+

h1

w1
⊗ (E2 − h2)

]
|Φ̃MB 〉 = γ

(1)
0 ⊗ γ

(2)
0 V |Φ̃MB 〉 . (3.37)

Let us now consider the limit of this equation when m1 → ∞ (3.19). In this
limit, according to Eq. (3.30), E1 → m1, E2 → MB−m1, and the equation (3.37)
simpliˇes to the Dirac equation

[
E2 − h2

]
|Φ̃MB 〉 = γ

(2)
0 V |Φ̃MB 〉 . (3.38)

Consequently, the MW equation has the correct one-body limit.
3.4. The CooperÄJennings Equation [9]. The parameters α(s) and β(s) in

the CooperÄJennings (CJ) version are chosen as

α(s) =
α1(s)

α1(s) + α2(s)
, β(s) =

α2(s)
α1(s) + α2(s)

,

α1(s) =
s + m2

1 − m2
2

2
√

s
, α2(s) =

s − m2
1 + m2

2

2
√

s
.

(3.39)

The free Green function for the CJ equation is given by

GCJ
0 (P ; p) = −(�p1 + m1) ⊗ (�p2 + m2)gCJ

0 (P ; p) , (3.40)

where gCJ
0 (P ; p) is constrained by the elastic unitarity and can be written in the

following form

gCJ
0 (P ; p) = 2πi

∫ ∞

(m1+m2)2

ds′f(s, s′)
s′ − s − i0

δ+
[
(α(s′)P ′ + p)2 − m2

1

]
×

×δ+
[
(β(s′)P ′ − p)2 − m2

2

]
. (3.41)

Here δ+(x2 − a2) = (2a)−1δ(x − a), P ′ =
√

s′/sP , and the function f(s, s′)
satisˇes the condition f(s, s) = 1.
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After integration, the expression (3.41) yields

gCJ
0 (P ; p) = −2πi

δ(2Pp)
s − sp

√
ssp

f(s, sp)
α1(sp)α2(sp)

, (3.42)

where sp = (
√

m2
1 − p2 +

√
m2

2 − p2)2.
Choosing the function f(s, sp) in the form

f(s, sp) =
4s α1(sp)α2(sp)

ssp − (m2
1 − m2

2)2
(3.43)

we arrive at the following expression for gCJ
0 (P ; p)

gCJ
0 (P ; p) = −2πi

2s

(s − (w1 + w2)2 + i0)(s − (w1 − w2)2)
2
√

s δ(2Pp)
w1 + w2

. (3.44)

Note, that in the c.m. frame, 2
√

s δ(2Pp) = δ(p0). Because of the presence
of the δ function, one can rewrite the free Green function from (3.40) in the
following form (again, in the c.m. frame)

GCJ
0 (MB; p) = −(� p̃1 + m1) ⊗ (� p̃2 + m2)gCJ

0 (MB; p) ,

p̃1 = (E1,p), p̃2 = (E2,−p), (3.45)

where E1 and E2 are given by Eq. (3.30). The free Green function for the CJ
equation in 3D space is related to 4D Green function according to

GCJ
0 (MB; p) = 2πi δ(p0) G̃CJ

0 (MB;p) , (3.46)

where G̃CJ
0 (MB;p) is given by

G̃CJ
0 (MB;p) =

1
2(w1 + w2)

(� p̃1 + m1) ⊗ (� p̃2 + m2)
E2

1 − w2
1

=

=
1

2(w1 + w2)
(� p̃1 + m1) ⊗ (� p̃2 + m2)

E2
2 − w2

2

=

=
1

2(w1 + w2)
� p̃1 + m1

� p̃2 − m2
=

1
2(w1 + w2)

� p̃2 + m2

� p̃1 − m1
. (3.47)

In the limit, when one of the masses tends to inˇnity,

� p̃i + mi

2(w1 + w2)
→ 1 at mi → ∞, i = 1, 2. (3.48)

Consequently, the CJ equation has the correct one-body limit.
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Note that, using the properties of the projection operators, the free Green
function in the 3D space can be rewritten in the following form

G̃CJ
0 (MB;p) =

1
2(w1 + w2)a

[
(w1 + E1)(w2 + E2)Λ

(++)
12 (p,−p) −

−(w1+E1)(w2−E2)Λ
(+−)
12 (p,−p)−(w1−E1)(w2+E2)Λ

(−+)
12 (p,−p) +

+(w1 − E1)(w2 − E2)Λ
(−−)
12 (p,−p)

]
γ

(1)
0 ⊗ γ

(2)
0 , (3.49)

where

a = E2
1 − w2

1 = E2
2 − w2

2 =
1
4
[
M2

B + b2
0 − 2(w2

1 + w2
2)
]
,

b0 = E1 − E2 =
m2

1 − m2
2

MB
.

(3.50)

3.5. The MaungÄNorburyÄKahana Equation [10,11]. The free Green func-
tion for the MaungÄNorburyÄKahana (MNK) equation is again given by
Eq. (3.40), but with

gMNK
0 (P ; p) =

= −2πi

δ+

{[
(α(s)P + p)2 − m2

1

]
1+y
2 −

[
(β(s)P − p)2 − m2

2

]
1−y
2

}
[
(α(s)P + p)2 − m2

1

]
+
[
(β(s)P − p)2 − m2

2

]
+ i0

, (3.51)

with y = (m1 − m2)/(m1 + m2). This Green function, of course, satisˇes the
unitarity condition in the elastic channel. In addition, it has the property that the
particles 1 and 2 in the intermediate states are now allowed to go off mass shell
inverse proportionally to their masses Å so that, if one of the particles becomes
inˇnitely massive, it is automatically kept on its mass shell.

After some transformations, the Green function from Eq. (3.51) in the c.m.
frame can be rewritten as

gMNK
0 (MB; p) = −2πi

δ(p0 − p+
0 )

2R(p+
0 p−0 + a)

,

p+
0 =

R − b

2y
, p−0 = p+

0 + b0, (3.52)

R =
√

b2 − 4y2a, b = MB + b0y,
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and b0 is given by Eq. (3.50). By using the above expression, we obtain

G̃MNK
0 (MB,p) =

(� p̃+
1 + m1)(� p̃+

2 + m2)
2R(p+

0 p−0 + a)
,

p̃+
1 = (E1 + p+

0 ,p), p̃+
2 = (E2 − p+

0 ,−p). (3.53)

The relation between the 4D and 3D free Green functions in the MNK
version is given by

GMNK
0 (MB; p) = 2πiδ(p0 − p+

0 ) G̃MNK
0 (MB,p) . (3.54)

Using the properties of the projection operators, the free Green function of the
MNK equation can be recast in the following form

G̃MNK
0 (MB,p) =

=
1

2R(p+
0 p−0 + a)

{[
(w1 + E1)(w2 + E2)Λ

(++)
12 (p,−p) −

− (w1+E1)(w2−E2)Λ
(+−)
12 (p,−p)−(w1−E1)(w2+E2)Λ

(−+)
12 (p,−p) +

+ (w1 − E1)(w2 − E2)Λ
(−−)
12 (p,−p)

]
−

−
[
p+
0 p−0 + (w1 − w2)p+

0 (Λ(++)
12 (p,−p) − Λ(−−)

12 (p,−p)) +

+ (w1 + w2)p+
0 (Λ(+−)

12 (p,−p) − Λ(−+)
12 (p,−p))

]}
γ

(1)
0 ⊗ γ

(2)
0 . (3.55)

In the limit when m1 → ∞, the function gMNK
0 (P ; p) from Eq. (3.51) is

reduced to

gMNK
0 (P ; p)

∣∣∣∣
m1→∞

→ −2πi

p2
2 − m2

2

δ(p0)
2m1

. (3.56)

From Eq. (3.40) we can evaluate GMNK
0 (P ; p) in this limit:

GMNK
0 (P ; p)

∣∣∣∣
m1→∞

→ 2πi δ(p0)
(� p̃1 + m1) ⊗ (� p̃2 + m2)

2m1(p̃2
2 − m2

2)
, (3.57)

where p̃1 and p̃2 are deˇned by Eq. (3.45). Integrating this relation over p0, for
the 3D free Green function in the c.m. frame we obtain

G̃MNK
0 (MB;p)

∣∣∣∣
m1→∞

→ � p̃1 + m1

2m1
⊗ � p̃2 + m2

p̃2
2 − m2

2

. (3.58)

Since the factor (� p̃1 + m1)/(2m1) tends to unity in the limit m1 → ∞, one
concludes that the MNK equation has the correct one-body limit.
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3.6. The Normalization Condition for the Wave Function in MW, CJ and
MNK Versions. The 3D free Green function in either of MW, CJ, or MNK
versions, in the c.m. frame can be rewritten in terms of the projection operators:

G̃0(MB,p) =
∑

α1,α2=±

D(α1α2)(MB; p)
d(MB; p)

Λ(α1α2)
12 (p,−p)γ(1)

0 ⊗ γ
(2)
0 ,

p = |p|, (3.59)

where

MW : D(α1α2) =
(−)(α1+α2)/2

(w1 + w2) − (α1E1 + α2E2)
, d = 1 ,

CJ : D(α1α2) = (E1 + α1w1)(E2 + α2w2) , d = 2(w1 + w2)a ,

MNK : D(α1α2) = (E1 + α1w1)(E2 + α2w2) − (3.60)

−R − b

2y

(
R − b

2y
+ (E1 + α1w1) − (E2 + α2w2)

)
,

d = 2RB , B =
R − b

2y

(
R − b

2y
+ b0

)
+ a ,

with E1, E2, a, b0, R, b, y deˇned above.

The equation for the bound-state wave function frequency components (3.11)
can be directly obtained from Eq. (3.3) by substituting the above expression for
the free 3D Green function and using the properties of the projection operators

[
MB − (α1w1 + α2w2)

]
Φ̃(α1α2)

MB
(p) = A(α1α2)(MB; p) Λ(α1α2)

12 (p,−p) ×

× γ
(1)
0 ⊗ γ

(2)
0

∑
α′

1α′
2

∫
d3p′

(2π)3
V (p,p′) Φ̃(α′

1α′
2)

MB
(p′) , (3.61)

where, for the different versions

MW : A(±±) = 1 , A(±∓) =
MB

w1 + w2
,

CJ : A(α1α2) =
MB + (α1w1 + α2w2)

2(w1 + w2)
,
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MNK : A(α1α2) =
1

2RB

{
a
[
MB + (α1w1 + α2w2)

]
−

−
[
MB − (α1w1 + α2w2)

]R − b

2y
×

×
(

R − b

2y
+ (E1 + α1w1) − (E2 + α2w2)

)}
. (3.62)

Thus, the MW, CJ and MNK equations couple all four frequency components of

the wave function: Φ̃(++)
MB

, Φ̃(+−)
MB

, Φ̃(−+)
MB

, and Φ̃(−−)
MB

. One can formally extend
these notations for the Salpeter (SAL) and Gross (GR) versions, deˇning

SAL : A(±±) = ±1 , A(±∓) = 0 ,

GR : A(+±) = +1 , A(−∓) = 0 . (3.63)

It is immediately seen that Salpeter and Gross equations couple only two fre-
quency components of the wave function, other two being equal to 0.

For the derivation of the wave function normalization condition in MW, CJ
and MNK versions, let us consider the full 3D Green function that obeys the
equation

G̃i = G̃i
0 + G̃i

0V G̃i = G̃i
0 + G̃iV G̃i

0 , i = MW, CJ, MNK . (3.64)

In analogy with Eq. (2.13), this Green function develops a bound-state pole(s)

〈p|G̃(P )|p′〉 =
∑
B

〈p|Φ̃PB 〉〈 ˜̄ΦPB |p′〉
P 2 − M2

B

+ 〈p|R̃(P )|p′〉 . (3.65)

This leads to the normalization condition in MW, CJ and MNK versions in
analogy with Eq. (2.21)∫

d3p
(2π)3

d3p′

(2π)3
˜̄Φ

i

MB
(p)

{
∂

∂MB

(
(G̃i

0(MB;p,p′))−1 − V (p,p′)
)}

×

×Φ̃i
MB

(p′) = 2MB. (3.66)

Now using the relation

(G̃i
0(MB;p,p′))−1 = (2π)3δ3(p − p′) (G̃i

0(MB;p))−1 , (3.67)

and the fact that V (p,p′) does not depend on MB , the normalization condition
can be rewritten as∫

d3p
(2π)3

˜̄Φ
i

MB
(p)

{
∂

∂MB
(G̃i

0(MB;p))−1

}
Φ̃i

MB
(p) = 2MB . (3.68)
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If now one substitutes here the expression for the free Green function given
by Eq. (3.59), one obtains (below, we drop the superscript ®i¯ labeling various
versions)

∑
α1α2

∫
d3p

(2π)3
˜̄Φ

(α1α2)

MB
(p) f

(α1α2)
12 (MB; p) Φ̃(α1α2)

MB
(p) = 2MB , (3.69)

where

f
(α1α2)
12 (MB; p) =

∂

∂MB

(
d(MB ; p)

Dα1α2(MB; p)

)
. (3.70)

By using the explicit expressions for D(α1α2) and d given by Eq. (3.60), we
obtain

MW : f
(α1α2)
12 =

α1E1 + α2E2

MB
,

CJ : f
(α1α2)
12 =

2(w1 + w2)
MB

α1w1E1 + α2w2E2

(E1 + α1w1)(E2 + α2w2)
, (3.71)

MNK : f
(α1α2)
12 =

2
D(α1α2)

{[
MBB

R
(1 − y2)+

M2
B

2
−2
(

R−MB

2y

)2]
−

− B

D(α1α2)

[(
MB +

α1w1 + α2w2

2

)
R − M2

B

2
+ 2

(
R − MB

2y

)2

+

+(α1w1 − α2w2)
(

R − MB

2y
+

MBy

2

)]}
.

Let us note that the normalization condition (3.69) is valid for the Salpeter
and Gross versions as well, provided we choose

SAL : f
(α1α2)
12 =

α1 + α2

2
,

GR : f
(+±)
12 = 1 , f

(−±)
12 = 0 . (3.72)

Let us emphasize that the Salpeter, MW, CJ and MNK equations can be used
for the bound systems with the equal masses of the constituents, whereas the
Gross equation cannot Å the particle ®1¯ (spectator) should be heavier than the
particle ®2¯. This is due to the approximation (3.23) that was done in the free
Green function of the Gross equation. Further, it is directly seen from Eqs. (3.62)
and (3.63), that the Salpeter and Gross equations are linear eigenvalue equations
for determining MB (the functions A(α1α2) do not depend on MB), whereas
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MW, CJ and MNK equations are not, and MB enters the right-hand side of these
equations as well.

Let us now concentrate on the properties of the coefˇcient functions in detail.
In the case of the equal-mass constituents m1 = m2 = m and w1 = w2 = w, we
obtain

MW : A(±±) = 1 , A(±∓) =
MB

2w
,

CJ : A(±±) =
MB ± 2w

4w
, A(±∓) =

MB

4w
, (3.73)

MNK : A(±±) =
MB ± 2w

2MB
, A(±∓) =

1
2

.

It is immediately seen that in the equal-mass case, the MB drops out from

the equations for mixed components Φ̃(±∓)
MB

in the MW and CJ versions Å that
is, these components are redundant and can be eliminated in this case.

The functions f
(α1α2)
12 in the equal-mass case are given by

MW : f
(±±)
12 = ±1 , f

(±∓)
12 = 0 ,

CJ : f
(±±)
12 = ± 16w2

(MB ± 2w)2
, f

(±∓)
12 = 0 , (3.74)

MNK : f
(±±)
12 =

2((MB ± 2w)2 − 8w2)
(MB ± 2w)2

, f
(±∓)
12 = 2 .

From these expressions, we immediately see that in the CJ and MNK versions

the function f
(−−)
12 has the second-order pole at

MB − 2w(ps) = 0 , ps =
1
2

√
M2

B − 4m2 . (3.75)

It can be shown that in the nonequal mass case in the CJ and MNK versions

the function f
(−−)
12 has the second-order pole at

E2
i − w2

i (ps) = 0, ps =
1
2

√
M2

B +
(

m2
1 − m2

2

MB

)2

− 2(m1 + m2)2, (3.76)

while the other components f
(++)
12 , f

(+−)
12 and f

(−+)
12 do not have any poles.

3.7. LogunovÄTavkhelidze Quasi-Potential Approach [12]. There exists the
theoretical possibility to construct the 3D analogue of the BS equation without
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using the instantaneous approximation. To this end, one may use the LogunovÄ
Tavkhelidze quasi-potential approach formulated in Ref. 12 for the case of two
spinless particles, and generalized in Ref. 13 to the case of two fermions.

We introduce the following deˇnition, for any operator A(P ) in the momen-
tum space,

〈p|Ã(P )|p′〉 =
∫

dp0

2π

dp′0
2π

〈p|A(P )|p′〉 . (3.77)

Then, from Eq. (2.2) one obtains

G̃ = G̃0 + G̃0KG, (3.78)

where G̃0 is given by Eq. (3.8).
Due to the fact that the operator Π deˇned by Eq. (3.10) cannot be inverted,

the inverse operator of G̃0 does not exist as well. As a result, one cannot
deˇne the interaction potential by the formula analogous to Eq. (3.33). In order
to overcome this problem, it is convenient to introduce the Green function G̃0

deˇned by

G̃0(P ;p) = i
[
P0 − h1(p1) − h2(p2

]−1
γ

(1)
0 ⊗ γ

(2)
0 ,

G̃0(P ;p,p′) = (2π)3δ3(p − p′) G̃0(P ;p) γ
(1)
0 ⊗ γ

(2)
0 Π̂ , (3.79)

where Π̂ = Πγ
(1)
0 ⊗ γ

(2)
0 .

Now, the inverse of the operator G̃0(P ;p,p′) = (2π)3δ3(p − p′) G̃0(P ;p)
exists, and one may deˇne

G̃ = G̃0 + G̃0KG, (3.80)

from which follows that

G̃ = G̃ + G̃0 (1 − γ
(1)
0 ⊗ γ

(2)
0 Π̂) . (3.81)

It is clear, that near the bound-state pole the Green functions G̃ and G̃
differ only by the regular term, since G̃0 is regular in the vicinity of the pole.

Consequently, in order to derive the bound-state equation, one may use G̃ instead
of G̃, and deˇne the interaction potential according to[

G̃0

]−1 −
[
G̃
]−1 = Ṽ , (3.82)

from which it follows that

G̃ = G̃0 + G̃0 Ṽ G̃ , (3.83)
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and

Ṽ =
[
G̃0

]−1
G̃0KG

[
G̃
]−1

. (3.84)

For any given kernel K(P ; p, p′) the interaction potential can be constructed by
using Eq. (3.84). The equation for the bound-state wave function in the c.m.
frame can be obtained directly from Eq. (3.82)

G̃
−1

(MB) |Φ̃MB 〉 = 0 , |Φ̃MB 〉 = G̃ Ṽ |Φ̃MB 〉 . (3.85)

Deˇning the quasi-potential as

Vq(MB;p,p′) = iγ
(1)
0 ⊗ γ

(2)
0 Ṽ (MB;p,p′) , (3.86)

we obtain[
MB − h1(p) − h2(−p)

]
Φ̃MB (p) =

∫
d3p′

(2π)3
Vq(MB;p,p′) Φ̃MB (p′). (3.87)

Note that in the instantaneous approximation (3.1), the interaction potential
reduces to

Ṽ (MB;p,p′) = γ
(1)
0 ⊗ γ

(2)
0 Π(p) γ

(1)
0 ⊗ γ

(2)
0 Kst(p,p′) . (3.88)

As a result, the quasi-potential equation reduces to the Salpeter equation.
The ˇrst-order quasi-potential is deˇned by Eqs. (3.82) and (3.86), if in the

former the full Green function G is substituted by the free Green function G0

V (1)
q (MB;p,p′) = iγ

(1)
0 ⊗ γ

(2)
0 〈p|

[
G̃0

]−1
G̃0KG0

[
G̃0

]−1|p′〉 (3.89)

from which, in the static approximation one obtains

V (1)
q (MB;p,p′) = Π(p) γ

(1)
0 ⊗ γ

(2)
0 iKst(p,p′)Π(p) . (3.90)

It is seen that, unlike the full quasi-potential equation, the ˇrst-order equation
does not reduce to the Salpeter equation in the static limit. Only when one may
neglect the negative-frequency component of the bound-state wave function, the
ˇrst-order equation again reduces to the Salpeter equation in the static limit. Here
we note, that the ˇrst-order quasi-potential equation was used in Ref. 14 in order
to evaluate the dynamical retardation effect in the qq̄ bound system mass spectrum
(i.e., the effect that stems from the deviation of the BS kernel from the static one).

In the rest of this subsection, we consider the normalization condition for
the quasi-potential bound-state wave function. Near the bound-state pole, the 3D
Green function G̃(P ) develops a pole (3.65). Using the fact that in the vicinity
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of the bound-state pole the Green functions G̃(P ) and G̃(P ) coincide up to the
regular term, it is straightforward to obtain the normalization condition

i

∫
d3p

(2π)3
d3p′

(2π)3
˜̄ΦMB (p)

[
∂

∂MB

(
(G̃0(MB;p,p′))−1 − Ṽ (MB;p,p′)

)]
×

× Φ̃MB (p′) = 2MB. (3.91)

From this equation, using the deˇnition of the conjugate wave function (2.14)
and Eqs. (3.79), (3.86), we obtain∫

d3p
(2π)3

d3p′

(2π)3
Φ̃+

MB
(p)
[
1 − ∂

∂MB

(
Vq(MB;p,p′)

)]
Φ̃MB (p′) = 2MB. (3.92)

As is seen from Eq. (3.92), in the static limit the above normalization con-
dition reduces to the normalization condition for the Salpeter wave function only
if one neglects the contribution from the negative-energy component of the wave
function.

4. MESON SPECTROSCOPY

4.1. Partial-Wave Decomposition. The properties of the qq̄ bound systems
in the 3D formalism obtained from the BS equation in the static approximation,
were studied in Refs. 11,15Ä35, without making any additional assumptions. Note
that these 3D equations can be written either, as in Eq. (3.9), for the 2-fermion
bound-state wave function [11, 15Ä19, 21Ä23, 26, 27, 33, 35], or for the fermion-
antifermion bound-state wave function [20,24,25,28Ä32,34] (the latter is obtained
from Eq. (2.25) in the static approximation). Further, one may write down these
equations in terms of either the frequency components of the 3D wave functions

Φ̃(±±)
MB

(p) and Ψ̃(±±)
MB

(p) (the latter denotes the frequency components of the
fermion-antifermion wave function), or in terms of their linear combinations
Φ̃aa(p), Φ̃bb(p), etc., Ψ̃aa(p), Ψ̃bb(p), etc., see Eqs. (2.24), (2.26). Below,
we shall use the form of the 3D equations given by (3.61)Ä(3.63), with the
normalization condition given by (3.69)Ä(3.72) [11,26,35].

In order to rewrite the equations explicitly in either of the forms above, one
has to specify the explicit spin structure of the interaction potential. This potential
consists of several parts. First, there is the one-gluon (OG) exchange piece
dominating at short distances. In the Feynman gauge, the spin structure of this

piece is given by γ
(1)
µ ⊗γ(2)µ = γ

(1)
0 ⊗γ

(2)
0 −γ(1) ⊗γ(2). In accordance with the

static approximation, however, we neglect the second term in this expression [5].
In addition, there is the conˇnement (C) piece in the potential that dominates
at large distances and leads to the formation of the qq̄ bound states. The spin
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structure of this piece is not known a priori. We choose it to be the mixture of
a scalar and the zeroth component of a vector. Further, sometimes an additional
®instanton-induced¯ piece, corresponding to the t'Hooft interaction, is included
in the potential [25]. The spin structure of this term is given by the equal mixture
of scalar and pseudoscalar parts. The rationale for including the latter piece is
the following. In the absence of the proper treatment of the Goldstone nature
of light pseudoscalar bosons that is due to the spontaneous breaking of chiral
symmetry in QCD, the t'Hooft interaction mimics this effect, leading to the large
mass splitting between the pseudoscalar and vector mesons. Note that the chiral
symmetry can be consistently incorporated in the 3D framework (see, e.g., [20]),
albeit at a cost of the more involved formalism. For example, in this case the
Hamiltonian of the free quark is replaced by

hi(pi) = α(i)pi + miγ
(i)
0 → Bi(pi)α(i)pi + Ai(pi)γ

(i)
0 , (4.1)

where Ai(pi) and Bi(pi) are determined by solving the gap equation for the
quark propagator with the static potential. Below, however, we do not consider
this approach.

Thus, the spin structure of the static potential we shall be using, is given by

V = γ
(1)
0 ⊗ γ

(2)
0 VOG(r) + (xγ

(1)
0 ⊗ γ

(2)
0 + (1 − x)I(1) ⊗ I(2))VC(r) +

+ (I(1) ⊗ I(2) + γ
(1)
5 ⊗ γ

(2)
5 )VT(r) , (4.2)

where the last term corresponds to the t'Hooft interaction, all potentials are
assumed to be local, and 0 ≤ x ≤ 1.

Let us now turn to the wave function. It is possible to ®solve¯ the constraints
imposed on the frequency components, deˇning

Φ̃(α1α2)
MB

(p) = N (α1α2)
12 (p)


 1

α1(σ(1)p)
w1 + α1m1


⊗


 1

−α2(σ(2)p)
w2 + α2m2


 ,

χ
(α1α2)
MB

(p) =




Φ̃(α1α2)
aa (p)

Φ̃(α1α2)
ab (p)

Φ̃(α1α2)
ba (p)

Φ̃(α1α2)
bb (p)


 ,

(4.3)

where

N (α1α2)
12 (p) =

√
w1 + α1m1

2w1

√
w2 + α2m2

2w2
= N (α1)

1 (p)N (α2)
2 (p) , (4.4)
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and χ
(α1α2)
MB

(p) is the unconstrained Pauli 2 × 2 spinor. For this spinor, the
following system of equations is obtained

[
MB − (α1w1 + α2w2)

]
χ

(α1α2)
MB

(p) =

= A(α1α2)(MB; p)
∑
α′

1α′
2

∫
d3p′

(2π)3
V

(α1α2α′
1α′

2)
eff (p,p′)χ(α′

1α′
2)

MB
(p′), (4.5)

where

V
(α1α2α′

1α′
2)

eff (p,p′) = N (α1α2)
12 (p)

(
V1(p − p′)B(α1α2α′

1α′
2)

1 (p,p′) +

+V2(x;p − p′)B(α1α2α′
1α′

2)
2 (p,p′)

)
+

+VT(p − p′)
(
B

(α1α2α′
1α′

2)
1 (p,p′) − B

(α1α2α′
1α′

2)
2 (p,p′) −

−B
(α1α2α′

1α′
2)

3 (p,p′)
)
N (α′

1α′
2)

12 (p′) (4.6)

and

B
(α1α2α′

1α′
2)

1 (p,p′)=1 +
α1α2α

′
1α

′
2 (σ(1)p)(σ(2)p)(σ(1)p′)(σ(2)p′)

(w1+α1m1)(w2+α2m2)(w′
1+α′

1m1)(w′
2+α′

2m2)
,

B
(α1α2α′

1α′
2)

2 (p,p′) =
α1α

′
1 (σ(1)p)(σ(1)p′)

(w1+ α1m1)(w′
1+ α′

1m1)
+

α2α
′
2 (σ(2)p)(σ(2)p′)

(w2+ α2m2)(w′
2+ α′

2m2)
,

B
(α1α2α′

1α′
2)

3 (p,p′) =
α1α2 (σ(1)p)(σ(2)p)

(w1+ α1m1)(w2+ α2m2)
+

α′
1α

′
2 (σ(1)p′)(σ(2)p′)

(w′
1+ α′

1m1)(w′
2+ α′

2m2)
−

− α1α
′
2 (σ(1)p)(σ(2)p′)

(w1 + α1m1)(w′
2 + α′

2m2)
− α′

1α2 (σ(1)p′)(σ(2)p)
(w′

1 + α′
1m1)(w2 + α2m2)

, (4.7)

V1 = VOG + VC , V2(x) = VOG + (2x − 1)VC . (4.8)

The functions VOG(p−p′), VC(p−p′) and VT(p−p′) are the Fourier-transform
of the local potentials VOG(r), VC(r) and VT(r), respectively.

The normalization condition for the Pauli spinors χ
(α1α2)
MB

(p) follows from
(3.69)

∑
α1α2

∫
d3p

(2π)3
χ

+(α1α2)
MB

(p) f
(α1α2)
12 (p)χ

(α1α2)
MB

(p) = 2MB . (4.9)
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The partial-wave expansion of the Pauli spinor χ
(α1α2)
MB

(p) is given by

χ
(α1α2)
MB

(p)=
∑

LSJMJ

χ
(α1α2)
LSJMJ

(p)=
∑

LSJMJ

〈n|LSJMJ〉R(α1α2)
LSJ (p), n=

p
p

, (4.10)

where R
(α1α2)
LSJ (p) denote the radial wave functions, and L, S, J, MJ stand for

the total orbital angular momentum, total spin, total angular momentum, and the
projection of the total angular momentum of the qq̄ system, respectively.

The partial-wave expansion of the potentials reads as

V (p− p′) = (2π)3
∑

L̄S̄J̄M̄J̄

〈n|L̄S̄J̄M̄J̄〉V L̄
I (p, p′)〈L̄S̄J̄M̄J̄ |n′〉,

I = OG, C, T,

(4.11)

where

V L̄
I (p, p′) =

2
π

∫ ∞

0

r2dr jL̄(pr)VI(r) jL̄(p′r) , (4.12)

jL̄ being the spherical Bessel function.
Using the fact that for the spherical potentials VI(p−p′) = VI(|p−p′|), one

may write

V L̄
I (p, p′) =

1
4π2

∫ 1

−1

dz PL̄(z)VI

(√
p2 + p′2 − 2pp′z

)
, (4.13)

where PL̄(z) denotes the Legendre polynomial. The above form is convenient
when the function VI(p, p′; z) can be written in the analytic form.

In order to carry out the partial-wave expansion in the bound-state equation, it

is convenient to introduce the operators S =
1
2
(σ(1) +σ(2)), σ =

1
2
(σ(1)−σ(2)),

instead of the individual spin operators σ(i), i = 1, 2. At the next step, one uses
the known values of matrix elements of the operators Sn, σn, and the tensor
operators

S12 = 3(σ(1)n)(σ(2)n) − (σ(1)σ(2)) = 6(Sn)2 − 2S2,

(σ(1)σ(2)) = 2S2 − 3
(4.14)

between the different spin-angular momentum states

〈LSJMJ |
(

Sn
σn

)
|L′S′J ′MJ′〉 =

= δJJ′δMJMJ′ 〈L||n||L′〉〈S||
(

S
σ

)
||S′〉 × W (LL′SS′; 1J)(−1)S′+L−J ,
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〈L||n||L′〉 =
√

2L′ + 1 〈L′100|L0〉,

〈S||S||S′〉 = δSS′
√

(2S + 1)S(S + 1) ,

〈S||σ||S′〉 = (−1)S+1
√

3δS|S′−1|,

(4.15)

〈LSJMJ |Ŝ12|L′S′J ′MJ′〉 = δJJ′δMJ M ′
J

〈LSJ ||Ŝ12||L′S′J ′〉√
2J + 1

=

= (−1)L−L′
δS1δSS′

√
120(2L′ + 1)〈L′200|L0〉W (LJ21′; 1L′) ,

where W stand for the conventional Racah coefˇcients. The bound-state equations

for the radial wave functions R
(α1α2)
LSJ (p) are then obtained straightforwardly

[
MB − (α1w1 + α2w2)

]
R

(α1α2)

J
(

0
1

)
J
(p) = A(α1α2)(MB; p)

∑
α1α2

∫ ∞

0

p
′2dp′×

×
{[(

(N (α1α2)
12 (p)N (α′

1α′
2)

12 (p′) + α1α2α
′
1α

′
2N

(−α1−α2)
12 (p)×

×N (−α′
1−α′

2)
12 (p′))V J

1 (p, p′)+

+(α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′) + α2α
′
2N

(α1−α2)
12 (p)N (α′

1−α′
2)

12 (p′))×

×V

(
0
1

)

2⊕J (x; p, p′)
)

R
(α′

1α′
2)

J
(

0
1

)
J
(p′)−

−(α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′) − α2α
′
2N

(α1−α2)
12 (p)×

×N (α′
1−α′

2)
12 (p′))V2�J (x; p, p′)R

(α′
1α′

2)

J
(

1
0

)
J
(p′)

]
+

+
[(

(N (α1α2)
12 (p)N (α′

1α′
2)

12 (p′) + α1α2α
′
1α

′
2N

(−α1−α2)
12 (p)N (−α′

1−α′
2)

12 (p′))±

±(α1α2N (−α1−α2)
12 (p) + α′

1α
′
2N

(−α′
1−α′

2)
12 (p′))V J

T (p, p′)−

−(α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′) + α2α
′
2N

(α1−α2)
12 (p)N (α′

1−α′
2)

12 (p′)±

±(α1α2N (−α1−α2)
12 (p)+α′

1α
′
2N

(−α′
1−α′

2)
12 (p′)))V

(
0
1

)

T⊕J (p, p′)
)

R
(α′

1α′
2)

J
(

0
1

)
J
(p′)+

+
(

(α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′) − α2α
′
2N

(α1−α2)
12 (p)N (α′

1−α′
2)

12 (p′)∓

∓(α1α2N (−α1−α2)
12 (p)−α′

1α
′
2N

(−α′
1−α′

2)
12 (p′)))VT�J (p, p′)

)
R

(α′
1α′

2)

J
(

1
0

)
J
(p′)

]}
,

(4.16)
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[
MB − (α1w1 + α2w2)

]
R

(α1α2)
J±11J (p) = A(α1α2)(MB; p)

∑
α1α2

∫ ∞

0

p
′2dp′×

×
{[(

N (α1α2)
12 (p)N (α′

1α′
2)

12 (p′)V J∓1
1 (p, p′) + α1α2α

′
1α

′
2N

(−α1−α2)
12 (p)×

×N (−α′
1−α′

2)
12 (p′)V1(J±1)J (p, p′) + (α1α

′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′)+

+α2α
′
2N

(α1−α2)
12 (p)N (α′

1−α′
2)

12 (p′))V J
2 (x; p, p′)

)
R

(α′
1α′

2)
J±11J (p′)+

+
(

α1α2α
′
1α

′
2N

(−α1−α2)
12 (p)N (−α′

1−α′
2)

12 (p′)
2

2J+1
V1�J (p, p′)

)
R

(α′
1α′

2)
J∓11J (p′)

]
+

+
[(

(N (α1α2)
12 (p)N (α′

1α′
2)

12 (p′)±(α1α2N (−α1−α2)
12 (p) + α′

1α
′
2N

(−α′
1−α′

2)
12 (p′))×

× 1
2J + 1

)V J±1
T (p, p′) + α1α2α

′
1α

′
2N

(−α1−α2)
12 (p)N (−α′

1−α′
2)

12 (p′)×

×VT(J±1)J (p, p′) − (α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′)+

+α2α
′
2N

(α1−α2)
12 (p)N (α′

1−α′
2)

12 (p′) ± (α1α
′
2N

(−α1α2)
12 (p)N (α′

1−α′
2)

12 (p′)+

+α2α
′
1N

(α1−α2)
12 (p)N (−α′

1α′
2)

12 (p′))
1

2J + 1
)V J

T (p, p′)
)

R
(α′

1α′
2)

J±11J (p′)+

+
(

α1α2α
′
1α

′
2N

(−α1−α2)
12 (p)N (−α′

1−α′
2)

12 (p′)
2

2J + 1
VT�J (p, p′)−

−(α1α
′
1N

(−α1α2)
12 (p)N (−α′

1α′
2)

12 (p′) + α2α
′
2N

(α1−α2)
12 (p)×

×N (α′
1−α′

2)
12 (p′))

2
√

J(J+1)
2J+1

V J∓1
T (p, p′)∓(α1α

′
2N

(−α1α2)
12 (p)N (α′

1−α′
2)

12 (p′)+

+α2α
′
1N

(α1−α2)
12 (p)N (−α′

1α′
2)

12 (p′))
2
√

J(J + 1)
2J + 1

V J
T (p, p′)

)
R

(α′
1α′

2)
J∓11J (p′)

]}
,

(4.17)

where

V

(
0
1

)

A⊕J (p, p′) =
1

2J+1

[(
J

J + 1

)
V J−1

A (p, p′) +
(

J + 1
J

)
V J+1

A (p, p′)
]
,

VA�J (p, p′) =

√
J(J + 1)
2J + 1

[
V J−1

A (p, p′) − V J+1
A (p, p′)

]
,

VA(J±1)J (p, p′) =
1

(2J + 1)2

[
V J±1

A (p, p′) + 4J(J + 1)V J∓1
A (p, p′)

]
,

A = 1, 2, T. (4.18)
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The normalization condition in terms of radial wave functions has a particu-
larly simple form

∑
LS

∑
α1α2

∫ ∞

0

p2dp

(2π)3
f

(α1α2)
12 (MB; p)

[
R

(α1α2)
LSJ (p)

]2

= 2MB , (4.19)

where LS = J0, J1 or J ± 11 corresponding to the system of equations (4.16)
and (4.17).

4.2. Dynamical Input. For solving the bound-state equation, one needs
further to specify the interquark potentials VOG, VC, VT, introduced above.
Let us start from the conˇning part of the potential. It is believed that the
explicit form of this potential (i.e., its dependence on the interquark distance) is in
principle, derivable from QCD. At present, however, the only tangible theoretical
constraint on the form of this potential is the linear growth at large distances
obtained within the quenched lattice QCD [36]. Less compelling arguments
based on the background ˇeld technique, were provided to justify the harmonic
oscillator-type (∼ r2) behavior of the conˇning potential at small distances. With
no rigorous solution of the problem in sight, one may use the potential that
interpolates between the ®known¯ behavior of the potential in different limiting
situations [38,39] (for a slightly modiˇed version, see [26])

VC(r) =
4
3

αS(m2
12)

(
µ12ω

2
0r

2

2
√

1 + A0m1m2r2
− V0

)
, (4.20)

αS =
12π

33 − 2nf

(
ln

Q2

Λ2
QCD

)−1

, m12 = m1 + m2, µ12 =
m1m2

m12
, (4.21)

where Q2 is the momentum transfer squared, and the factor
4
3

comes from the

color-dependent part of the qq̄ interaction. nf is the number of 	avors (nf = 3
for u, d, s quarks; nf = 4, for u, d, s, c quarks; nf = 5, for u, d, s, c, b quarks).
ω0, V0, A0, ΛQCD are considered to be the free parameters of the model.
The potential given by Eq. (4.20), effectively reduces to the harmonic oscillator
potential for the light quarks u, d, s, and to the linear potential for the heavy b, c
quarks, that meets our expectations. In these limiting cases, the potential takes
the form

LINEAR : VC(r) =
4
3
αS(m2

12)
(

ω2
0

2m12

√
m1m2

A0
r − V0

)
≡ a1 + b1r,

HARMONIC : VC(r) =
4
3
αS(m2

12)
(

µ12ω
2
0

2
r2 − V0

)
≡ a2 + b2r

2. (4.22)
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The one-gluon exchange potential is given by the standard expression [26]

VOG(r) = −4
3

αS(m2
12)

r
≡ b−1r

−1 . (4.23)

Noting that

rn = lim
η→0

(−)n ∂n

∂ηn

(
e−ηr

r

)
, (4.24)

one can rewrite the potentials in the momentum space

LINEAR : VC(p − p′) = a1(2π)3δ3(p − p′) +

+b1 lim
η→0

∂2

∂η2

(
4π

|p− p′|2 + η2

)
, (4.25)

HARMONIC : VC(p − p′) =
(

a2 − b2
p′

)
(2π)3δ3(p− p′), (4.26)

ONE−GLUON : VC(p − p′) = b−1
4π

|p − p′|2 . (4.27)

In order to investigate the properties of the qq̄ bound systems, the linear
potential was used both in the conˇguration space [15, 20, 23, 31], and in the
momentum space [21,22,33,40]. In the latter case, a special numerical algorithm
based on the regularization (4.25), was utilized [22, 40]. In Refs. 25, 28Ä30, 32,
the matrix elements of VC(r) were calculated in the conˇguration-space basis, in
order to encompass the difˇculties related to the singular character of the linear
potential in the momentum space.

The investigation of the qq̄ systems in the framework of Salpeter equation
was carried out [17Ä20,26], using the harmonic conˇning potential. MW, CJ and
MNK equations with the harmonic conˇnement were considered in Refs. 11, 35.

Some mathematical problems arise if the one-gluon exchange potential with
the ˇxed coupling constant b−1 is used for the calculation of the characteristics
of qq̄ bound systems. Namely, as it was shown in Ref. 28, 20, in this case the
Salpeter wave function is divergent at r → 0. For the running coupling constant
this divergence is less pronounced but still present Å now, the problem occurs in
the decay observables which depend on the value of the wave function at r → 0.
In order to cure this divergence, in Refs. 28, 30 the following regularization was
proposed

VOG(r) = −4
3

αS(r)
r

, for r > r0 ,

VOG(r) = agr
2 + bg , for r < r0 , (4.28)
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where

αS(r)=
A

2 ln(e−(γ+µa)/a + eA/(2αsat))

[
1 − B

ln(2 ln(e−µ̃a/a + e1/2))
2 ln(e−µ̃a/a + eB/2)

]
, (4.29)

where a = ΛQCDr, γ = 0.577215 . . . is the EulerÄMascheroni constant, and
αsat = 0.4, µ = 4, µ̃ = 20. Further,

A =
12π

33 − 2nf
, B =

6(153 − 19nf)
(33 − 2nf)2

. (4.30)

Note, that in Ref. 23, the choice B = 0 is adopted. The constants ag and bg from
Eq. (4.28) are determined from matching of the potential and its ˇrst derivative
at r = r0. It turns out that the dependence of the qq̄ system mass spectrum on
the regularization parameter r0 is very weak provided the latter is chosen to be
sufˇciently small.

4.3. t'Hooft Interaction. The t'Hooft interaction is used in the form suggested
in Ref. 25. The point-like potential in the conˇguration space would lead to the
divergences. For this reason, the following regularization of the potential is
considered

VT(r) → 4ĝVT,reg(r; Λ) , VT,reg(r; Λ) =
1

(Λ
√

π)3
exp

(
− r2

Λ2

)
. (4.31)

In the momentum space, we have

VT,reg(p − p′; Λ) = exp
(
−Λ2(p − p′)2

4

)
. (4.32)

Now, using the following representation of the Legendre polynomials

Pn(z) =
1

2nn!
dn

dzn
(z2 − 1)n , (4.33)

with the use of the identity∫
eazzndz =

∂n

∂an

∫
eazdz , (4.34)

after the partial-wave expansion of the t'Hooft potential we obtain

lim
Λ→0

V L̄
T,reg(p, p′; Λ) = δL̄0V

0
T,reg(p, p′; 0) , (4.35)

that re	ects the point-like character of the t'Hooft interaction. Here,

V 0
T,reg(p, p′; Λ) =

exp(−Λ2(p2 + p′2)/4)
4π2

4
Λ2pp′

sinh
Λ2pp′

2
. (4.36)
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In accordance with the Eq. (4.35), all partial waves except L̄ = 0 in the partial-
wave expansion of the t'Hooft potential are neglected even at nonzero Λ.

As was mentioned above, the t'Hooft interaction was introduced in order to
provide the mass splitting between the pseudoscalar and vector octets within the
framework of the constituent quark model, which in QCD is due to the sponta-
neous breaking of chiral symmetry. The quantity ĝ that appears in Eq. (4.31),
is the matrix in the 	avor space. The matrix elements of this matrix between
various meson states

π, ρ, K, ω = ηn =
1√
2
(uū + dd̄) , Φ = ηs = ss̄ (4.37)

are [25]

〈π|ĝ|π〉 = −g = 〈ρ|ĝ|ρ〉 , 〈K|ĝ|K〉 = −g′,

〈ηs|ĝ|ηs〉 = 0 , 〈ηn|ĝ|ηn〉 = g , 〈ηn|ĝ|ηs〉 =
√

2g′〈ηs|ĝ|ηn〉,
(4.38)

where g and g′ are two independent coupling constants that are considered to be
the free parameters of the model.

The η and η′ mesons are the superpositions of ηn and ηs. In order to take
the mixing into account, we introduce the matrix notations

Φ̃MB (p) =
(

Φ̃n,MB (p)
Φ̃s,MB (p)

)
,

G̃0(MB;p) =
(

G̃n,0(MB;p) 0
0 G̃s,0(MB;p)

)
,

VA(p,p′) =
(

Vn,A(p,p′) 0
0 Vn,A(p,p′)

)
, A = C, OG ,

VT(p,p′) =
(

Vnn,T(p,p′) Vns,T(p,p′)
Vsn,T(p,p′) Vss,T(p,p′)

)
.

(4.39)

The radial wave functions R
(α1α2)
f,000 (p), f = n, s describing the η and η′ mesons,

obey the following system of equations

[
MB − (α1w1 + α2w2)

]
R

(α1α2)
f,000 (p) = A

(α1α2)
f (MB; p)

∑
α′

1α′
2

∫∞
0 p′

2
dp′×

×
{[

(N (α1α2)
f,12 (p)N (α′

1α′
2)

f,12 (p′) + α1α2α
′
1α

′
2N

(−α1−α2)
f,12 (p)N (−α′

1−α′
2)

f,12 (p′))×

×V 0
1 (p, p′) + (α1α

′
1N

(−α1α2)
f,12 (p)N (−α′

1α′
2)

f,12 (p′)+

+α2α
′
2N

(α1−α2)
f,12 (p)N (α′

1−α′
2)

f,12 (p′))V 1
2 (p, p′)

]
×
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× R
(α′

1α′
2)

f,000 (p′) +
∑
f ′

[
(N (α1α2)

f,12 (p)N (α′
1α′

2)
f ′,12 (p′) +

+ α1α2α
′
1α

′
2N

(−α1−α2)
f,12 (p)N (−α′

1−α′
2)

f ′,12 (p′) +

+ α1α2N (−α1−α2)
f,12 (p) + α′

1α
′
2N

(−α′
1−α′

2)
f ′,12 (p′)) ×

× V 0
T,reg(p, p′; Λ)〈ηf |4ĝ|ηf ′〉

]
R

(α′
1α′

2)
f ′,000 (p′)

}
. (4.40)

The functions R
(α1α2)
f,000 (p), f = n, s satisfy the normalization condition

∫ ∞

0

p2dp

(2π)3
∑
α1α2

[
f

(α1α2)
n,12 (MB, p)

(
R

(α1α2)
n,000 (p)

)2

+

+f
(α1α2)
s,12 (MB, p)

(
R

(α1α2)
s,000 (p)

)2]
= 2MB , (4.41)

where MB is either Mη or Mη′ .
The equations for other mesonic states can be obtained, replacing 〈ηf |4ĝ|ηf ′〉,

f, f ′ = n, s by the corresponding matrix elements from Eq. (4.38).
Note that the mixing in Φ − ω and η − η′ systems has been recently also

investigated in Refs. [41] within the NambuÄJona-Lasinio (NJL) model, with an
account of the relativistic conˇnement potential (Lorentz vector structure only)
and the t'Hooft interaction.

4.4. Solution of the Equations. One has to specify the numerical procedure
for the solution of the system of radial equations (4.16)Ä(4.17). A possible
algorithm looks as follows. One chooses the known basis functions denoted by
RnL(p). The radial wave functions are expanded in the linear combinations of
the basis functions

R
(α1α2)
LSJ (p) =

√
2MB(2π)3 R̄

(α1α2)
LSJ (p) =

=
√

2MB(2π)3
∞∑

n=0

c
(α1α2)
nLSJ RnL(p) , (4.42)

where c
(α1α2)
nLSJ are the coefˇcients of the expansion. The integral equation for

the radial wave functions is then transformed into the system of linear equa-
tions for these coefˇcients. If the truncation is carried out, the ˇnite system
of equations is obtained that can be solved by using conventional numerical
methods. The convergence of the whole procedure, with more terms taken into
account in the expansion (4.42), depends on the successful choice of the basis. In
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Refs. 24, 25, 28Ä32, 34, where the linear conˇning potential is assumed, the basis
functions are chosen in the following manner

RnL(y) = NnLyLL2L+2
n (y)e−y/2 , y = βp , (4.43)

where L2L+2
n (y) are the Laguerre polynomials, and β is the free parameter. In

Refs.15, 27, 33, the nonrelativistic oscillator wave functions (again containing the
free parameter), were used in spite of the fact that the linear conˇning potential
was assumed. In Refs. 11, 17Ä19, 21, 35, the same basis functions were used,
but without the free parameter, due to the fact that the conˇning potential was
taken in the harmonic form, with the parameters already ˇxed. Finally, in Ref. 26,
the harmonic oscillator basis was used, whereas the conˇning potential had the
general form given by Eq. (4.20).

To clarify the choice of the basis functions, let us consider the nonrelativistic
limit of the equations (3.61). In this limit, one can replace γ0 → 1, γ5 → 0,
γ → 0. Consequently,

V → VOG + VC + VT . (4.44)

Further, to derive the nonrelativistic limit of the equations, we expand the kinetic
term α1w1 +α2w2 in Eq. (3.61), retaining terms up to (including) O(p2/m2

i ). In
the right-hand side of this equation, the function A(α1α2)(MB; p) can be replaced
by its value at p = 0. In the result, we obtain

Φ̃(±∓)
MB ;NR(p) = 0 , Φ̃(−−)

MB ;NR(p) = 0 , (4.45)

[
εB − p2

2µ12

]
Φ̃(++)

εB ;NR(p) = A(++)(MB; 0)
∫

d3p′

(2π)3
[
VOG(p − p′) +

+VC(p− p′) + VT(p− p′)
]
Φ̃(++)

εB ;NR(p′) , (4.46)

where εB = MB − m12, and

SAL, GR, MW : A(++)(MB; 0) = 1 ,

CJ : A(++)(MB; 0) =
1
2

(
1 +

MB

m12

)
. (4.47)

The nonrelativistic limit in the MNK version is more tricky. For a general MB ,
there emerges an arbitrary function of the ratio MB/m12. However, if one uses
the nonrelativistic approximation also for the bound-state mass MB = m12, then
A(++)(MB; 0) = 1 for both the CJ and MNK versions. Below, we shall use this
approximation.
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Since in the nonrelativistic limit (see Eq. (4.3))

Φ̃(++)
εB ;NR(p) = χ

(++)
εB ;NR(p) , (4.48)

the nonrelativistic limit of Eq. (3.61) with the harmonic conˇnement poten-
tial (4.22) only, is given by[

εB − p2

2µ12
+

4
3

αS(m2
12)
(

µ12ω
2
0

2

p + V0

)]
χ

(++)
εB ;NR(p) = 0 . (4.49)

Performing the partial-wave expansion of Eq. (4.49), we obtain the equation for
the radial wave functions[

d2

dz2
+

2
z

d

dz
− L(L + 1)

z2
− z2 +

2
ω0

√
3

4αS(m2
12)

(
ε
(n)
B +

4
3

αS(m2
12)V0

)]
×

×RL(z) = 0, (4.50)

where z = p/p̄, and p̄ =

√
µ12ω0

√
4
3
αS(m2

12). The solutions of this equation

with the energy spectrum

ε
(n)
B = −4

3
αS(m2

12)V0 +

√
4
3

αS(m2
12) ω0

(
2n + L +

3
2

)
, (4.51)

are the well-known harmonic oscillator wave functions

RnL(p) = p̄−3/2RnL(z) ,

RnL(z) = cnLzL exp
(
−z2

2

)
1F1

(
− n, L +

3
2
, z2

)
,

cnL =

√
2Γ(n + L + 3/2)

Γ(n + 1)
1

Γ(L + 3/2)
, (4.52)

where 1F1 denotes the con	uent hypergeometric function.
The functions RnL(p) can be used as a basis for the expansion in the general

case (4.42). The system of equations for the coefˇcients is given by

MBc
(α1α2)
nLSJ =

∑
α′

1α′
2

∑
L′S′

∑
n′

H
(α1α2;α

′
1α′

2)
LSJn;L′S′J′n′(MB)c(α′

1α′
2)

n′L′S′J′ , (4.53)

where the matrix H(MB) is given by the convolution of the potential and various
kinematic factors that appear in Eqs. (4.16)Ä(4.17), with the wave functions of
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the basis. From Eq. (4.53) it is immediately seen that, in general, the eigenvalue
equation for MB is not a linear one, and should be solved, e.g., by iterations.

In order to actually solve the system of equations (4.53), one has to truncate

it at some ˇxed n = Nmax. Then, c
(α1α2)
LSJn are determined from the system of

4(Nmax +1) (2(Nmax +1) in Salpeter and Gross versions) linear equations. This
procedure determines the eigenvalue MB as well, either directly, when the matrix
H(MB) does not depend on MB , or by using the iterative procedure. Having
solved the eigenvalue problem at a ˇxed value of Nmax, one has then to check the
stability with respect to the change of Nmax Å if the calculated eigenvalues do
not converge with the increase of Nmax, the original system of integral equations
is declared to have no solutions.

Note that the system of equations (4.53) is homogeneous in c
(α1α2)
LSJn . This

means that the solution of the eigenvalue problem determines these coefˇcients
up to an overall factor that can be ˇxed from the normalization condition

∑
LS

∑
α1α2

∑
nn′

c
(α1α2)
LSJn c

(α1α2)
LSJn′

∫ ∞

0

p2dp f
(α1α2)
12 (MB; p)RnL(p)Rn′L(p) = 1.(4.54)

In the CJ and MNK versions, the function f
(−−)
12 (MB; p) has the second-order

pole, so in the normalization condition one encounters singular integrals of the
following type

I(x0) =
∫ ∞

0

f(x)dx

(x − x0)2
, (4.55)

where f(x) is the regular function that obeys the conditions f(0) = f(∞) = 0.
The integral in (4.55) can be regularized according to

∫ ∞

0

f(x)dx

(x − x0)2
=
∫ 2x0

0

(f ′(x) − f ′(x0))dx

x − x0
+
∫ ∞

2x0

f ′(x)dx

x − x0
. (4.56)

The ˇrst question, which one may be willing to investigate, is the manifesta-
tion of the Lorentz structure of the conˇning interaction in the bound-state mass
spectrum, especially in the case of light quarks. This question was addressed,
e.g., in Ref. 18, where the scalar, timelike vector, and their equal-weight mixture
were studied on the basis of Salpeter equation (this corresponds to the choice
x = 0; 1; 0.5 in Eq. (4.2), respectively). It was demonstrated that the stable
solutions of the Salpeter equation in the light quark sector do not exist for the
scalar conˇning potential x = 0, and do exist for x = 0.5 and x = 1. Further, in

Ref. 18, the structure γ
(1)
µ ⊗ γµ(2) was considered as well Å it was demonstrated

that in the case the stable solutions do not exist. In Ref. 21, more general con-
clusion was obtained Å it was demonstrated that the stable solutions in the light
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quark sector exist for any x from the interval 0.5 ≤ x ≤ 1. This result was con-
ˇrmed in Refs. 27, 31. Further, in Ref. 19, it was shown that in the heavy quark
sector nothing really depends on the mixing parameter x Å the solutions exist
everywhere and practically do not change when x varies in the whole interval
0 ≤ x ≤ 1. This result is easy to understand. Indeed, the projection operator

(Λ(++)
12 −Λ(−−)

12 )γ(1)
0 ⊗ γ

(2)
0 , that is present in the Salpeter equation, in the heavy

quark limit is equal to
1
2
(γ(1)

0 + γ
(2)
0 )γ(1)

0 ⊗ γ
(2)
0 , so that the conˇning interaction

in this limit equals

(Λ(++)
12 −Λ(−−)

12 )γ(1)
0 ⊗ γ

(2)
0

[
xγ

(1)
0 ⊗ γ

(2)
0 + (1− x)I(1) ⊗ I(2)

]
VC(p− p′) →

→ 1
2
(γ(1)

0 + γ
(2)
0 )VC(p − p′) (4.57)

at m1, m2 → ∞, and does not depend on x at all. Note that in the literature
we encounter the different choice of the parameter x: x = 1 [15, 20, 27], x =
0.5 [28, 30, 32], x = 0 [20, 25, 28]. Note also, that, as it was shown in Ref. 26,
the nonexistence of the stable solutions at small x in the light-quark sector is
related to the presence of the ®negative-energy¯ component in the Salpeter wave
function.

The same question can be studied in other Å GR, MW, CJ and MNK Å
versions that, unlike the Salpeter equation, have the correct one-body limit. For
the MW and CJ versions the investigations were carried out in Ref. 23. Here, the
problem was studied in the conˇguration space, and for the conˇning potential

the following Lorentz structure was assumed: VC(p,p′) =
[
xγ

(1)
µ ⊗ γµ(2) + (1−

x)I(1) ⊗ I(2)
]
VC(p − p′), where for VC(p − p′) a linear form was chosen. It

was demonstrated that this potential should be ®more scalar than vector¯ in order
to provide the existence of the stable solutions. More detailed study of MW, CJ
and MNK versions in the momentum space was carried out in Refs. 11, 35, where
the harmonic conˇning potential was used, with the Lorentz structure given by
Eq. (4.2). The following states ds̄ : 1S0,

3 S1,
1 P1,

3 P0,
3 P1,

3 P2,
1 P2,

3 D1,
3 D3,

cū and cs̄ : 1S1,
1 P1,

3 P2, were considered. It was demonstrated, that in all
versions the solutions always exist at x = 0, whereas for x = 1 for the majority
of the states there is no solution. This is just the opposite to the Salpeter
equation case (see above) Å there, at x = 1, there are the solutions, whereas
at x = 0, the solutions for majority of states cease to exist. Put differently,
the existence/nonexistence of the solutions depends critically on the value of x,
and the criteria vary from version to version. In addition, the criteria depend
on the details of the potential Å in particular, on the strength parameter ω0

introduced in Eq. (4.22). Note that the instability mentioned, is now caused by
the admixture of the mixed (+−), (−+) frequency components in the bound-
state wave function. One may look for the admissible window in the parameter
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space, where the solutions of all versions simultaneously exist and approximately
coincide. In this way, one may judge on the Lorentz structure Å assuming that
the whole physical picture of the qq̄ bound states based on the 3D reduction of
the BS equation, is viable. From this study, one has to reject the MW version
that poorly agrees either with other versions or with data. Further, on the basis
of SAL, CJ and MNK versions, one can determine the acceptable interval for the
mixing parameter x: 0.3 ≤ x ≤ 0.6.

Both the ˇne structure (P -wave splitting), and the hyperˇne structure (3S1 −
3D1 splitting) of the qq̄ states depends on the value of the mixing parameter x.
As was shown in Refs. 25, 33 on the basis of Salpeter equation, the spin-orbit
splitting in the light quarkonia can only be described by the mixture of scalar and
timelike vector conˇnement. However, as was shown in Ref. 33, the ˇne structure
and the hyperˇne structure cannot be simultaneously described by simply varying
the value of the mixing parameter. Finally, in Ref. 35, more general Å and
pessimistic Å conclusion was drawn: neither of the versions Å SAL, MW, CJ
or MNK Å with the dynamical input speciˇed above, does not describe even
qualitative features of the whole mass spectrum of qq̄ bound states with x inside
the interval 0.3 ≤ x ≤ 0.6. Clearly, the problem calls for the further investigation.
Note that some aspects of the dependence on x the existence of stable solutions
of the different three-dimensional relativistic equations is studied in Refs. 44, 45.

5. DECAYS OF THE MESONS IN THE C.M. FRAME

Further information about the bound qq̄ systems may be gained, investigating
their decays. Below, we consider exclusively the decays that proceed into the
c.m. frame of the bound state∗. These are: the weak decays of the pseudoscalar
mesons P → µν̄, the leptonic decays of the neutral vector mesons V → e+e−,
and the two-photon decays M → γγ. The corresponding characteristics are: the
weak decay constant fP , the leptonic decay width Γ(V → e+e−) (or the leptonic
constant fV ), and the two-photon decay width Γ(M → γγ).

The expressions for the quantities fP and Γ(V → e+e−) were obtained in
Refs. 18,25,28,29 in the framework of Salpeter equation, directly in terms of
Φ̃(±)(p) = Φ̃aa(p) ± Φ̃bb(p), or Ψ̃aa(p) = Φ̃(++)(p), Ψ̃bb(p) = Φ̃(−−)(p) (see
above). In Ref. 35, these quantities were evaluated in the framework of SAL,
CJ and MNK versions written in the form (4.5)Ä(4.1), that corresponds to the

∗The treatment of the decays which cannot be conˇned to the c.m. frame, implies the speciˇca-
tion of the Lorentz-transformation rules for the instantaneous potentials and 3D wave functions. Due
to the Lorentz covariance, the dependence on the 0-th component of the relative momentum emerges
into the transformed wave functions, that renders the problem extremely complicated, and the further
assumptions are necessary. We do not consider such processes here.
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representation of the wave function in the form (4.3)Ä(4.4). The main conclusion
that comes from this investigation, is that the results do not depend much on the
choice of the different 3D reduction scheme. The quantity Γ(M → γγ) was
evaluated in Refs. 28, 29, 32, 34 for the systems (π, η, η′). Below, we shall follow
the derivation presented in Ref. 35.

For the calculation of the quantities listed above, we need the wave function

Φ̃(α1α2)
LSJMJ

(p) which, according to Eq. (4.3), is expressed via χ̃
(α1α2)
LSJMJ

(p). The
partial-wave expansion for the components of the wave function reads[

Φ̃(α1α2)
LSJMJ

(p)
]
aa

= 〈n|LSJMJ〉N (α1α2)
12 (p)R

(α1α2)
LSJ (p) ,

[
Φ̃(α1α2)

LSJMJ
(p)

]
ab

= −(sn− σn) 〈n|LSJMJ〉
α2pN (α1α2)

12 (p)
w2 + α2m2

R
(α1α2)
LSJ (p) ,

[
Φ̃(α1α2)

LSJMJ
(p)

]
ba

= (sn + σn) 〈n|LSJMJ〉
α1pN (α1α2)

12 (p)
w1 + α1m1

R
(α1α2)
LSJ (p) ,

[
Φ̃(α1α2)

LSJMJ
(p)

]
bb

= −S12 + σ(1)σ(2)

3
〈n|LSJMJ〉 ×

× α1α2p
2N (α1α2)

12 (p)
(w1 + α1m1)(w2 + α2m2)

R
(α1α2)
LSJ (p) , (5.1)

where S = 1
2 (σ(1) + σ(2)), σ = 1

2 (σ(1) − σ(2)), and the operators S12 and
σ(1)σ(2) are given by Eq. (4.14).

Using now the identity which is valid for any operator Ô

Ô(σ(1), σ(2),n) 〈n|LSJMJ〉 =

=
∑

L′S′J′MJ′

〈n|L′S′J ′MJ′〉 〈L′S′J ′MJ′ |Ô|LSJMJ〉 , (5.2)

and the expressions for the matrix elements of the operators Sn, σn, S12 (4.15),
from Eq. (5.1) it is straightforward to obtain[

Φ̃(α1α2)
LSJMJ

(p)
]
aa

= 〈n|LSJMJ〉N (α1α2)
12 (p)R

(α1α2)
LSJ (p),[

Φ̃(α1α2)

J
(

0
1

)
JMJ

(p)
]

ab
=

=


∓

√√√√(
J + 1

J

)
2J + 1

〈n|J + 11JMJ〉 +

√√√√(
J

J + 1

)
2J + 1

〈n|J − 11JMJ〉


×



1100 KOPALEISHVILI T.

× α2N (α1−α2)
12 (p)R

(α1α2)

J
(

0
1

)
J
(p) ,[

Φ̃(α1α2)
J±11JMJ

(p)
]
ab

=

=

[√√√√(
J

J + 1

)
2J + 1

〈n|J1JMJ〉 ∓

√√√√(
J + 1

J

)
2J + 1

〈n|J0JMJ〉
]
×

× α2N (α1−α2)
12 (p)R

(α1α2)
J±11J (p) ,[

Φ̃(α1α2)

J
(

0
1

)
JMJ

(p)
]
ba

=

=

[
−

√√√√(
J + 1

J

)
2J + 1

〈n|J + 11JMJ〉 ±

√√√√(
J

J + 1

)
2J + 1

〈n|J − 11JMJ〉
]
×

× α1N (−α1α2)
12 (p)R

(α1α2)

J
(

0
1

)
J
(p) ,[

Φ̃(α1α2)
J±11JMJ

(p)
]
ba

=

=

[
−

√√√√(
J

J + 1

)
2J + 1

〈n|J1JMJ〉 ∓

√√√√(
J + 1

J

)
2J + 1

〈n|J0JMJ〉
]
×

× α1N (−α1α2)
12 (p)R

(α1α2)
J±11J (p) ,[

Φ̃(α1α2)

J
(

0
1

)
JMJ

(p)
]
bb

= ±〈n|J
(

0
1

)
JMJ〉α1α2N (−α1−α2)

12 (p)R
(α1α2)

J
(

0
1

)
J
(p) ,[

Φ̃(α1α2)
J±11JMJ

(p)
]
bb

=

=

[
± 1

2J + 1
〈n|J ± 11JMJ〉 −

2
√

J(J + 1)
2J + 1

〈n|J ∓ 11JMJ〉
]
×

×α1α2N (−α1−α2)
12 (p)R

(α1α2)
J±11J (p) .

(5.3)

With the use of these expressions, we can explicitly calculate the quantity

[ ˆ̃Φ(α1α2)

LSJMJ
(p)

]
ij

=
[
Φ̃(α1α2)

LSJMJ
(p)

]
ij

(−iσy) , i, j = a, b , (5.4)

as a 2 × 2 matrix in the fermion spin space. To this end, we explicitly introduce
the fermion spin coordinates σ1 and σ2 (σi = ±1/2, i = 1, 2). Then, we have

〈n|LSJMJ〉 ≡ 〈nσ1σ2|LSJMJ〉 =

=
∑

mLmS

〈LSmLmS |JMJ〉 〈
1
2

1
2
σ1σ2|SmS〉 〈n|LmL〉 . (5.5)
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Further, with the account of the following relations

〈1
2

1
2
σ1σ2|00〉(−iσy) =

1
2

(
1 0
0 1

)
=

1
2

I ≡ ϕ̂0 ,

〈1
2

1
2
σ1σ2|10〉(−iσy) =

1√
2

(
1 0
0 −1

)
=

1√
2

σz ≡ ϕ̂10 , (5.6)

〈1
2

1
2
σ1σ2|1 ± 1〉(−iσy) =

(
0

(
−1
0

)(
0
1

)
0

)
=

=
1
2

(∓σx − iσy) =
1√
2

σ± ≡ ϕ̂1±1 ,

it follows that

〈n|LSJMJ〉 =
∑

mLmS

〈LSmLmS |JMJ〉 〈n|LmL〉 ϕ̂SmS ≡

≡ (〈n|L〉 ⊗ ϕ̂S)JMJ . (5.7)

For the quantity ˆ̃ΦLSJMJ (p) =
∑

α1α2

ˆ̃Φ
(α1α2)

LSJMJ
(p) we obtain

[ ˆ̃ΦLSJMJ (p)
]
aa

= (〈n|L〉 ⊗ ϕ̂S)JMJ
∑

α1α2
N (α1α2)

12 (p)R(α1α2)
LSJ (p),

[ ˆ̃Φ
J
(

0
1

)
JMJ

(p)
]
ab

=

[
∓

√√√√(
J

J + 1

)
2J + 1

(〈n|J + 1〉 ⊗ ϕ̂1)JMJ +

+

√√√√(
J + 1

J

)
2J + 1

(〈n|J − 1〉 ⊗ ϕ̂1)JMJ

]∑
α1α2

α2N (α1−α2)
12 (p)R

(α1α2)

J
(

0
1

)
J
(p) ,

[ ˆ̃ΦJ±11JMJ (p)
]
ab

=

[√√√√(
J

J + 1

)
2J + 1

(〈n|J〉 ⊗ ϕ̂1)JMJ∓

∓

√√√√(
J + 1

J

)
2J + 1

(〈n|J〉 ⊗ ϕ̂0)JMJ

]∑
α1α2

α2N (α1−α2)
12 (p)R

(α1α2)
J±11J (p) ,

[ ˆ̃Φ
J
(

0
1

)
JMJ

(p)
]
ba

=

[
−

√√√√(
J + 1

J

)
2J + 1

(〈n|J + 1〉 ⊗ ϕ̂1)JMJ±

±

√√√√(
J + 1

J

)
2J + 1

(〈n|J − 1〉 ⊗ ϕ̂1)JMJ

]∑
α1α2

α1N (−α1α2)
12 (p)R

(α1α2)

J
(

0
1

)
J
(p) ,
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[ ˆ̃ΦJ±11JMJ (p)
]
ba

=

[
−

√√√√(
J

J + 1

)
2J + 1

(〈n|J〉 ⊗ ϕ̂1)JMJ ∓

∓

√√√√(
J + 1

J

)
2J + 1

(〈n|J〉 ⊗ ϕ̂0)JMJ

] ∑
α1α2

α1N (−α1α2)
12 (p)R

(α1α2)
J±11J (p),

[ ˆ̃Φ
J
(

0
1

)
JMJ

(p)
]
bb

=

[
±
(
〈n|J〉 ⊗

(
ϕ̂0

ϕ̂1

))JMJ
]
×

×
∑
α1α2

α1α2N (−α1−α2)
12 (p)R(α1α2)

J
(

0
1

)
J
(p), (5.8)

[ ˆ̃ΦJ±11JMJ (p)
]
bb

=

[
± 1

2J + 1
(〈n|J ± 1〉 ⊗ ϕ̂1)JMJ −

−2
√

J(J + 1)
2J + 1

(〈n|J ∓ 1〉 ⊗ ϕ̂1)JMJ

] ∑
α1α2

α1α2N (−α1−α2)
12 (p)R(α1α2)

J±11J (p).

In order to evaluate the constants fP and fV , we need the bound-state wave
function of the qq̄ state at r = 0

Ψ̃LSJMJ (r = 0) ≡ Ψ̃LSJMJ (r = 0, σ1, σ2) =
∫

d3p
(2π)3

Ψ̃LSJMJ (p) ≡

≡
∫

d3p
(2π)3

Ψ̃LSJMJ (p, σ1σ2) , (5.9)

where, according to Eqs. (2.26), (5.7) and (5.8)

Ψ̃LSJMJ (p) =

(
( ˆ̃ΦLSJMJ (p))ab ( ˆ̃ΦLSJMJ (p))aa

( ˆ̃ΦLSJMJ (p))bb ( ˆ̃ΦLSJMJ (p))ba

)
. (5.10)

The decay constants fP and fV for the pseudoscalar (L = S = J = 0) and
vector (L = 0, S = J = 1) mesons, respectively, are given by [46]

δµ0MBfP =
√

3 tr
[
Ψ̃0000(r = 0)γµ(1 − γ5)

]
,

fV (λ) =
√

3 tr
[
Ψ̃011λ(r = 0)γµ

]
εµ(λ) , λ = ±1, 0,

(5.11)

where the factor
√

3 stems from the color part of the wave function, and εµ(λ)
is the polarization vector of the vector meson [47]

εµ(λ = ±1) = ∓ 1√
2

(0, 1,±i, 0), εµ(λ = 0) = (0, 0, 0, 1), in c.m. frame. (5.12)
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Now, using the equations (5.9)Ä(5.11), we obtain

fP =
√

24π

MB

∞∫
0

p2dp

(2π)3
∑
α1α2

[
N (α1α2)

12 (p) − α1α2N (−α1α−2)
12 (p)

]
R

(α1α2)
000 (p),

fV (λ) = −δλ0

√
24π

∞∫
0

p2dp

(2π)3
∑
α1α2

[
N (α1α2)

12 (p) +
α1α2

3
N (−α1α−2)

12 (p)
]
×

×R
(α1α2)
011 (p) ≡ δλ0fV .

(5.13)

The leptonic decay width of the vector mesons (ρ0, ω, Φ) is given by

Γ(V → e+e−) = 4π
α2

eff

M3
B

1
3

∑
λ=±1,0

|fV (λ)|2 =
4πα2

eff |fV |2
3M3

B

, (5.14)

where

α2
eff = α2ē2

q , ēq = eq/e , ē2
q =

(
1
2
,

1
18

,
1
9

)
(5.15)

Fig. 1. Decay of the meson into electron-
positron pair

for ρ0, ω, Φ mesons, respectively.
Here, ēq denotes the expectation value
of the quark charge in the units of the
elementary charge e.

In order to explain the reason,
why the quantity ēq appears in the ex-
pression (5.14), let us note that the
leptonic decay of the vector meson in
the lowest order in e is described by
the diagram depicted in Fig. 1. Taking
into account the 	avor structure of the
wave functions

ρ0 ∼ 1√
2

(uū − dd̄) , ω ∼ 1√
2

(uū + dd̄) , Φ ∼ ss̄ , (5.16)

we obtain, that the transition amplitudes of the vector mesons into the photon are
proportional to

(ρ0 → γ) ∼ e√
2

, (ω → γ) ∼ e

3
√

2
, (Φ → γ) ∼ −e

3
, (5.17)

from which the Eq. (5.15) follows directly.
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Further, taking into account Eqs. (4.42), (4.52) and (4.54), we can express
the quantity fP and the leptonic decay width in terms of the dimensionless wave

functions R̄
(α1α2)
LSJ (z)

fP =
√

6p̄3/2

π
√

MB

∣∣∣∣∑
α1α2

∞∫
0

z2dz

[
N (α1α2)

12 (p̄, z)−α1α2N (−α1−α2)
12 (p̄, z)

]
R̄

(α1α2)
000 (z)

∣∣∣∣,
Γ(V → e+e−) =

8α2
eff p̄3

πM2
B

∣∣∣∣∑
α1α2

∞∫
0

z2dz×

×
[
N (α1α2)

12 (p̄, z)+
α1α2

3
N (−α1−α2)

12 (p̄, z)
]
R̄

(α1α2)
011 (z)

∣∣∣∣
2

,

(5.18)

where the functions

R̄
(α1α2)
LSJ (z) =

∞∑
n=0

C
(α1α2)
LSJn R̄nL(z) (5.19)

satisfy the normalization condition

∑
LS

∑
α1α2

∫ ∞

0

z2dzf
(α1α2)
12 (MB; p̄, z)

[
R̄

(α1α2)
LSJ (z)

]2

= 1 . (5.20)

Fig. 2. Two-photon decay of the meson

Next, we consider the two-
photon decays of the neutral
mesons. The amplitude of the two-
photon decay of the qq̄ bound state
with equal-mass quarks in the low-
est order in the coupling constant e
is given by the diagrams depicted
in Fig. 2. In the c.m. frame,
where P = (MB,0), this amplitude
is equal to [24]

T (λ1λ2) = i
√

3e2
q

∫
d4p

(2π)4
tr
{

ΨMB (p)
[
�ε1S

(
P

2
+ p − k1

)
�ε2 +

+ �ε2S
(

P

2
+ p − k2

)
�ε1
]}

, (5.21)

where ΨMB (p) is the BS amplitude of the qq̄ bound state which satisˇes
Eq. (2.25) and is written in the form (2.26). Further, k1 = (MB/2,k) and
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k2 = (MB/2,−k), where k is the relative 3-momentum of photons in the c.m.
frame directed along the z axis, and εi ≡ ε(λi) are the polarization vectors for the
emitted photons. Due to the fact that the emitted physical photons are transversely
polarized, one needs to consider only the values λi = ±1 for which

ε(λ1 = ±1) = ∓ 1√
2

(0, 1,±i, 0) , ε(λ2 = ±1) = ± 1√
2

(0, 1,∓i, 0) , (5.22)

and

�ε(λ1 = ±1) =
1√
2

(±γx + iγy) , �ε(λ2 = ±1) =
1√
2

(∓γx + iγy) . (5.23)

Further, one may rewrite the expression, entering the integrand in Eq. (5.21) in
the following manner (below, we follow the derivation given in Ref. 48)

fM (p,k) = −i �ε1S
(

P

2
+ p − k1

)
�ε2 − i �ε2S

(
P

2
+ p − k2

)
�ε1 =

=
a
(+)
12 (p − k)

p0 − w(p − k) + i0
+

a
(−)
12 (p − k)

p0 + w(p − k) − i0
+

+
a
(+)
21 (p + k)

p0 − w(p + k) + i0
+

a
(−)
21 (p + k)

p0 + w(p + k) − i0
, (5.24)

where w(p ± k) =
√

m2 + (p ± k)2, and

a
(α)
12 (p − k) = �ε1Λ(α)(p − k)γ0 �ε2, a

(α)
21 (p + k) = �ε2Λ(α)(p + k)γ0 �ε1. (5.25)

Note that, of course, the relation of the BS amplitude ΨMB (p) and the 3D
amplitude Ψ̃MB (p) is different in different versions of the 3D reduction. In
particular, in the Salpeter version,

ΨMB (p) = S

(
P

2
+ p

)
Γ(p)S

(
−P

2
+ p

)
, (5.26)

where, taking into account Eq. (2.26), we have

Γ(p) = −i

∫
d3p′

(2π)3
V (p,p′) Ψ̃MB (p′) ,

Ψ̃MB (p′) = −i

(
φ̃ab(p′)σy φ̃aa(p′)σy

φ̃bb(p′)σy φ̃ba(p′)σy

)
. (5.27)
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On the other hand, from Eq. (5.26) one may obtain

ΨMB (p) = − Γ(+−)(p)
MB − 2w + i0

(
1

p0 −
MB

2
+ w − i0

− 1

p0 +
MB

2
− w + i0

)
+

+
Γ(−+)(p)
MB + 2w

(
1

p0 −
MB

2
+ w − i0

− 1

p0 +
MB

2
− w + i0

)
+

+
Γ(++)(p)

MB

(
1

p0 −
MB

2
− w + i0

− 1

p0 +
MB

2
− w + i0

)
+

+
Γ(−−)(p)

MB

(
1

p0 −
MB

2
+ w − i0

− 1

p0 +
MB

2
+ w + i0

)
, (5.28)

where

Γ(αβ)(p) = Λ(α)(p)γ0Γ(p)γ0Λ(β)(−p) . (5.29)

After integrating Eq. (5.28) over p0, we obtain the Salpeter equation for the
equal-time amplitude

Ψ̃MB (p) = − iΓ(+−)(p)
MB − 2w + i0

+
iΓ(−+)(p)
MB + 2w

. (5.30)

Now, substituting (5.28) into the expression of the two-photon decay ampli-
tude (5.21) and integrating over p0, we obtain: T (±∓) = 0 and

T (±±) = i
√

3e2
q

∫
d3p

(2π)3

{
1

1
4M2

B − (w + w(p − k))2
×

×tr
[
1
2

(Γ(++)(p) − Γ(−−)(p))(γ0 ∓ γ5γz)+

+
(

1
2

(Γ(++)(p) − Γ(−−)(p)) +
(

MB

MB + 2w
Γ(−+)(p)+

+i(
MB

2
+ w + w(p − k))

)
Ψ̃MB (p)

)
×
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× 1
w(p − k)

((1 ± γ5γ0γz)m + (γz ∓ γ5γ0)(pz − k))
]

+

+
1

1
4M2

B − (w + w(p + k))2
tr
[
1
2

(Γ(++)(p) − Γ(−−)(p))(γ0 ∓ γ5γz) +

+
(

1
2

(Γ(++)(p) + Γ(−−)(p)) +
(

MB

MB + 2w
Γ(−+)(p) +

+i

(
MB

2
+ w + w(p + k)

))
Ψ̃MB (p)

)
×

× 1
w(p + k)

((1 ∓ γ5γ0γz)m + (γz ∓ γ5γ0)(pz + k))
]}

. (5.31)

For the further transformation of this expression, one may use the fact that the
static potential V (p,p′) has the Lorentz structure given by Eq. (4.2). Then,

V (p,p′)Ψ̃MB (p′) = VOG(p − p′)γ0Ψ̃MB (p′)γ0 + VC(p− p′) ×

×
(

xγ0Ψ̃MB (p′)γ0 + (1 − x)Ψ̃MB (p′)
)

+

+VT(p − p′)4ĝ(tr (Ψ̃MB (p′)) + γ5tr (Ψ̃MB (p′)γ5)). (5.32)

From this, one can directly obtain

Γ(αβ)(p) = −iΛ(α)(p)
∫

d3p′

(2π)3

[
VOG(p− p′)

( ˆ̃
φab(p′) ˆ̃

φaa(p′)
ˆ̃
φbb(p′) ˆ̃

φba(p′)

)
+

+ VC(p − p′)

( ˆ̃
φab(p′) (2x − 1)ˆ̃φaa(p′)

(2x − 1)ˆ̃φbb(p′) ˆ̃
φba(p′)

)
+

+ VT(p − p′)4ĝ

(
tr (ˆ̃φab(p

′) + ˆ̃φba(p′)) − tr (ˆ̃φaa(p′) + ˆ̃φbb(p
′))

−tr (ˆ̃φaa(p′) + ˆ̃
φbb(p

′)) tr (ˆ̃φab(p
′) + ˆ̃

φba(p′))

)]
×

× Λ(β)(−p) , (5.33)

where

ˆ̃
φαβ(p) = −iφ̃αβ(p)σy (5.34)

are the components of the meson amplitude in the spin space. After performing the
partial-wave decomposition of these amplitudes, the expression for the quantity
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T (λ1λ2) takes the form (note that we have replaced t'Hooft interaction by its
regularized version).

1S0 state:

T (±±) = ±
√

3e2
q

(
√

2π)5

∫ ∞

0

p2dp

w2

∫
p′

2
dp′
{[(

2mw

MB(MB + 2w)
J0(MB; p)+

+
2mw

MBp
I1(MB; p) +

2mw2

M2
Bp

I2(MB; p)
)

V 1
C(p, p′)R000(ab+ba)(p′) − (2x − 1)×

×
(( p

MB
+

m2

p(MB + 2w)

)
J0(MB; p) +

2w

MB
I1(MB; p) +

2w2

M2
B

I2(MB; p)
)
×

×V 0
C(p, p′)R000(aa−bb)(p′)+

+(2x−1)
mw

p(MB+2w)
J0(MB; p)V 0

C(p, p′)R000(aa+bb)(p′)
]
+[x=1, VC→VOG]+

+4ĝ

[
2mw

p(MB + 2w)
J0(MB; p)V 0

T,reg(p, p′; Λ)R000(aa−bb)(p′)
]
+

+
4w2

MB

[
−m

p
I3(MB; p)R000(ab+ba)(p) +

(MB

2p
I0
3 (MB; p)) +

+I3(MB; p)
)
R000(aa−bb)(p)

]}
, (5.35)

3P0 state:

T (±±)=±
√

3e2
q

(
√

2π)5

∞∫
0

p2dp

w2

∫
p′

2
dp′
{[(

2m

MB

(
m2

pMB
+

p

MB + 2w

)
J0(MB; p)+

+
2mw

MBp
I0
1 (MB; p) +

2mw

MB(MB + 2w)
I2(MB; p) +

mp

M2
B

I2
2 (MB; p)

)
×

×V 0
C(p, p′)R110(ab+ba)(p′) − (2x − 1)

(
4m2w

M2
B(MB + 2w)

J0(MB; p)+

+
2w

MB
I0
1 (MB; p) +

(
p

MB
+

m2

p(MB + 2w)

)
I2(MB; p)+
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+2
( p2

M2
B

+
m2

MB(MB + 2w)

)
I2
2 (MB; p)

)
V 1

C(p, p′)R110(aa−bb)(p′) − (2x − 1)×

×
(

MB

MB + 2w

2mw

M2
B

(J0(MB; p) − I2
2 (MB; p)) − mw

MBp
I2(MB; p)

)
×

×V 1
C(p, p′)R110(aa+bb)(p′)

]
+ [x = 1, VC → VOG]+

+8ĝ

[
4
(

mw

MBp
I0
1 (MB; p) +

m3

M2
Bp

J0(MB; p) +
m

2MB
I2(MB; p)+

+
mp

M2
B

I2
2 (MB; p)

)
+

4MB

MB + 2w

(
mp

M2
B

J0(MB; p)−

− m

MB
I2(MB; p) − mp

M2
B

I2
2 (MB; p)

)]
×

×V 0
T,reg(p, p′; Λ)R110(ab+ba)(p′) +

4w2

MB

[
−m

p
I0
3 (MB; p)R110(ab+ba)(p)+

+
(

MB

2p
I3(MB; p) − I2

3 (MB; p)
)

R110(aa−bb)(p)
]}

, (5.36)

where

RLSJ(aa+bb)(p) = R
(++)
LSJ (p) + R

(−−)
LSJ (p), (5.37)

RLSJ(aa−bb)(p) =
m

w
(R(++)

LSJ (p) − R
(−−)
LSJ (p)) +

p

w
(R(+−)

LSJ (p) + R
(−+)
LSJ (p)),

RLSJ(ab+ba)(p) =
p

w
(R(++)

LSJ (p) − R
(−−)
LSJ (p)) +

m

w
(R(+−)

LSJ (p) + R
(−+)
LSJ (p)),
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and

J0 = ln
2(w + w+) − MB

2(w + w+) + MB
− ln

2(w + w−) − MB

2(w + w−) + MB
,

J = ln
2w(w + w+) + MBp

2w(w + w−) − MBp
,

I0
1 =

1
2

J − w

MB
J0 ,

I1 = 1 − 4w

w+ + w−
+

w2

MBp
J − w

2p
J0 ,

I2 =
2MB

w+ + w−
− w

p
J , (5.38)

I2
2 = −2w

p
+

2
3

5w2 − 1
4 M2

B + w+w−

p(w+ + w−)
+

w2

p2
J0 ,

I0
3 = ln

2(w + w+) − MB

2(w + w−) − MB
,

I3 = 1 +
MB − 2w

w+ + w−
− w

p
I0
3 ,

I2
3 =

w

p
+

(MB − 2w)(w2 + 1
4 M2

B − w+w− + 3MBw)
3MBp(w+ + w−)

+
w2

p2
I0
3 ,

with w± =
√

w2 + 1
4M2

B ± MBp.

Now, we consider other versions of the 3D equations. Since we consider the
equal-mass case, the Gross equation cannot be used. For this reason, we shall
restrict ourselves to the study of two-photon decay processes in CJ and MNK
versions. In these versions, there exists a relation between 4D and 3D free Green
functions given by Eqs. (3.46) and (3.54). This relation can be immediately
translated into the relation between the 4D and 3D wave functions

ΨMB (p) = 2πiδ(p0) Ψ̃MB (p) , (5.39)

where for the MNK version the equality p+
0 = 0 holds for the equal-mass case.

As to the MW version, here the relation between ΨMB (p) and Ψ̃MB (p) does
not exist due to the deˇnition of G̃MW

0 (MB,p) (3.31). For the above reasons,
below we restrict ourselves to the CJ and MNK versions only. Substituting the
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expression (5.39) into Eq. (5.21), with an account of (5.24) one obtains

T (λ1λ2) = i
√

3e2
q

∫
d3p

(2π)3
tr
{

Ψ̃MB (p)
[
a
(+)
12 (p − k)
w(p − k)

− a
(−)
12 (p− k)
w(p − k)

+

+
a
(+)
21 (p + k)
w(p + k)

− a
(−)
21 (p + k)
w(p + k)

]}
. (5.40)

From this equation one readily obtains

T (±,±) = ±i
√

3e2
q

∫
d3p

(2π)3
tr
{

Ψ̃MB (p) ×

×
[
(1 ± γ5γ0γz)m + (γz ∓ γ5γ0)(pz − k)

w2(p− k)
+

+
(1 ∓ γ5γ0γz)m + (γz ± γ5γ0)(pz + k)

w2(p + k)

]}
. (5.41)

Substituting Ψ̃MB (p) in the matrix form given by Eq. (5.10), we ˇnally obtain
for the CJ and MNK versions

1S0 state:

T (±±) = ±ie2
q

2
(2π)5/2

∞∫
0

pdp

[(
−2 +

w2 + 1
4M2

B

MBp
J̃(MB; p)

)
×

× m

MB
R000(ab+ba)(p) +

(
2p

MB
−

w2 − 1
4M2

B

2M2
B

J̃(MB; p)
)

R000(aa−bb)(p)
]
,(5.42)

3P0 state:

T (±±) = −i
√

3e2
q

2
(2π)5/2

∞∫
0

pdp

[
J̃(MB; p)

m

MB
R110(ab+ba)(p)+

+2
(

w2 − 1
4M2

B

M2
B

−
w4 − 1

16M4
B

2M3
Bp

J̃(MB; p)
)

R110(aa−bb)(p)
]
, (5.43)

where

J̃(MB; p) = ln
w2 + 1

4M2
B + MBp

w2 + 1
4M2

B − MBp
. (5.44)
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It is important to note that in the Salpeter version the two-photon decay amplitude
depends on the potential both directly and indirectly, through the radial wave
functions, whereas in CJ and MNK versions this dependence enters only through
the radial wave functions.

For a given meson, the two-photon decay amplitude can be rewritten as

T (λ1λ2) = e2ẽ2
q,eff

√
3T̃ (λ1λ2; LSJMJ) . (5.45)

The decay width is given by

Γ(meson→γγ) = 3π
α2

MB

1
2(2J + 1)

∑
λ1λ2MJ

∣∣∣∣ẽ2
q,eff T̃ (λ1λ2; LSJMJ)

∣∣∣∣
2

, (5.46)

where ẽ2
q,eff depends on the choice of the meson 	avor wave function. If this

function has a simple form qq̄, then ẽ2
q,eff = ẽ2

q . However, if the meson wave
function is made up of different 	avor states αq1q̄1 + βq2q̄2, the expression for
ẽ2

q,eff is more complicated. Consider as an example calculation of this factor for
π0 and ηn states. The 	avor structure of the wave functions is given by

π0 ∼ 1√
2

(uū − dd̄) , ηn ∼ 1√
2

(uū + dd̄) . (5.47)

It follows then straightforwardly that ẽ2
q,eff =

1
3
√

2
and ẽ2

q,eff =
5

9
√

2
for π0 and

ηn states, respectively. Further, the decay amplitudes for the physical η and η′

mesons are the linear superposition of the ones corresponding to ηn and ηs ∼ ss̄
states.

Note that the two-photon decays of π0, η, η′ mesons were also studied in
the NJL model, taking into account the relativistic conˇnement and the t'Hooft
interaction [42].
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