ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2001. Т. 32. ВЫП. 7

УДК 539.173.4

ИССЛЕДОВАНИЕ ЯДЕРНЫХ ДАННЫХ НА НЕЙТРОННЫХ ПУЧКАХ ИБР-30 И ИБР-2 Ю. В. Григорьев

Физико-энергетический институт, Обнинск

Ю.С.Замятнин, С.Б.Борзаков, В.Ю.Коновалов, И.Н.Русков, В.И.Фурман,

Объединенный институт ядерных исследований, Дубна Лаборатория нейтронной физики им. И. М. Франка

Х. Файков-Станьчик

Лодзинский университет, Лодзь, Польша

Н.Б.Янева

Институт ядерных исследований и ядерной энергетики, София, Болгария

ВВЕДЕНИЕ	216
РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ	217
Определение спинов Определение радиационных ширин и других	217
характеристик	218
Определение величины $lpha=\sigma_\gamma/\sigma_f$	220
Изучение сечений деления минорных актинидов	222
Исследования запаздывающих нейтронов	224
СПИСОК ЛИТЕРАТУРЫ	224

^{*}Постоянное место работы: Институт ядерных исследований и ядерной энергетики, София, Болгария.

«ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА» 2001, ТОМ 32, ВЫП. 7

УДК 539.173.4

ИССЛЕДОВАНИЕ ЯДЕРНЫХ ДАННЫХ НА НЕЙТРОННЫХ ПУЧКАХ ИБР-30 И ИБР-2 Ю. В. Григорьев

Физико-энергетический институт, Обнинск

Ю. С. Замятнин, С. Б. Борзаков, В. Ю. Коновалов, И. Н. Русков^{*}, В.И. Фурман,

Объединенный институт ядерных исследований, Дубна Лаборатория нейтронной физики им. И. М. Франка

Х. Файков-Станьчик

Лодзинский университет, Лодзь, Польша

Н. Б. Янева

Институт ядерных исследований и ядерной энергетики, София, Болгария

Представлена методика и основные результаты измерений, проведенных на импульсных реакторах ИБР-30 и ИБР-2. С использованием сцинтилляционных детекторов проведены измерения спектров множественности гамма-квантов из реакции радиационного захвата на изотопах 48 Ti, 113 Il, 117 Sn, 127 J, 149 Sm, 165 Ho, 175 Lu, 177 Hf, 178 Hf, 185 Re, 187 Re и 232 Th. Исследованные спектры множественности от первой до двенадцатой кратности использовались для определения сечения радиационного захвата и соответствующих резонансных параметров, а также для получения величины α и изучения ее эффекта блокировки в реакциях деления на ядрах 235 U, 239 Pu для резонансной области энергий нейтронов. С помощью HP-Ge-детектора объемом 80 см³ проведены измерения спинов резонансов изотопов 113,115 In, 117 Sn, 185,187 Re и 235 U в области тепловых энергий нейтронов. С помощью нейтронных детекторов и (n, γ) -детектора измерены функции пропускания и самонидикации на образцах-фильтрах 232 Th, 237 Np и 238 U при разных температурах для определения нейтронов 1 эВ÷100 кэВ.

В экспериментах с использованием ионизационных камер измерены сечения деления минорных актинидов $^{234}U,~^{237}Np$ и ^{243}Am нейтронами с энергиями ниже барьера деления.

На 27-метровой пролетной базе с зеркальным нейтроноводом и механическим прерывателем нейтронов на реакторе ИБР-2 проведены измерения полного выхода и кривых распада запаздывающих нейтронов при делении ^{233,235}U, ²³⁷Np тепловыми и холодными нейтронами.

^{*}Постоянное место работы: Институт ядерных исследований и ядерной энергетики, София, Болгария.

Methodical aspects and results of the main measurements, conducted on pulsed reactors IBR-30 and IBR-2 are presented. Measurements of the multiplicity spectra of gamma-quanta from the neutron capture reaction on the isotopes ⁴⁸Ti, ^{113,115}In, ¹¹⁷Sn, ¹²⁷J, ¹⁴⁹Sm, ¹⁶⁵Ho, ¹⁷⁵Lu, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁸⁵Re, ¹⁸⁷Re, and ²³²Th had been done with scintillation detectors. These spectra with multiplicity from one to twelve were used for determination of the capture cross-section and according resonance parameters and for obtaining the alpha-value and study of its blocking effect in the fission of ²³⁵U, ²³⁹Pu in the resonance neutron energy area. With the aid of HP-Ge-detector, that has the volume 80 cm³, the measurements were performed of resonance spins of isotopes ^{113,115}In, ¹¹⁷Sn, ^{185,187}Re, and ²³⁵U by the low-lying level population method in the thermal neutron energy area. The transmission and self-indication functions of filter samples ²³²Th, ²³⁷Np, and ²³⁸U were measured with neutron and (n, γ) detectors with different temperatures for determination the neutron cross-sections, resonance blocking factors and Doppler effect in the fission cross-section measurements of the minor actinides ²³⁴U, ²³⁷Np, and ²⁴³Am by the neutrons with energy below the fission barrier.

On the IBR-2 reactor on the channel with mirror neutron guide and neutron chopper the measurements of total yields and decay curve of the delayed neutrons from fission of 233,235 U, 237 Np by thermal and cold neutrons were performed.

введение

Разработка новых атомных реакторов типа БН-800, БРЕСТ и др. требует повышения точности нейтронных сечений и других ядерных констант реакторных материалов на уровне погрешности 1–5% для делящихся ядер, 3–7% для конструкционных материалов и 5–15% для продуктов деления. Новая информация о ядерных данных необходима также для совершенствования теоретических моделей ядерных реакций и структуры ядер. Кроме того, уточнение ядерных данных важно для реализации различных проектов трансмутации радиоактивных отходов и повышения ядерной безопасности энергетических атомных реакторов. Эти задачи стимулировали в последние годы экспериментальные исследования по уточнению ядерных данных на нейтронных пучках ИБР-30 и ИБР-2 в Лаборатории нейтронной физики Объединенного института ядерных исследований.

Экспериментальные работы велись по нескольким направлениям при работе ИБР-30 в бустерном режиме (длительность нейтронной вспышки на полувысоте 4 мкс, частота следования нейтронных вспышек 100 Гц, средняя тепловая мощность 10 кВт).

На 500- и 121-метровых пролетных базах ИБР-30 на спектрометрах «Ромашка» с 16 кристаллами NaI(Tl) объемом 36 л [1] и «Парус» с 16-секционным жидкостным (n, γ) -детектором объемом 80 л [8] проводились измерения спектров множественности гамма-квантов из реакции радиационного захвата на изотопах ⁴⁸Ti, ^{113,115}In, ¹¹⁷Sn, ¹²⁷J, ¹⁴⁹Sm, ¹⁶⁵Ho, ¹⁷⁵Lu, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁸⁵Re, ¹⁸⁷Re и ²³²Th. Исследованные спектры множественности от первой до двенадцатой кратности использовались для определения сечения радиационного захвата и соответствующих резонансных параметров, а также для получения величины α и изучения ее эффекта блокировки в реакции деления на ядрах ²³⁵U, ²³⁹Pu для резонансной области энергий нейтронов.

С помощью HP-Ge-детектора объемом 80 см³ [5] были проведены двухмерные измерения амплитудных и временных спектров для изотопов ^{113,115}In, ¹¹⁷Sn, ^{185,187}Re и ²³⁵U на пролетных базах 60, 123 и 500 м ИБР-30 и на 29-метровой пролетной базе ИБР-2 с целью определения спинов резонансов по методу заселенности γ -квантами низколежащих уровней, а также для определения величины α ²³⁵U в области тепловых энергий нейтронов.

С помощью нейтронных детекторов в виде батарей из 10 B-, 3 Hе-счетчиков и жидкостного 16-секционного (n,γ) -детектора измерены функции пропускания и самоиндикации на образцах-фильтрах 232 Th, 237 Np и 238 U при разных температурах для определения нейтронных сечений, факторов резонансной блокировки и доплер-эффекта в диапазоне энергий нейтронов 1 эB+100 кэB.

На 15- и 60-метровых пролетных базах ИБР-30 измерены сечения деления минорных актинидов 234 U, 237 Np и 243 Am нейтронами с энергиями ниже барьера деления с помощью ионизационных камер.

На 27-метровой пролетной базе с зеркальным нейтроноводом и механическим прерывателем нейтронов при работе ИБР-2 на мощности 1,5 МВт, частоте нейтронных вспышек 5 Гц и их длительности 240 мкс проведены исследования полного выхода и кривых распада запаздывающих нейтронов при делении ^{233,235}U, ²³⁷Np тепловыми и холодными нейтронами. В качестве детектора запаздывающих нейтронов использовалась батарея ³Не-счетчиков в замедлителе.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Определение спинов. Спины резонансных состояний были получены в основном методом множественности гамма-квантов. В полученных спектрах разных кратностей k, где k менялось от 1 до 8, определена площадь под резонансными пиками и получена доля актов захвата $p_k = S_k / \Sigma_k S_k$, соответствующая одновременной регистрации детектором k гамма-квантов, и средние значения кратностей $\langle k \rangle = \Sigma_k k p_k$ для каждого резонанса. Таким образом определены спины сотен возбужденных уровней для ядер, отмеченных выше [2–4]. На рис. 1 приводятся результаты для ядра ¹⁴⁹Sm.

Для определения спинов по методу заселенности низколежащих состояний ядра каскадом гамма-квантов проведены двухмерные измерения амплитудных и временных спектров с помощью НР германиевого детектора для обогащенных изотопов In (¹¹⁵In до 99,9%, a ¹¹³In до 87,2%) и для естественных образцов In и Re.

Рис. 1. Экспериментальные средние кратности $\langle k \rangle$ для резонансов ¹⁴⁹Sm: *a*) в диапазоне энергий 20 ÷ 160 эВ; *б*) в зависимости от числа резонансов

<i>Е</i> , эВ	J	$R_1 = I(273)/I(186,2)$	$R_2 = I(171/5)/I(186,2)$
$1,\!457$	5	$0,\!82\pm0,\!01$	$0,40\pm0,01$
$3,\!85$	4	$1,\!37\pm0,\!05$	$0,75\pm0,03$
9,07	5	$0,\!79\pm0,\!03$	$0,42\pm0,02$
12,04	4	$1,\!12\pm0,\!10$	$0,91\pm0,08$
22,73	5	$0,\!88\pm0,\!08$	$0{,}61\pm0{,}05$
$39,\!6$	5	$0,\!87\pm0,\!06$	$0,55\pm0,04$

Таблица 1. Отношения интенсивностей гамма-линий и спины для резонансов ¹¹⁵In

В случае ¹¹⁵In изучались отношения интенсивностей гамма-переходов для энергий 186,2 и 273,0 кэВ и триплета 171 ÷ 175 кэВ, для изотопа ¹¹³In брались отношения интенсивностей гамма-переходов с энергиями 287,4; 341; 307 кэВ. Отношения интенсивностей этих линий разделяются на две группы в зависимости от спина резонанса, что видно из табл. 1 и 2. Впервые определены спины для изотопа ¹¹³In [5].

Определение радиационных ширин и других характеристик. Одновременные измерения спектров времени пролета для радиационного захвата и рассеяния нейтронов с помощью спектрометра «Ромашка» дали возможность оценить радиационные ширины для многих резонансов. Как известно, площади под резонансами в спектрах радиационного захвата и рассеяния нейтронов описываются формулами

$$S_{\gamma} = \Pi(E)\varepsilon_{\gamma}A\Gamma_{\gamma}/\Gamma, \qquad (1)$$

$$S_n = \Pi(E)\varepsilon_n A\Gamma_n / \Gamma, \tag{2}$$

<i>Е</i> , эВ	J	$R_1 = I(287, 4)/I(307)$	$R_2 = I(341)/I(307)$
$1,\!80$	4	$2{,}52\pm0{,}13$	$1,\!22\pm0,\!08$
4,70	5	$1,2\pm0,08$	$0,\!84\pm0,\!05$
$14,\! 6$	5	$1,\!88\pm0,\!08$	$0,97\pm0,05$
$21,\!55$	4	$2{,}31\pm0{,}16$	$1,\!26\pm0,\!08$
24,99	5	$1,87\pm0,11$	$0,\!82\pm0,\!05$
$32,\!24$	5	$1,76\pm0,11$	$1{,}04\pm0{,}06$
44,71		—	—
$45,\!30$		—	—
70,29	4	$2{,}69\pm0{,}42$	$1{,}58\pm0{,}15$
$91,\!59$	5	$1,78\pm0,25$	$0,\!65\pm0,\!04$

Таблица 2. Отношения интенсивностей гамма-линий и спины для резонансов ¹¹³In

где $\Pi(E)$ — поток нейтронов с резонансной энергией E на единичный интервал энергии за время измерений на всю площадь образца; A — площадь, соответствующая резонансному провалу на кривой пропускания; $\varepsilon_{\gamma}, \varepsilon_{n}$ эффективность регистрации актов рассеяния и захвата нейтронов.

Зная значения S_n/S_γ , ε_γ , ε_n и Γ_n , можно получить радиационные ширины. Эту новую методику определения ширин можно рассмотреть на примере изотопа ¹⁴⁹Sm. Отношение эффективностей $\varepsilon_\gamma/\varepsilon_n$ в случае ¹⁴⁹Sm равнялось 0.58 ± 0.08 и находилось из эксперимента путем проведения нормировки по пяти низколежащим, хорошо разрешенным и сильным резонансам, для которых довольно точно известны Γ_n и Γ_γ (их значения определялись по другой методике для большей точности). При этом считалось, что эффективности регистрации гамма-квантов ε_γ и ε_n практически не меняются от резонанса к резонансу.

При определении параметров резонансов в значения S_n и S_{γ} вводились поправки, учитывающие вклады регистрации актов захвата в канале рассеяния (4%) и актов рассеяния в канале захвата (от 5 до 15% в зависимости от энергии нейтронов).

Значения энергий резонансов и радиационных ширин получены в области энергии до 270 эВ [4]. Удалось определить около 40 ранее неизвестных ширин. Наблюдаются значительно меньшие флуктуации ширин по сравнению с данными из BNL-325, и нет систематической тенденции роста значений ширин с увеличением энергии возбужденных состояний. Кроме спинов и радиационных ширин, определялись по необходимости нейтронные ширины и средние характеристики резонансных уровней, т. е. расстояния между уровнями и силовые функции.

Резонансные параметры отмеченных выше изотопов включены в справочник ядерных данных [13].

Определение величины $\alpha = \sigma_{\gamma}/\sigma_f$. Спектрометрия множественности излучений позволяет одновременно регистрировать несколько процессов взаимодействия нейтронов с ядрами (деление, радиационный захват и рассеяние нейтронов) и в ряде случаев разделять их. В последние годы эта методика использовалась для изучения формы спектров множественности гамма-лучей в отдельных разрешенных резонансах ²³⁹Ри и ²³⁵U и в энергетических группах при исследовании процессов деления и радиационного захвата, а также для определения и уточнения величины α на спектрометрах «Ромашка» и «Парус». Из экспериментальных временных спектров после вычитания фоновых составляющих получались исходные спектры кратности совпадений от 1 до 12 кратностей для энергетических групп в диапазоне энергий 2,15 ÷ 2150 эВ, для 80 резонансов $^{239}{\rm Pu}$ в области энергий $7{\div}313$ эВ и 165 резонансов $^{235}{\rm U}$ до 150 эВ [1, 6–8]. Для разделения исходных спектров кратности на захватную и делительную части использовались спектры кратности разрешенных резонансов с малыми и большими делительными ширинами соответственно. Из этих спектров кратности формировались стандартные спектры захвата и деления, которые применялись при разделении исходных спектров кратностей. Разделение суммарных спектров кратности на две части позволяет определить величину α по формуле

$$\alpha = \sigma_{\gamma} / \sigma_f = N_{\gamma} \varepsilon_f / N_f \varepsilon_{\gamma} = \Sigma K_{i\gamma} \varepsilon_f / \Sigma K_{if} \varepsilon_{\gamma}, \tag{3}$$

где $\sigma_{\gamma}, \sigma_f$ — сечения радиационного захвата и деления; N_{γ}, N_f — суммарное число отсчетов гамма-квантов захвата и деления; ε_f , ε_γ — эффективность регистрации захватных и делительных гамма-квантов; $K_{i\gamma}$, K_{if} — *i*-я кратность радиационного захвата и деления. Погрешности в величине α определялись в основном ошибками при разложении исходных спектров кратности на составляющие части от деления и радиационного захвата. Погрешности из-за неопределенностей в эффективностях регистрации гамма-лучей существенно меньше, поскольку отношение $Q = \varepsilon_f/\varepsilon_\gamma$ близко к единице. На рис. 2 приведены для примера экспериментальные значения величины α^{239} Pu, где для сравнения приводятся также расчетные данные, полученные по программе ГРУКОН на основе последних оценок констант ²³⁹Ри в библиотеках BROND-2, ENDF/B-6, JENDL-3. Расчет величины α был сделан также и в межрезонансных энергетических интервалах. Как видно из рис. 2, расчетные значения α в разных библиотеках отличаются друг от друга на 5 ÷ 30 %, а в отдельных резонансах — на 50 \div 100 %. Экспериментальные значения α отличаются от расчетных при малых и больших значениях, когда вклад радиационного захвата или деления в суммарном спектре кратности мал, а неопределенность сильно возрастает при разложении спектра на составляющие части по принятым стандартным спектрам. Эти неопределенности уменьшаются при определении экспериментальных и расчетных значений α в широких энергетических группах (табл. 3) благодаря наличию большого количества

Рис. 2. Экспериментальные и расчетные значения *α*. Светлые квадраты — эксперимент; сплошная кривая — ENDF/B-6; штриховая — JENDL-3; точечная — BROND-2

 $\mathit{Taблица}$ 3. Экспериментальные и расчетные значения α для энергетических групп $^{239}\mathrm{Pu}$

$E_{ m lim}$, эВ	$lpha_{ m bl}$	α	BNAB	BROND-2	ENDF/B-6	JENDL-3
	(фильтр 1 мм)	(без фильтра)				
$4,\!65\!-\!10$	_	$0,\!88\pm0,\!04$	0,85	0,30	0,48	$0,\!47$
10 - 21,5	0,57	$0{,}60\pm0{,}03$	$0,\!68$	0,57	0,84	0,80
21,5-46,5	1,07	$1,\!45\pm0,\!04$	1,07	1,04	$1,\!54$	1,48
46,5 - 100	0,35	$0{,}52\pm0{,}02$	0,57	0,44	0,50	$0,\!48$
100 - 215	0,53	$0{,}80\pm0{,}03$	0,87	$0,\!61$	0,71	$0,\!68$
215 - 465	0,56		0,93	0,84	0,82	0,79
465 - 1000	0,59	$0{,}80\pm0{,}04$	0,83	0,97	0,88	0,87
1000 - 2150	0,69	$0{,}72\pm0{,}03$	$0,\!89$	$0,\!93$	$1,\!00$	1,10

резонансов. Экспериментальные погрешности величины α в отдельных резонансах составляют 2 ÷ 12 %. В энергетических группах погрешности равны 3 ÷ 6 %.

Использование жидкостного детектора установки «Парус» для измерения спектров кратности позволило исследовать эффект резонансной блокировки и доплер-эффект в величине α делящихся изотопов. Для этого проведены измерения времяпролетных спектров от 1-й до 15-й кратности при наличии на нейтронном пучке образцов-фильтров различной толщины. Коэффициент резонансной блокировки α и его температурную зависимость можно определить

по формуле

$$\alpha_{\rm bl} = \frac{\alpha f_{\gamma}(\theta)}{f_f(\theta)} = \frac{\alpha \int_0^\infty T_{\gamma}(x) dx}{\int_0^\infty T_f(x) dx} = \frac{\int_{\Delta E}^\infty \int_0^\infty \sigma_{\gamma} e^{-\sigma x} dE dx}{\int_{\Delta E}^\infty \int_0^\infty \sigma_f e^{-\sigma x} dE dx},\tag{4}$$

где f_{γ} , f_f — коэффициенты резонансной блокировки в сечениях захвата и деления величины α ; x — толщина образца-фильтра; T_{γ} , T_f — функции самоиндикации в радиационном захвате и делении; α — величина при отсутствии образца-фильтра на нейтронном пучке; θ — температура образцафильтра.

Влияние резонансной блокировки до сих пор слабо исследовано. Измерения блокировки были проведены для двух тонких металлических дисков ²³⁹Pu, обогащенного до 99,9 %. Образцы-фильтры толщиной 0,3, 0,5, 1 и 2,3 мм по очереди помещались в пучок нейтронов перед (n, γ) -детектором.

В табл. 3 приведены экспериментальные значения величины α в группах для открытого пучка и при наличии в пучке образца-фильтра толщиной 1 мм, а также расчетные значения для открытого пучка, полученные на основе оцененных данных разных библиотек.

Как видно из табл. 3, расчетные значения α для разных библиотек отличаются друг от друга на 5 ÷ 60 %, что, по-видимому, отражает различия экспериментальных данных в разных работах. Экспериментальные погрешности величины α составляют 5 ÷ 10 %. Наблюдается эффект уменьшения α на 5 ÷ 40 % за счет резонансной блокировки, что можно объяснить более сильной резонансной блокировкой на узких, со спином J = 1 резонансах с большим значением α по сравнению с широкими делительными резонансами со спином J = 0 и с малыми значениями α . Детали эксперимента и результаты приводятся в [8].

Изучение сечений деления минорных актинидов. Измерения времяпролетных спектров проводились на импульсном бустере ИБР-30. В качестве детектора осколков деления использовались ионизационные камеры различной конструкции, содержащие от 2,2 мг (243 Am) до 1,5 г (237 Np) исследуемого изотопа и одну мишень из 235 U для измерения потока и калибровки по энергии.

Полученные в измерениях времяпролетные спектры деления преобразовывались в зависимость сечения деления от энергии нейтронов. Кроме того, в области энергий нейтронов, где времяпролетное разрешение было достаточным для разрешения отдельных резонансов, определены площади $\sigma_0 \Gamma_f$ и делительные ширины Γ_f этих резонансов. Для ²³⁴U эти параметры определялись методом площадей, а для ²³⁷Np и ²⁴³Am — методом формы. Подробно процедура обработки экспериментальных данных описана в работе [9].

Рис. 3. Сечение деления ²³⁷Np: кружки — разрешение 40 нс/м; треугольники — разрешение 70 нс/м; сплошная линия — расчет

Рис. 4. Сечение деления ²⁴³Am: точки — эксперимент; сплошная линия — расчет

Сечения деления 234 U определены в диапазоне энергий 1 ÷ 1000 эВ [10], для 237 Np в области энергий 1 ÷ 60 эВ (см. рис. 3). Погрешности определения сечения в резонансах не превышают 4 % и обусловлены в основном статистической точностью калибровочных измерений.

На рис. 4 представлены результаты измерений сечения деления ²⁴³Am [11]. Точками обозначены сечения, полученные непосредственно из вре-

мяпролетного спектра, а линией — восстановленные в одноуровневом приближении.

Исследования запаздывающих нейтронов. На импульсном реакторе ИБР-2 проведены исследования характеристик запаздывающих нейтронов (3H) [12]. В их числе измерения относительных выходов 3H, образовавшихся в результате деления ²³³U, ²³⁹Pu и ²³⁷Np тепловыми нейтронами, а также после деления ²³³U, ²³⁵U и ²³⁹Pu холодными нейтронами. При этом выход 3H в делении ²³⁵U тепловыми нейтронами использовался в качестве стандарта. Особое внимание было уделено измерениям с ²³⁷Np, которые проведены впервые. Этот изотоп предполагается использовать в энергетических установках нового поколения. При этом пришлось преодолевать значительные экспериментальные проблемы, поскольку ²³⁷Np создает высокий нейтронный фон в результате (α , n)-реакции, а сечение деления тепловыми нейтронами составляет всего 20 мб (подбарьерное деление).

Измерения проведены методом периодического облучения образца без его перемещения. При этом одним и тем же детектором регистрируются мгновенные и запаздывающие нейтроны деления. Основным преимуществом этого метода является то, что неопределенности в измерении абсолютной эффективности детектора, нейтронного потока, массы образца не влияют на точность определения выхода ЗН. Полученные результаты представлены в табл. 4.

Таблица 4. Значения $\beta_0 = \nu_d / \nu$ (в процентах) для различных энергий налетающих нейтронов и их отношения (в скобках) к величине стандарта $\beta_0 [^{235} U(n_{th}, f)]$ для $^{235} U$, $^{233} U$, $^{239} Pu$ и $^{237} Np$

Изотоп	$E_n=0,003$ эВ	$E_n = 0,023$ эВ
²³⁵ U ²³³ U ²³⁹ Pu ²³⁷ Np	$\begin{array}{c} 0,683 \pm 0,021 \ (1,004 \pm 0,009) \\ 0,274 \pm 0,009 \ (0,403 \pm 0,006) \\ 0,227 \pm 0,011 \ (0,334 \pm 0,013) \\ \end{array}$	$\begin{array}{c} 0,680 \pm 0,021 \ (1,000) \\ 0,267 \pm 0,009 \ (0,393 \pm 0,006) \\ 0,234 \pm 0,008 \ (0,344 \pm 0,004) \\ 0,506 \pm 0,030 \end{array}$

Впервые проведены с рекордной точностью прецизионные измерения и анализ кривых распада ЗН для 235 U и 239 Pu в интервале времени после облучения $5\div730$ мс. Измерения характеристик ЗН другими методами в указанном интервале приводят к большим неопределенностям.

СПИСОК ЛИТЕРАТУРЫ

 Георгиев Г. П. и др. Установка для измерения нейтронных сечений и множественности излучений при взаимодействии нейтронов с ядрами. Сообщение ОИЯИ РЗ-88-55. Дубна, 1988; Nucl. Instr. Meth. A. 1992. V. 313. P. 266.

- 2. Григорьев Ю.В. и др. Параметры нейтронных резонансов ¹¹⁷Sn. Препринт ФЭИ, 2445. Обнинск, 1995.
- Georgiev G. P., Panajotova N. G., Grigoriev Yu. V. Neutron Resonance Parameters of ¹⁷⁷Hf. JINR Preprint E3-96-9. Dubna, 1996.
- Георгиев Г. П. и др. Определение параметров нейтронных резонансов ¹⁴⁹Sm в области энергий 20–300 эВ // ВАНТ, сер. «Ядерные константы». 1999, вып. 1. С. 3–14.
- Григорьев Ю. В. и др. Гамма-излучение в нейтронных резонансах ^{113,115} In. Препринт ФЭИ, 2440. Обнинск, 1995; Определение спинов изотопов индия по интенсивности гамма-линий // ВАНТ, сер. «Ядерные константы». 1996. Вып. 2. С. 69–72.
- Григорьев Ю. В., Георгиев Г. П., Станчик Х. Измерение спектров кратности излучения и величины α для урана-235. Препринт ФЭИ, 2397. Обнинск, 1994.
- Григорьев Ю. В. и др. Измерение спектров кратности гамма-лучей и величины α для плутония-239 в области энергий 2–2150 эВ // ЯФ. 1999. Т. 62, вып. 5. С. 1–10.
- Grigoriev Yu. V. Investigation of a Resonance Self-Shielding Effect in the α Value of ²³⁵U, ²³⁹Pu in Energy Range 4.65–2150 eV // Proc. of the VII Intern. Seminar on Interaction of Neutrons with Nuclei, Dubna, May 13–16, 1999.
- 9. Борзаков С.Б. и др. // ЯФ. 1999. Т. 62, вып. 5. С. 933.
- 10. Борзаков С.Б. и др. Сообщение ОИЯИ РЗ-97-398. Дубна, 1997.
- Florek M. et al. Neutron Induced Fission Cross-Section of ²⁴³Am in the Energy Range from 0.8 to 50 eV // Proc. of the 14 Intern. Workshop on Nuclear Fission Physics, Obninsk, 2000. P. 243.
- 12. Borzakov S. B. et al. // Phys. of Atom. Nucl. 2000. V. 63. No. 4. P. 530.
- 13. Low Energy Neutron Physics. Tables of Neutron Resonance Parameters / Eds. S. I. Suhoruchkin et al. 2000. V. 16B.