ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2002. Т. 33. ВЫП. 3

УДК 539.125; 539.125.5; 539.126.6

ЭКСПЕРИМЕНТ ЭКСЧАРМ: ОСНОВНЫЕ РЕЗУЛЬТАТЫ 1996–2000 ГОДОВ Ю.К. Потребеников

Объединенный институт ядерных исследований, Дубна Лаборатория физики частиц

Представлены результаты исследований рождения нейтронами очарованных барионов и странных мезонных резонансов, выполненных с помощью установки ЭКСЧАРМ на ускорителе У-70 (Протвино).

The results of the study of charm baryon and strange meson resonance production in neutronnucleon interactions by the EXCHARM set-up (U-70 accelerator, Protvino) are presented.

Для проведения работ по изучению свойств очарованных и странных частиц, а также поиску узких барионных резонансов, рожденных нейтронами, на ускорителе У-70 ИФВЭ (Протвино) была создана специальная экспериментальная зона, включающая в себя канал нейтронов 5Н, экспериментальную установку ЭКСЧАРМ и здание 450 с соответствующей инфраструктурой. Установка ЭКСЧАРМ (рис. 1), детальное описание которой приведено в [1], предназначена для регистрации заряженных частиц, образованных в узком переднем конусе, ограниченном, в основном, апертурой спектрометрического магнита. В состав экспериментальной установки входят:

 — магнитный спектрометр, включающий спектрометрический магнит СП-40 и 11 пропорциональных камер (ПК) (25 плоскостей, 9 из которых расположены после магнита);

 система идентификации частиц, которая состоит из двух пороговых газовых черенковских счетчиков, заполненных фреоном и воздухом при атмосферном давлении;

— триггерная система, построенная на базе элементов ПК, двух годоскопов сцинтилляционных счетчиков (15 и 60 каналов) и обеспечивающая выработку требуемых триггерных условий;

 система управления мишенями, позволяющая использовать набор различных мишеней в ходе проведения ceanca.

Наиболее важные результаты эксперимента ЭКСЧАРМ связаны с исследованием рождения очарованного бариона Σ_c^0 [2,3].

Рис. 1. Блок-схема установки ЭКСЧАРМ в канале 5Н: А — счетчик антисовпадений; Т — мишень; ПК — пропорциональные камеры; МПГЧС — многоканальные пороговые газовые черенковские счетчики; Г1, Г2 — годоскопы сцинтилляционных счетчиков; Мн — нейтронный монитор; АК — адронный калориметр

Поиск Σ_c^0 -бариона осуществлялся по следующим каналам распада:

Поиск сигнала от распада Σ_c^0 -бариона осуществлялся в спектрах разностей эффективных масс конечных состояний

$$\Delta M(1) = M(\Lambda^0 \pi^+ \pi^+ \pi^- \pi^-) - M(\Lambda^0 \pi^+ \pi^+ \pi^-),$$

$$\Delta M(2) = M(K_s^0 p \pi^+ \pi^- \pi^-) - M(K_s^0 p \pi^+ \pi^-).$$

Основное преимущество этого метода состоит в том, что массовое разрешение приведенных выше разностей существенно лучше, чем массовое разрешение самих конечных состояний распада Σ_c^0 . На рис. 2 показаны спектры эффективных масс разностей $\Delta M(1)$ и $\Delta M(2)$, на которых четко выделяются сигналы в районе массы 167 МэВ. В табл. 1 приведены измеренные параметры наблюдаемых сигналов.

Среднее число комбинаций в событии в области сигнала составляет $\sim 1,1,$ т. е. комбинаторный фон в приведенных спектрах незначителен. Совпадение

Рис. 2. Разностные спектры эффективных масс конечных состояний $\Delta M(1)$ (*a*) и $\Delta M(2)$ (*b*) для кандидатов в Λ_c^+

в пределах ошибок средних значений массы позволило суммировать полученные распределения и вычислить общее число комбинаций в сигнале, которое равно 102 над фоном 361. Центральное значение массы сигнала — (167, 8 ± 0, 6 (стат.) ± 0, 2 (сист.)) МэВ/с², ширина — (1, 9±0, 9 (стат.)) МэВ/с². Выделенный сигнал от Λ_c^+ из области массы наблюдаемого сигнала Σ_c^0 в спектре разности масс составил 95 ± 26 комбинаций со средним значением массы (2282 ± 8) МэВ/с², что хорошо согласуется с числом наблюдаемых Σ_c^0 . Полученное значение массы Σ_c^0 достаточно хорошо согласуется с результатами других экспериментов. Оно вошло в таблицу свойств частиц и используется для определения средневзвешенного значения этой величины.

Сигнал от Λ_c^+ , выделенный при исследовании Σ_c^0 , позволил оценить отношение парциальных ширин распадов Λ_c^+ из (1) и (2):

$$R = \frac{\Lambda_c^+ \to \dots \to \bar{K}^0 p \pi^+ \pi^-}{\Lambda_c^+ \to \dots \to \Lambda \pi^+ \pi^+ \pi^-} = 2, 6 \pm 1, 2.$$

Канал распада	Характеристики сигналов Σ_c^0				
	Разность масс Σ_c^0 и Λ_c^+ , МэВ/ c^2	Количество комбинаций	Ширина, МэВ/с ²		
(1) (2)	$168,5\pm0,6$ (стат.) $\pm0,2$ (сист.) $167,9\pm0,6$ (стат.) $\pm0,2$ (сист.)	$\begin{array}{c} 39\pm13\\ 56\pm15 \end{array}$	$1,3 \pm 0,6 \\ 1,7 \pm 0,7$		

Таблица 1. Параметры сигналов, наблюдаемых в разностных спектрах эффективных масс

Это отношение хорошо согласуется с результатом, полученным ранее в эксперименте ЭКСЧАРМ на основе прямого наблюдения распадов Λ_c^+ . В пределах одной стандартной ошибки оно также согласуется с результатами большинства известных экспериментов и включено в таблицу свойств частиц.

В эксперименте исследовались характеристики рождения, в том числе и образующиеся спиновые состояния, странных векторных мезонов $K^*(892)^{\pm}$ [4,5]. Поиск соответствующих сигналов проводился в спектрах эффективных масс конечных состояний

$$\begin{array}{ccc} K^*(892)^{\pm} \to & K^0(\bar{K}^0)\pi^{\pm} \\ & & \downarrow_{\to} & K_S \to \pi^+\pi^-. \end{array}$$

$$(3)$$

Были получены значения масс и ширин сигналов, которые хорошо согласуются с табличными. Впервые были измерены сечения рождения мезонов в нейтронном пучке. Для полной кинематической области получены следую-

Рис. 3. Сравнение измеренных пересчитанных сечений с данными экспериментов по изучению инклюзивного рождения $K^*(892)^{\pm}$ в протон-протонных взаимодействиях: *a*) $pp \to K^*(892)^+ + x$; δ) $pp \to K^*(892)^- + x$

щие их значения: $(0, 433 \pm 0, 018)$ (стат.) ± 0,016 (сист.)) мб/нуклон для $K^*(892)^+$; $(0, 252 \pm 0, 013$ (стат.) $\pm 0,017$ (сист.)) мб/нуклон — для $K^{*}(892)^{-}$. При этом пересчет осуществлялся в предположении зависимости от атомной массы ядра $A^{2/3}$. Систематическая ошибка обусловлена, в основном, неопределенностью в энергетической зависимости сечения. Модельная зависимость сечения в видимой области $x_F > 0, 1$ практически сведена к минимуму за счет рассмотрения четырех различных моделей рождения при расчете эффективности регистрации исследуемых распадов. Измерен также эффект лидирования при рождении нейтронами $K^{*}(892)^{+}$, доля которого в полном сечении составляет величину 0,42 ± 0,04 (стат.) $\pm 0,04$ (сист.).

Из-за отсутствия экспериментальных данных в нейтронных пучках сравнение измеренных сечений (рис. 3) проведено с данными, полу-

ченными в протонных пучках после соответствующего пересчета. Полученный результат согласуется с ожидаемым сечением в протонных пучках при исследуемых энергиях.

Рис. 4. Зависимость величины ρ_{00} от поперечного импульса для $K^*(892)^+$ (a) и $K^*(892)^-$ (б) в поперечной системе координат

В эксперименте впервые с высокой точностью исследованы спиновые матрицы плотности ρ для $K^*(892)^{\pm}$, образованных нейтронами. Измерен диагональный элемент ρ_{00} такой матрицы для $K^*(892)^+$, который в поперечной системе координат равен 0, 393 \pm 0, 011 (стат.) \pm 0, 018 (сист.). Отклонение ρ_{00} от значения 1/3 является свидетельством выстроенности спина указанного резонанса. Показано, что величина ρ_{00} для $K^*(892)^-$: $\rho_{00} < 0, 40$ на уровне достоверности 90 %. Эти результаты находятся в согласии с данными, полученными в K^+ -пучке.

Поляризация Λ^0 -барионов, рожденных инклюзивно в нестранных пучках протонов, была впервые измерена более 20 лет назад. Однако до сих пор механизм возникновения поляризации не понят до конца. В нейтронном пучке поляризация была до этого измерена только в одном эксперименте — БИС-2. Полученные при этом значения указывали на существенно большую поляризацию Λ^0 , чем в протонных пучках различных энергий.

В эксперименте ЭКСЧАРМ с высокой точностью была измерена поляризация Λ^0 [6], среднее значение которой составило $(-4, 2 \pm 0, 3)$ %. Она была определена также для различных интервалов переменной x_F (см. рис. 5). При этом использовалась процедура сокращения аксептанса установки в предположении симметрии установки относительно плоскости Y = 0. Результаты

Рис. 5. Поляризация Λ^0 как функция P_T в различных интервалах x_F . Сравнение полученных результатов с данными других экспериментов

эксперимента ЭКСЧАРМ хорошо согласуются с измерениями в протонных пучках. Такое согласие между данными в протонных и нейтронных пучках экспериментально наблюдается впервые. Полученный результат расширил область значений поперечных импульсов P_T , в которой существовали экспериментальные данные по поляризации Λ^0 . Для инклюзивного рождения Λ^0 в нейтронных пучках точность результата эксперимента является наилучшей.

Исследование мезонов со скрытой странностью позволяет глубже понять процессы адрон-ядерных взаимодействий на кварковом уровне. Изучение же парного рождения ϕ -мезонов может служить, кроме того, хорошим инструментом для проверки известного правила Окубо–Цвейга–Иизуки (ОЦИ). В эксперименте ЭКСЧАРМ были исследованы характеристики ин-

Рис. 6. Распределение событий по эффективной массе $M(K^+K^-)_1$ в зависимости от $M(K^+K^-)_2$ (a) и распределение по $M(K^+K^-)_1$ после вычитания фона под сигналом в спектре $M(K^+K^-)_2$ (б)

клюзивного рождения ϕ -мезонов нейтронами на ядрах [7, 8]. Были определены масса и ширина ϕ -мезона, которые хорошо согласуются с табличными, а также измерено полное сечение инклюзивного рождения ϕ -мезонов в нейтрон-нуклонных взаимодействиях. В предположении линейной зависимости сечения от атомной массы ядра мишени оно равно (276 ± 60 (стат.) ± 9 (сист.)) мкб/нуклон для полной кинематической области x_F . Указанное сечение измерено в нейтронных пучках с наивысшей точностью. Значение сечения несколько выше данных, полученных в протонных пучках, что позволяет сделать вывод о том, что в процессах инклюзивного образования ϕ -мезонов доминирует схема однобозонного обмена.

Изучение парного рождения ϕ -мезонов было выполнено [9] путем исследования двумерного распределения спектра эффективных масс двух пар заряженных каонов, зарегистрированных в одном событии (рис. 6, *a*). После выделения ϕ -мезонов в каждом из интервалов распределения по одной из осей получено окончательное массовое распределение пар ϕ -мезонов, которое показано на рис. 6, δ . Количество зарегистрированных пар ϕ -мезонов 124 ± 20 . Вычисленное сечение их рождения основано на наибольшей статистике зарегистрированных событий парного рождения ϕ -мезонов и равно

Наблюдаемая конфигурация событий	$\phi \phi$ с сопровождением ($\phi \phi + X$)		$\phi \phi$ без сопро- вождения	Всего
	Любые Х	Среди X содер- жатся K_s^0, Λ^0, K^+ или K^-		
Эксперимент	66 ± 17	< 10 95 % у.д.	53 ± 15	124 ± 20
Моделирование в предположении ОЦИ	80 ± 12	$26,0\pm3,4$	44 ± 8	124 ± 10

Таблица 2. Оценки регистрации пар ф-мезонов с различным сопровождением

 $(12, 9 \pm 3, 0 \text{ (стат.)} \pm 1, 3 \text{ (сист.)})$ мкб/нуклон. На основе сравнения экспериментальных данных по парному рождению ϕ -мезонов с результатами моделирования таких процессов с помощью феноменологической модели FRITIOF получены оценки регистрации пар ϕ -мезонов с различным сопровождением (см. табл. 2). Анализ этих данных позволил сделать вывод о наблюдаемом дефиците странных частиц в процессе рождения пары ϕ -мезонов, что является свидетельством нарушения правила ОЦИ. Вычислена нижняя граница отношения сечения ОЦИ-запрещенных процессов к полному сечению парного рождения ϕ -мезонов, которая равна 0,09 на уровне достоверности 95 %.

Новые результаты получены также при изучении характеристик адронного рождения гиперонов и гиперонных резонансов [10]. Изучение инклюзивного рождения гиперонов могло бы быть критическим тестом для моделей, описывающих процессы взаимодействия кварков и формирования адронов. Существующие экспериментальные данные о рождении гиперонов нуклонами были получены, в основном, в протонных пучках. Имеется только несколько экспериментов, проведенных с этой целью в нейтронных пучках. Полученные в них данные не позволяют провести детального сравнения механизмов рождения гиперонов протонами и нейтронами. Продолжается анализ имеющейся экспериментальной информации.

СПИСОК ЛИТЕРАТУРЫ

- Алеев А. Н. и др. // ПТЭ. 1999. № 4. С. 52; Aleev A. N. et al. // Instr. Exp. Tech. 1999. V. 42. No. 4. Р. 481.
- 2. Алеев А. Н. и др. // Краткие сообщения ОИЯИ. 1996. № 3[77]. С. 31.
- Tatishvili G. T. // Proc. of the 28th Conf. on High Energy Physics (ICHEP-96). Warsaw, 1996. V. 1. P. 500.

- 4. Алеев А. Н. и др. Препринт ОИЯИ Р1-99-136. Дубна, 1999.
- 5. Aleev A. N. et al. // Phys. Lett. B. 2000. V. 485. P. 334.
- 6. Aleev A. N. et al. // Eur. Phys. J. C. 2000. V. 13. P. 427.
- 7. Алеев А. Н. и др. Препринт ОИЯИ Р1-96-437. Дубна, 1996.
- 8. Molokanova N.A. // Czech. J. Phys. 1997. V.47. P.919.
- 9. Алеев А. Н. и др. // Краткие сообщения ОИЯИ. 1999. № 1[93]. С. 14.
- 10. Алеев А. Н. и др. Препринт ОИЯИ Д1-2001-98. Дубна, 2001.