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ABELIAN DEFORMATIONS
Ch. Fronsdal

Physics at the University of California, Los Angeles, USA

Certain physical problems lead to a need for quantization in a context where a Poisson bracket
does not provide the direction. Nambu mechanics on a three-dimensional ®phase space¯ is one
example. Another is the problem of quantization on coadjoint orbits, especially on singular orbits.
Abelian ∗-products are often governed by Harrison cohomology, but are erroneously said to be
trivial. In fact, varieties with singularities, including simple examples of physical relevance, do have
a nontrivial Harrison cohomology. Besides, Harrison cohomology is not always decisive. Minkowski
space is a smooth manifold, with vanishing Harrison cohomology; the coordinate algebra admits,
nevertheless, nontrivial Abelian deformations.

INTRODUCTION

Quantization continues to be a vital subject of research in physics, and re-
cently it has become central to a broad development in mathematics as well. This
paper contains only the briefest possible summary of general developments, and
then concentrates on a particular problem. What usually characterizes quantization
is noncommutativity, the passage from a commutative structure to a noncommu-
tative one. More precisely, quantization is a deformation of algebraic structure,
a deformation of the product. Since the pioneering work of M. Gerstenhaber [1],
deformation theory is the study of formal series, as in

f ∗ g = fg +
∞∑

n=1

�
nCn(f, g), (1)

where fg is the original product, and � is a parameter. One requires that the
coefˇcients Cn have properties such as to make the ∗-product associative.

In the historical setting the object under discussion is the algebra of differen-
tiable functions on a symplectic space. The early work of Weyl on quantization
consisted in setting up a correspondence between such functions on the one hand,
and an algebra of operators in a Hilbert space on the other [2]. The above series
ˇrst appears in the work of Moyal and Vey [3]; it became the basis for a general
investigation in the papers [4]. Later the same series played an important role in
the Drinfel'd work on quantum group. In all these developments a dominant role
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was played by the Poisson bracket {f, g}. A deformation ®in the direction of the
Poisson bracket¯ is a series of the form

f ∗ g = fg + (�/2){f, g}+
∞∑

n=2

�
nCn(f, g),

where C1 = (1/2){, } is antisymmetric. Recent developments in mathematics
[5, 6] take place in the more general setting of Poisson manifolds∗, but the Poisson
bracket continues to play a dominant role.

In all these theories that are based on a Poisson structure one assumes that
the Poisson bracket accounts for the term of order �; which implies that this term
is antisymmetric,

C1(f, g) = −C1(g, f). (2)

It has been observed that every deformation (1) is ®equivalent¯ to one that satisˇes
(2). But that statement holds under certain speciˇc conditions, and this paper is
about ways to get around them.

Interest in the problems discussed in this review came to light in the context
of quantization of Nambu mechanics. The suggestion of Nambu was to replace
the canonical equation of motion

d

dt
F = {F,H}

by
d

dt
F = {F,G,H},

where a pair of functions G,H replaces the Hamiltonian, and the new bracket is
deˇned by

{F,G,H} := det
(
∂iF

dt
,
∂jG

dt
,
∂kH

dt

)
,

which makes sense in a 3-dimensional ®phase-space¯. The problem of quantizing
this system has remained unsolved, and in 1996 it led to the realization that the
heart of the matter should be an Abelian deformation of the algebra of functions;
that is, a deformation with C1 symmetric [7]. The problem was that all such
products were believed to be ®trivial¯.

In Section 1 we shall explain what is meant by saying that an associative
deformation of a commutative algebra is trivial, or inessential. The empha-
sis in Section 1 is on ˇrst order deformations, and the appropriate language

∗The Poisson bracket takes the form {f, g} = Λij∂if∂jg. If Λ is invertible, then the inverse
mapping is closed and deˇnes a symplectic form. If Λ has constant rank, then the situation is less
complicated. The problem was to prove the existence of quantization on an arbitrary Poisson manifold.
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is Hochschild cohomology. Triviality of ˇrst order Abelian deformations is a
property of algebras of functions on smooth manifolds.

In Section 2 we examine certain algebraic varieties with singularities, espe-
cially cones, and show that essential, Abelian deformations exist. In Section 3
we study an old example of invariant quantization on singular coadjoint orbits
and show that deformations with C1 essentially nonantisymmetric were known
already.

In Section 4 we study some examples of smooth manifolds, going beyond
ˇrst order deformations to formal or convergent power series. The main result
is that deformations that are trivial to ˇrst order may be nontrivial when thus
extended. An example of particular interest is a deformation of the algebra of
functions on Minkowski space that turns out to be equivalent to the ordinary
algebra of functions on (anti-) De Sitter space.

1. FIRST ORDER DEFORMATIONS

As a ˇrst example, consider the space �, with global coordinates x1, . . . , xn,
and the commutative and associative algebra

A = �[x1, . . . , xN ]

of complex polynomials in N variables. Introduce a formal parameter � and
consider a formal deformation of A with a new product

f ∗ g = fg +
∞∑

n=1

�
nCn(f, g), (3)

where, for n = 1, 2, . . . ; Cn is a function from A ⊗ A to A. We ask that this
new structure be associative, namely

(f ∗ g) ∗ h = f ∗ (g ∗ h),

or
∞∑

m,n=0

hm+n

(
Cm(f, Cn(g, h) − Cm(Cn(f, g), h))

)
= 0, (4)

where C0(f, g) = fg. In general, (3) makes sense only as a formal series,
therefore Eq. (4) must be interpreted as an identity in �; thus

∞∑
m,n=0

δm+n,k

(
Cm(f, Cn(g, h) − Cm(Cn(f, g), h))

)
= 0, k = 1, 2, . . . (5)
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A ˇrst order associative deformation is a deformation f ∗ g = fg+�C1(f, g)
that is associative to ˇrst order in �. Taking k = 1 in (5) we get

fC1(g, h) − C1(fg, h) + C1(f, gh) − C1(f, g)h = 0. (6)

It is necessary to worry about the possibility that an associative deformation
is ®trivial¯. By this we mean that it can be interpreted as the result of a mapping
of the algebra on itself, of the form

f → E(f) = f +
∞∑

n=1

�
nEn(f),

with
f ∗ g = E−1

(
E(f)E(g)

)
.

Again this must be interpreted as an identity in the deformation parameter; in
particular, to ˇrst order in � it states that

C1(f, g) = fE1(g) − E1(fg) + E1(f)g. (7)

Notice that the right-hand side is even in f, g; it is only when C1(f, g) is symmet-
ric in the two arguments that the ∗-product (3) risks being trivial. The formulas
(6) and (7) introduce us to the following topic.

Hochschild Cohomology. The n-cochains of the Hochschild complex Hoch∗

are maps A⊗n → A, and the differential is

dC(f1, . . . , fn) = f1C(f2, . . . , fn) − C(f1f2, f3, . . . , fn) +
+ C(f1, f2f3, f4, . . . , fn) + . . .+ (−)nC(f1, . . . , fn−1)fn.

An n-chain C is closed if dC = 0 and it is exact if there is an (n − 1)-cochain
E such that C = dE. The fundamental property of d is that d ◦ d = 0. The
space Bn of exact n-cochains is thus a subspace of the space Zn of closed
n-cochains. Two closed n-cochains are said to be equivalent, or cohomologous,
if the difference is exact. The quotient Hochn = Bn/Zn is the nth Hochschild
cohomology group. (It is a group under addition.) This space is identiˇed with
the space of equivalence classes of ˇrst order deformations of the algebra of
functions.

We need to be precise about what algebra of functions we are talking about.
Until further notice let us consider the space A = �[x1, . . . , xN ] of polynomials
in N generators. In this case we have

Theorem. (Hochschild, Kostant and Rosenberg [8].) Every closed n-cochain
is cohomologous to an alternating n-cochain.

Corollary. Every Abelian ˇrst order deformation of the algebra A = �[x1, . . . ,
xN ] is trivial. (This was already proved by Harrison [9].)
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The alternating cochains form a subcomplex of the Hochschild complex.
The study of Abelian ∗-products leads to another subcomplex, ˇrst described by
Harrison [9]. Later Barr [10], Fleury [11], and Gerstenhaber [1], showed that
there is a complete decomposition of the Hochschild complex of any commutative
algebra, into ®irreducible¯ subcomplexes,

Hoch∗ = ⊕nHoch∗(n). (8)

It is likely that such a decomposition exists in the case of some noncommutative
algebras, but this question may never have been explored. In particular, it is
likely that the coordinate algebras of Manin's quantum planes have this property,
and establish that may be a good way to begin an investigation with larger scope.

Let us describe the Harrison component Harr∗ = Hoch∗(1), but only 1-, 2-
and 3-cochains. We have seen that 1-cochains are mappings of the algebra into it-
self, Hom (A,A). There are no exact 1-cochains, so H1 = Z1. The 2-cochains of
the Harrison complex are symmetric. Closed 2-cochains are associative, Abelian
deformations and exact 2-cochains are trivial deformations. The quotient H2 is
the space of equivalence classes of Abelian deformation [1]. The 3-cochains have
the symmetry of (6) with C1 symmetric, namely

C(f, g, h) − C(g, f, h) + C(g, h, f) = 0.

In the case of a ˇnitely generated algebra the decomposition (8) is ˇnite,
ending with Hoch∗(N), where N is the number of generators. The cochains of
this complex are the alternating maps from A∧ to A. The theorem of [8] tells
us that, in the case of the coordinate algebra of a smooth manifold of dimension
N , only this component has nonvanishing cohomology. It is related by duality to
the simplicial homology of the manifold and this is of course a highly developed
subject. The other components are related to geometric properties of another kind.
Concerning Harr∗, the only thing that appears to be known is that it reveals the
existence of singularities [9]. In the next section we shall look at some examples.

2. ABELIAN DEFORMATIONS ON ALGEBRAIC VARIETIES

It will be instructive to give a simple proof of the fact that Abelian ∗-products
on �N are trivial. The algebra is

A = �[x1, . . . , xN ],

it has a PoincarêÄWitt basis of monomials. The deformed algebra has a basis of
∗-monomials, and the map Φ that takes xi1 ∗ xi2 ∗ . . . to xi1xi2 . . . is an algebra
isomorphism.
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An algebraic variety is a quotient space

�N/R,

where R is a set of polynomials. The coordinate algebra is

A = �[x1 . . . xN ]/R,

where the polynomials in R are now interpreted as relations among the generators.
Consider a formal deformation of the form (1). Let R∗ be the relations of the
algebra with the ∗-product, and let R� be these same relations after applying the
mapping Φ. The deformation is trivial if there is an invertible mapping of R into
R such that the pull-back takes R to R�.

Example. Let A = �[x, y] and let R be the polynomial x2 − y2 + r2 = 0,
with r2 Å a real parameter. There is a unique decomposition

f(x, y) = f1(x) + yf2(x).

Let
f ∗ g = fg + �f2g2 = fg + �C1(f, g).

This is associative to all orders. We have x ∗ x = x2, y ∗ y = x2 + r2 + � and
thus R∗ = x ∗ x− y ∗ y+ r2 + � = 0, and R� = x2 − y2 + r2 + �. If r2 	= 0, then
there is an invertible map, namely the map x, y → x

√
1 + �/r2, y

√
1 + �/r2,

that takes R� to R. To ˇrst order in � it is generated by

E1(f) =
1

2r2

(
x
∂

∂x
f + f2y

)
=

1
2r2
x
df

dx
+

1
2y
f2.

The ˇrst expression shows that E(f) is a polynomial; the ˇrst part of the second
expression is a derivation, so that

dE(f, g) =
1
2y

(
fg2 − (fg)2 + f2g

)
= f2g2 = C1(f, g).

Note, however, that though Cn = 0 for n > 1, E is an inˇnite series.
We have thus veriˇed that, when r2 	= 0, the deformed algebra is the co-

ordinate algebra of the variety (actually manifold) �2/(x2 − y2 + r2 + �), and
that it is trivial because this manifold is diffeomorphic to the original manifold
�2/(x2 − y2 + r2). But this is evidently not true if r2 = 0. The original variety
is a cone, singular at x = y = 0; it is not diffeomorphic to the smooth manifold
�2/(x2 − y2 + �), and the respective coordinate algebras are not isomorphic.

So we have found that the Harrison cohomology of the algebra of polynomials
on the cone x2 − y2 = 0 is not zero, and that in consequence of this there is
a nontrivial ∗-product deformation of this algebra. A preliminary study of the
cohomology of cones of any dimension may be found in hep-th/0109001.
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3. QUANTIZATION ON COADJOINT ORBITS

Some years ago Souriau [12] and Kostant [13] developed the concept of
geometric quantization. Briecy, this is the idea. Consider a symplectic space W ,
with the action of a Lie algebra, via the Poisson bracket. That is, one has a Lie
subalgebra L of the Poisson algebra. If we are fortunate (as we shall assume
without essential loss of generality), then we can take a basis for L as coordinates
for W . Or to put it another way, consider an orbit X of the coadjoint action of
the associated Lie group, extend the action to functions on X by the derivation
rule; this gives a Poisson bracket and turns X into a phase space, with an action
by L via the Poisson bracket.

We have just described, without some of the trimmings, the ˇrst part of a
program of geometric quantization. The completion of it requires what Kostant
calls an invariant polarization. Unfortunately, an invariant polarization is not
always available, and this is especially likely to be the case on singular orbits.
To avoid this problem we turn to deformation quantization. To illustrate, both
the method of invariant quantization and the role of singularities, consider the
following example.

The Lie algebra so(2, 1) acts on the cone

Q := x2
1 + x2

2 − x2
3 = 0,

and this action is equivalent to the coadjoint action on the unique singular orbit.
We shall construct an invariant ∗-product on the polynomials over this space. An
invariant ∗-product is one that satisˇes the condition [4, 14]

f ∗ g − g ∗ f = �{f, g}, f, g ∈ L.

This implies that

{f, g ∗ h} = {f, g} ∗ h+ g ∗ {f, h}, f ∈ L,

and, in particular, that the Casimir element

Q∗ = x1 ∗ x2 + x2 ∗ x2 − x3 ∗ x3

is in the centre of the deformed algebra.
One can think of a ∗-product as a mapping from polynomials to ∗-polynomials.

For a ∈ L, let Pn(a) denote the nth Legendre polynomial, and let Pn(a∗) be the
∗-polynomial with the same coefˇcients. Then every invariant ∗-product takes
the form

Pn(a∗) = cnPn,
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with complex coefˇcients cn. If all these coefˇcients are different from zero,
then they can be chosen to be equal to 1 with no essential loss of generality. We
shall also ˇx the centre, so our invariant ∗-product is deˇned by

xi ∗ xj − xj ∗ xi = �

∑
k

εijkxk,

Pn(a∗) = Pn(a), Q∗ = �l(l+ 1).

In particular, for n = 2,

xi ∗ xj = xixj + �C1(xi, xj), C1(xi, xj) =
1
2

∑
k

εijkxk +
1
3
l(l+ 1) δij .

It is obvious that the last term cannot be transformed away; it is a nontrivial
Harrison 2-cochain.

The problem of ˇnding the cocycle deˇned by f ∗ g = fg+ �C1(f, g) + . . .
is left for the pleasure of the reader.

It is evident that Harrison cohomolgy enters into quantization on many if not
all singular coadjoint orbits. Some of those orbits, as the most singular orbit of
so(4, 2), that is, the phase space for Kepler motion, are algebraic varieties with
very complicated relations. One may ask what Harrison cohomology can teach
us about planetary orbits and the Schroedinger H atom.

4. ABELIAN DEFORMATIONS ON SMOOTH MANIFOLDS

We saw that a ∗-product of the form f ∗ g = fg+ �C1(f, g), with no higher
order terms, can be exactly associative. It may also be cohomologically trivial, but
the associated trivialization map is not always a polynomial in �. If Harr2 = 0,
then we can transform away the term linear in �, but higher order terms may
take its place. Obstructions may appear in higher orders, but the most interesting
possibility is that we can push the expression for f ∗ g to arbitrarily high order
in �, and yet the deformation is not trivial. The point is that if the trivialization
map is an inˇnite power series, then it may have a ˇnite (or even vanishing)
radius of convergence. As an example of this interesting phenomenon, consider
the following.

Let M = Minkowski space, A = �[x1, . . . , x4]. Decompose f ∈ A into
even and odd parts: f = (f+, f−), and deˇne∗:

f ∗ g = fg − ρx2f−g− =
(
f+g+ + f−g−(1 − ρx2), f+g− + f−g+

)
.

∗The curvature ρ takes the place of Planck's constant �.
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Now, let M ′ = 3 + 2-dimensional anti-De Sitter space, more precisely the cone
in �5:

M ′ = �5/(ρx2 + y2 − 1),

and
A′ = �[x1, . . . , x4, y]e/(ρx2 + y2 − 1),

where [. . . ]e means polynomials of even order. Decompose f ∈ A′ as follows,
f = (f+, f−) = f+(x) + yf−(x), then

fg = f+g+ + f−g−(1 − ρx2) + y(f+g− + f−g+) =

=
(
f+g+ + f−g−(1 − ρx2), f+g− + f−g+

)
.

Therefore, the deformed ∗-product algebra of functions on Minkowski space
is isomorphic to the ordinary algebra of functions on AdS/Z2. But the two spaces
are not diffeomorphic, therefore A and A′ are not isomorphic and the ∗-product
is not trivial.

This observation suggests that there may be a solution to some problems of
interpretation of physics on AdS, notably the fact that one cannot deˇne an S
matrix.

Acknowledgements. The author is grateful to Murray Gerstenhaber, George
Pinczon and Daniel Sternheimer for discussions, as well as to George Pogosyan
and the other people in Yerevan that helped to make my visit enjoyable.

REFERENCES

1. Gerstenhaber M. On the Deformations of Rings and Algebras // Annals of Math. 1964. V. 79.
P. 59Ä103.

2. Weyl H. The Theory of Groups and Quantum Mechanics. N. Y.: Dover, 1931.

3. Moyal J. E. Quantum Mechanics as a Statistical Theory // Proc. Cambridge Phil. Soc. 1949. V. 45.
P. 99Ä124.

4. Bayen F. et al. Quantum Mechanics as a Deformation of Classical Mechanics // Annals of Phys.
1978. V. 111. P. 61Ä110; 111Ä151.

5. Kontsevich M. Deformation Quantization of Poisson Manifolds. q-alg/9709040; Operands and
Motives in Deformation Quantization // Lett. Math. Phys. 1999. V. 48. P. 35Ä72.

6. Tamarkin D. E. Another Proof of M. Kontsevich' Formality Theorem for �n. math.QA/9803025.

7. Dito G. et al. Deformation Quantization and Nambu Mechanics // Comm. Math. Phys. 1997.
V. 183. P. 1Ä22.

8. Hochschild G., Kostant B., Rosenberg A. Differential Forms on Regular Afˇne Algebras // Trans.
Am. Math. Soc. 1962. V. 102. P. 383Ä408.

9. Harrison D. K. Commutative Algebras and Cohomology // Ibid. V. 104. P. 191Ä204.



ABELIAN DEFORMATIONS 17

10. Barr M. Cohomology of Commutative Algebras: Doctoral disser., U. Penn. 1962; Harrison
Homolgy, Hochschild Homology and Triples // J. Algebra. 1968. V. 8. P. 314Ä323.

11. Fleury P. J. Splittings of Hochschild's Complex for Commutative Algebras // Proc. AMS. 1971.
V. 30. P. 405Ä323.

12. Souriau J.M. Structures des Systgemes Dynamiques. Paris: Dunod, 1970.

13. Kostant B. Quantization and Unitary Representations. Lectures in Modern Analysis and Applica-
tions III // Lecture Notes in Math. Berlin, 1970. V. 170. P. 87Ä208.

14. Fronsdal C. Some Ideas about Quantization // Rep. Math. Phys. 1978. V. 15. P. 113.


