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Some properties of noncommutative ˇeld theories are reviewed. The emphasis is in particular
on renormalization and anomalies.

INTRODUCTION

Theories deˇned in noncommutative spaces have been considered over the
years both by mathematicians and by physicists. Recently there has been a
renewal of interest in this subject due to the realization of physical models of
noncommutative spaces based on open strings on D branes, see [1] and references
therein for early contributions to the subject. The possibility of pursuing this
research with two different languages, that of (noncommutative) ˇeld theory and
the one of string theory, with the possibility to compare the results, has naturally
attracted a lot of activity. One could mention several lines of research. Among
others an extremely interesting one, which however will not be covered in this
review, is the search for classical solutions in a noncommutative ˇeld theory,
i. e., solitons and instantons. Noncommutative solitons in particular turn out to
be particularly interesting because of their mimicking solutions of String Field
Theory and their connection with tachyon condensation. The present short review
concerns instead the properties of noncommutative gauge theories. Open strings
attached to D branes contain in their spectrum a massless vector ˇeld. It is a
standard matter to ˇnd the amplitudes of the corresponding vertex operators. In
the ˇeld theory limit (α′ → 0) these amplitudes coincide with those of an ordinary
U(1) gauge ˇeld theory. If, however, we switch on a constant Bµν ˇeld with
nonzero components only in the space directions parallel to the D brane, and
repeat the above calculation, we ˇnd that, in the ˇeld theory limit, the amplitudes
have changed. They are not the amplitudes of an ordinary gauge ˇeld theory,
rather they correspond to the amplitudes of a noncommutative ˇeld theory, in
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which the noncommutative parameter is precisely related to the value of the B
ˇeld.

It is natural to ask whether this new ˇeld theory, which is nonlocal in
the ordinary sense, enjoys the same properties as the ordinary ˇeld theories.
In particular, is it renormalizable and unitary? Does it have the same chiral
anomalies as ordinary gauge theories? There has been intense research on these
subjects and the previous questions have been answered at least in part. This is
a short review of such results.

1. NONCOMMUTATIVE U(N) GAUGE FIELD THEORIES

In the introduction it was pointed out that noncommutative gauge ˇeld theo-
ries can be embedded in string theory. However these theories can also be deˇned
on their own, without reference to string theory. Let us consider the Euclidean
space Rd and deˇne on it the complex algebra Aθ endowed with the MoyalÄWeyl
product

f � g(x) ≡ f(x) exp
(
i

2
θµν
←
∂ µ

→
∂ ν

)
g(x), (1)

where θµν is the deformation parameter. This implies in particular noncommuta-
tivity in Rd

xµ � xν − xν � xµ = iθµν . (2)

It is natural to try to deˇne a ˇeld theory in which the ordinary product is
replaced by the Moyal product. In particular for a gauge theory we will assume
the existence of a noncommutative connection Aµ with curvature

Fµν = ∂µAν − ∂νAµ + iAν � Aµ − iAµ � Aν (3)

and gauge transformation

δAµ = ∂µλ+ iλ � Aµ − iAµ � λ. (4)

It is understood that both A and λ are hermitean: Aµ = AB
µ t

B and λ = λBtB ,

where tB is a complete set of N × N hermitean matrices: (tB)† = tB . In
other words the connection A and the inˇnitesimal gauge transformations λ are
u(n)-valued functions on Rd. The theory we are introducing can therefore be
called noncommutative U(N) (NCU(N)) gauge theory. Its action is

S = − 1
4g2

∫
Tr (F � F ) . (5)
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We notice that if we expand the integrand in this action in power series of
θ, we obtain an inˇnite series in the ordinary ˇeld Aµ(x) and its derivatives.
The presence of higher and higher derivative terms would render an ordinary
ˇeld theory nonlocal and untreatable. The remarkable thing of noncommutative
theories is that, although they are nonlocal, the MoyalÄWeyl product organizes
such inˇnite series of terms so that they often behave like ordinary local theories.

For instance, the Feynman rules for the theory (5) can be extracted in the
usual way. The propagator is the same as in the ordinary theory, but the vertices
are different. As an example, the vertex for three gluons with momenta p1, p2, p3

and polarizations ξ1, ξ2, ξ3 is given, in the NCU(1) case, by

(ξ1 · ξ2 p2 · ξ3 + ξ1 · ξ3 p1 · ξ2 + ξ2 · ξ3 p3 · ξ1) exp
(
− i

2
p1θp2

)
, (6)

where pθq means pµθ
µνqν .

As a matter of notation, we will use a basis of hermitean matrices tA = (tA)ji

(capital letters A,B, . . . = 0, . . .N2 − 1 will denote indices in the Lie algebra
u(N), while i, j = 1, . . . , N are the indices in the fundamental representation),
with the normalization

Tr (tAtB) =
1
2
δAB. (7)

This can be done, for example, by using a basis of hermitean matrices for the
Lie algebra of SU(N), ta (whenever necessary, lower case letters a, b, . . . =
1, . . .N2 − 1 will denote indices in the adjoint of su(N)), and adjoining t0 =
(1/

√
2N)1N . The basis tA satisˇes

[tA, tB] = ifABCt
C , {tA, tB} = dABCt

C , (8)

where fABC is completely antisymmetric; fabc is the same as for su(N) and
f0BC = 0, while dABC is completely symmetric; dabc is the same as for su(N),
d0BC =

√
2/NδBC , d00c = 0 and d000 =

√
2/N , see [5].

2. STRING THEORY EMBEDDING

As explained in the introduction, the noncommutative gauge theory intro-
duced in the previous section (let us consider for the time being the NCU(1)
theory) can be immersed in a string theory. Let us follow the approach of
N. Seiberg and E.Witten [1]. Think of a closed string theory in the presence of
a D brane. The closed string theory contains in the gravity spectrum an antisym-
metric massless B ˇeld, which always appears in the equations of motion under
the differentiation symbol. Therefore, it is always possible to add a constant part
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to B without affecting the ˇeld equations. In particular the vacuum conˇguration
of such a theory is always deˇned up to a constant B ˇeld. In the absence of
any D brane, a constant B ˇeld can always be gauged away. But if the vacuum
conˇguration contains a D brane, this operation is not possible anymore along
the D-brane world-volume. The reason is that in the D-brane world-volume there
exists a U(1) gauge ˇeld A which together with B form a gauge invariant com-
bination B − dA. Therefore a constant B ˇeld can be eliminated by means of
a gauge transformation on the bulk, but not along the D-brane world-volume.
The upshot of this discussion is that when we are in the presence of such a
conˇguration we should allow for a constant B ˇeld, rather than put it to zero.

Therefore let us suppose that we have a constant B ˇeld along a D brane∗.
Now let us see the consequences of having a nonvanishing B ˇeld. The D-brane
dynamics is represented by the open strings attached to it. These open strings
interact with B by the endpoints. This can be seen by looking at the sigma model
action for such open strings:

S =
1

4πα′

∫
Σ

(
gµν∂aX

µ∂aXν − 2πα′Bµνε
ab∂aX

µ∂bX
ν
)
=

=
1

4πα′

∫
Σ

(gµν∂aX
µ∂aXν)− i

2

∫
∂Σ

BµνX
µ∂tX

ν (9)

after partial integration. Here gµν is the closed string metric, i. e., the metric
background of the ambient space where the closed string lives; Σ is the world-
sheet of the open string and ∂Σ its boundary. The boundary conditions for the
theory (9) are

gµν ∂nX
ν + 2πα′ Bµν ∂tX

ν |∂Σ = 0, (10)

where ∂n, ∂t are the normal and tangential derivatives to ∂Σ. We see that B
interpolates between the Neumann boundary conditions (B = 0) and the Dirichlet
ones (B =∞).

Now, at tree level, the relevant world-sheet is the disk or the upper half
plane. The string propagator in the upper half plane is

〈Xµ(z)Xν(z′)〉 =

=− α′
(
gµν ln|z−z′| − gµν ln|z−z̄′|+Gµν ln|z−z̄′|2 + 1

2πα′
θµν ln

z−z̄′
z̄−z′

)
,

∗We suppose throughout the review that only Bµν space components are nonvanishing. A
nonvanishing time component would lead not to noncommutative ˇeld theory, but rather to an open
string theory in a noncommutative ambient space, the so-called NCOS theories, which will not be
considered in this review.
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where

Gµν =
(

1
g + 2πα′B

g
1

g − 2πα′B

)µν

,

θµν = −(2πα′)2
(

1
g + 2πα′B

B
1

g − 2πα′B

)µν

.

(11)

For open string amplitudes the relevant propagator is evaluated at the insertion
points, i. e., on the real axis. This is

〈Xµ(τ)Xν(τ ′)〉 = −α′Gµν ln (τ − τ ′)2 +
i

2
θµν , ε(τ − τ ′), (12)

where τ, τ ′ are the real part of z, z′, respectively.
Now, if we take α → 0 keeping B and θ ˇxed, we get

Gµν = − 1
(2πα′)2

(
1
B
g
1
B

)µν

, θµν =
(
1
B

)µν

, (13)

and

〈Xµ(τ)Xν(τ ′)〉 = i

2
θµνε(τ − τ ′). (14)

Now we can move on to compute amplitudes for the string modes. In
particular the gluon is represented by the vertex operator

V (ξ, p) =
∫

∂Σ

ξ∂X eipX , (15)

where the momentum p and polarization ξ satisfy the relations: p2 = pξ = 0.
The vertices are inserted on the real axis (if Σ is the upper half plane) in a
deˇnite order and then their positions are integrated over the entire real axis. The
calculation from the string theory point of view is completely standard, and, once
the limit α′ → 0 is taken, the result is

〈V (ξ1, p1)V (ξ2, p2)V (ξ3, p3)〉 =
= (ξ1 · ξ2 p2 · ξ3 + ξ1 · ξ3 p1 · ξ2 + ξ2 · ξ3 p3 · ξ1) e−(i/2)p1θp2 (16)

which coincides with the vertex (6) above, which was obtained from the NCU(1)
gauge ˇeld theory.

It takes more work, but it can be proven that the generic n-gluon amplitudes
obtained in the same way from string theory coincide with the tree-level vertices
derived from the NCU(1) gauge theory. The generalization to U(N) is straight-
forward. String amplitudes in this case are simply multiplied by the appropriate



A SHORT REVIEW OF NONCOMMUTATIVE FIELD THEORY 35

ChanÄPaton (CP) factors. For instance, in the 3-gluon case, the CP factor is
Tr (tA1 tA2tA3), where tAi belong to the basis of N × N hermitean matrices
introduced above. It is easy to see that this makes the amplitudes coming from
strings coincide with those derived from NCU(N) gauge theory.

In conclusion, at the tree level, there is a perfect correspondence between
the gluon amplitudes obtained via string theory in the α′ → 0 limit, and the
analogous amplitudes obtained from NCU(N) gauge theory. Then a question
arises immediately: is this pattern going to persist also at one loop? This means,
on the ˇeld theory side, renormalizing NCU(N) gauge theory at one loop and
calculating the relevant renormalized amplitudes. On the string theory side, it
means calculating the string theory one-loop corrected amplitudes after taking the
ˇeld theory limit of the latter. Finally one has to compare the two results and see
whether they coincide.

This is what we are going to see in the next section.
2.1. Renormalization of NCU(N). In this section we study one-loop renor-

malization of NCU(N) theory. The theory we have to renormalize is speciˇed
by the gauge-ˇxed action

S=
∫

d4xTr
(
−1
4
FµνF

µν− 1
2α

(∂µA
µ)2+

1
2
(ic̄ � ∂µD

µc−i∂µD
µc � c̄)

)
, (17)

where c = cAtA is the FaddeevÄPopov ghost ˇeld. The notation is as in the
previous sections. To simplify the calculations we will choose α = 1. The
Feynman rules for this theory are given in the Appendix of [5], see also [2Ä4].
For instance, the propagators are the same as in the corresponding ordinary gauge
theory, while the 3-gluon vertex is given by

− g
(
fABC cos (p× q) + dABC sin (p× q)

)
×

× (gµν (p− q)λ + gνλ (q − k)µ + gλµ(k − p)ν), (18)

where the external gluons carry labels (A, µ, p), (B, ν, q), and (C, λ, k) for the
Lie algebra, momentum and Lorentz indices and are ordered in anticlockwise
sense. Moreover we use the notation p× q = (1/2)pµθ

µνqν .
Evaluating the one-loop contributions is lengthy but straightforward. The

contributions split into two distinguished sets: planar and nonplanar. The ˇrst
are characterized by the fact that the noncommutative factors (which are quadratic
exponentials of the momenta) contain only external momenta, while in the nonpla-
nar ones the noncommutative factors contain also the momentum running along
the loop. Since eventually we integrate over the running momentum, it follows
that in the latter case the noncommutative factors become smoothing factors for
ultraviolet singularities. Therefore we should not expect ultraviolet divergences
from nonplanar diagram contributions. As a consequence in the following we



36 BONORA L.

limit ourselves only to planar diagrams. In [5] the planar part of the 2-, 3- and
4-point functions were evaluated adopting the dimensional regularization (ε =
4 − D, as usual). Here we write down some of the results. For instance for
the 2-point function we have two nonvanishing contributions to the UV divergent
part:

Å gluons circulating inside the loop:

i
1

(4π)2
2
ε
δABN

[
19
12
gµρp

2 − 11
6
pµpν

]
, (19)

Å ghosts circulating inside the loop:

i
1

(4π)2
2
ε
δABN

[
1
12
gµρp

2 +
1
6
pµpν

]
. (20)

Their sum is:

i
1

(4π)2
2
ε
δABN

5
3

[
gµρp

2 − pµpν

]
(21)

which entails the usual renormalization constant

Z3 = 1 +
5
3
g2N

1
(4π)2

2
ε
. (22)

The same happens for the 3- and 4-point functions. They give rise to renor-
malization constants

Z1 = 1 +
2
3
g2N

1
(4π)2

2
ε

(23)

and

Z4 = 1− 1
3
g2 N

1
(4π)2

2
ε
. (24)

These are the same renormalization constants that occur in ordinary U(N)
YangÄMills theories. Therefore, the noncommutative U(N) YangÄMills theories
are one-loop renormalizable.

Now, having examined the ˇeld theory side, let us have a look at the string
theory side. The one-loop calculation from the string theory point of view is much
more complicated and we will limit ourselves to a short summary. The calculation
of the one-loop corrections to the amplitudes considered in the previous section
are the annulus amplitudes, i. e., the relevant world-sheet is the annulus. The
latter can be represented as a unit disk from which a smaller disk centred at the
origin has been cut out. This two-dimensional surface has one modulus, which
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can be chosen to be the radius q of the smaller disk. The vertices relevant for the
amplitudes in question are inserted at the border of the annulus. So they can be
inserted either on the same (internal or external) boundary circle, giving rise to
planar amplitudes, or are inserted on both boundary circles, giving rise to non-
planar amplitudes. The ˇeld theory limit, in this situation, is not simply the limit
α′ → 0, because we have to put a condition also on the modulus. As intuition
suggests, this corresponds to q → 1, i. e., to the annulus being squeezed to a
circle, in which case the string diagrams look as skinny as Feynman diagrams.

In the ˇeld theory limit the string diagrams that may give rise to diver-
gences are only the planar ones. Since we are interested in a comparison with
the divergent parts that appear in the one-loop renormalization just considered,
we will limit ourselves to planar diagrams. Now the modiˇcation of the latter
when a constant B ˇeld is switched on is particularly simple. If we denote by
A(1)(p1, . . . , pn) and A(1)(p1, . . . , pn) the n-point one-loop planar amplitudes
with and without B ˇeld, respectively, the relation is, [7],

A(1)(p1, . . . , pn) =
∏
i<j

epiθpj A(1)(p1, . . . , pn). (25)

This result was extended to higher loops in [8]. Now what we have to do is
to ˇnd the ˇeld theory limit in the theory without B ˇeld and to multiply it by
the noncommutative factor as in (25). Finding a ˇeld theory limit of a one-loop
amplitude is a nontrivial exercise, but the result can be found in the literature,
see [6] and references therein. Once multiplied by the relevant noncommutative
factor it reproduces exactly the divergences found in the renormalization of the
NCU(N) gauge theory above.

In conclusion we can therefore quote the striking result that the NCU(N)
gauge theory and the ˇeld theory limit of string theory with U(N) CP factors in
the presence of B ˇeld do exactly correspond, at least up to one-loop.

2.2. Other Noncommutative Gauge Field Theories. In addition to NCU(N)
gauge theories there have been some attempts at deˇning noncommutative gauge
ˇeld theories based on subalgebras of u(N). Up to tree level there seems to be
no obstruction to deˇning ˇeld theories of orthogonal or symplectic type, [14].
These theories can also be embedded in some particular conˇgurations of string
theory, that is, they can be viewed as effective ˇeld theories living on D branes
immersed in some kind of string theory in the presence of B ˇeld. However the
one-loop situation is still not clear, [16]. On the one hand, a consistent one-loop
renormalization procedure has not yet been found; on the other hand, the string
theory one-loop calculations are not entirely unambiguous in the presence of
B-ˇeld. Until these question marks have been removed, one cannot safely rely
on these new theories.

For a different approach to noncommutative gauge theories based on a generic
Lie algebra, see [15].
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3. CONSISTENCY PROBLEMS IN NONCOMMUTATIVE FIELD
THEORIES

Renormalizability is a ˇrst test of quantum consistency of a theory, but
there are others. After considering renormalization of noncommutative gauge
theories in the previous section, a fundamental consistency test is the absence of
chiral anomalies. The presence of chiral anomalies is a fatal disease for a theory
because it prevents us from deˇning the fermion functional integral. It is therefore
of utmost importance to ˇnd out whether a theory is plagued by chiral anomalies.
What we are interested in in the following is of course whether noncommutativity
brings in any difference as far as anomalies are concerned. The answer will be
that it does.

3.1. Chiral Anomalies. Let us couple a NCU(N) gauge theory to fermionic
matter and let us start from the simplest situation in which chiral anomalies are
relevant, i. e., an action with chiral spinor in the fundamental representation in D
dimensions:

S =
∫

dDx
(
ψ̄i � γ

µ(i∂µψ
i +Ai

µ k � P+ψ
k)

)
. (26)

Here P± = (1/2)(1 ± γ̂) and γ̂ = γ0γ1 . . . γD−1, and we have used the corre-
spondence

Aj
µi ≡ AB

µ (t
B)j i, Aµ = AB

µ t
B, AB

µ = 2 tr (tBAµ),

where tr denotes the trace in the fundamental representation.
There are basically two ways to calculate chiral anomalies. One is based on

Feynman diagram techniques [9,10,12], the second on the WZ consistency condi-
tions, [11,13]. The method we review here is the second. It relies on the concept
of nc locality, which means that the space of cochains (i. e., ˇeld theory monomi-
als such as action terms) we consider is the same as in ordinary local ˇeld theories
with the ordinary product replaced by the WeylÄMoyal product. This principle
of nc locality is suggested by one-loop renormalization of noncommutative ˇeld
theories, where counterterms are precisely of the above type, and, in the cases
in which the noncommutative ˇeld theories can be embedded in string theory in
the presence of B ˇeld, can be traced back to the properties of string amplitudes,
precisely to the fact that such string amplitudes factorize into noncommutative
factors and ordinary string amplitudes (see previous section). The advantage of
using this method is that, once the formalism is established, many conclusions
are evident without resorting to explicit Feynman-diagram calculations.

To write down the WZ consistency conditions we consider a matrix-valued
one-form A = Aµdx

µ, with gauge ˇeld strength two-form F = dA+ iA � A and
gauge transformation parameter c (it is the same as λ above but we take it to be a
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Grassmann-odd, i. e., the FaddeevÄPopov ghost with ghost number 1). All these
quantities are valued in the Lie algebra generated by the tA. They are therefore
hermitean matrices. The gauge (BRST) transformations are:

sA = dc− iA � c+ ic � A, sc = − c � c, (27)

d and s are assumed to commute. As a consequence, the transformations (27) are
nilpotent like in the ordinary case.

Now, following [11, 13], we can write down the descent equations relevant
to D = 2n dimensions, starting from a closed and BRST invariant 2n + 2-form
Ω2n+2, constructed as a polynomial of F and referred to as the top form:

Ω2n+2 = dΩ0
2n+1, sΩ0

2n+1 = dΩ1
2n, sΩ1

2n = dΩ2
2n−1, (28)

where the upper index is the ghost number and the lower index is the form order.
Ω1

2n is the (unintegrated) anomaly. Upon integrating the last equation, one gets

s

(∫
dDxΩ1

2n

)
= 0 (29)

which precisely says that
∫
dDxΩ1

2n satisˇes the WessÄZumino consistency con-
ditions. The virtue of the discent equations formalism is that it provides explicit
expressions for anomalies and one has spared the details of the complicated ver-
iˇcation that Ω1

2n does indeed satisfy the WessÄZumino consistency conditions.
The latter is an automatic consequence of the top form Ω2n+2 being closed (and
nontrivial).

In noncommutative gauge theories there is however a complication. This
method does not work straightforwardly, because there exists no closed invariant
polynomial that can be built with the noncommutative curvature F . There is
however a way out that was pointed out in [11]: the differential space of cochains
must be constituted by forms that are deˇned up to an overall cyclic permutations
of the Moyal product factors involved. So, keeping this speciˇcation in mind,
we can easily obtain the anomaly expression from the top form Ω2n+2 = tr (F �
F � F � . . . � F ) even though the latter, strictly speaking, is neither closed nor
invariant. The anomaly is

Ω2
2n−1 = n

∫ 1

0

dt
(t− 1)2

2
Tr (dc � dc � A � Ft � . . . � Ft + . . . ), (30)

where the dots represent (n − 1)(n − 2) − 1 terms obtained from the ˇrst by
permuting in all distinct ways dc,A and Ft = tdA + it2A � A, keeping track of
the grading and keeping dc ˇxed in the ˇrst position.

In four dimensions the anomaly takes the form

Ω1
4 = −1

2
Tr (dc � A � dA+ dc � dA � A+ dc � A � A � A). (31)
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If we integrate it over space-time, it coincides with the result obtained via Feyn-
man diagram methods, see [10], Eq. (24).

Before we discuss this equation let us consider other situations which may
be potentially anomalous. There are not many. In fact it is well known by now
that, beside the fundamental representation of U(N), only the antifundamental
and the adjoint representations of u(N) extend to linear representations of the
Lie algebra of noncommutative u(N) gauge transformations. So we can build
noncommutative gauge theories only with the latter representations (or direct sums
of them). Now as long as we stick to D = 4, in ordinary gauge theories with chiral
fermions in the adjoint representation the chiral anomaly identically vanishes. In
such theories one can resort to the well-known argument of reality of the adjoint
representation to reach the relevant conclusion. However, this conclusion can be
easily extended to noncommutative theories, [12, 13]. Therefore, in D = 4, the
only (potentially) anomalous action is the one speciˇed by (26). The anomaly
corresponding to it is given by Eq. (31). Let us discuss this anomaly in detail.

The main question is of course whether this anomaly may vanish under
speciˇc conditions. The ˇrst two terms in (31) are proportional to Tr (TATBTC).
Therefore the anomaly (31) vanishes only if Tr (TATBTC) = 0. Notice that in
ordinary theories the anomaly is proportional to Tr (TA[TB, TC ]), which vanishes
for instance in the case of SU(2). Is this possible for NCU(N)? The answer is
no. In fact Tr (TATBTC) = (1/2)Tr (TA{TB, TC}) + (1/2)Tr (TC [TB, TC]).
The ˇrst term in the RHS is the usual symmetric adinvariant third order tensor;
the second term, which is absent in the commutative case, is proportional to
the structure constant and vanishes only when all the structure constants do.
Therefore we see that (31) cannot vanish. Therefore the only possibility for a
noncommutative theory to be chiral anomaly free is to be nonchiral.

This is a very drastic conclusion, which can be extended to any even dimen-
sion (see [13]), and prevents, for instance, a simple extension of the Standard
Model to the noncommutative case. Whether we can get around it and deˇne
anomaly free chiral noncommutative gauge theories is not a minor problem we
have to face in the construction of noncommutative theories.

3.2. Unitarity and IR/UV Mixing. The previous subsection tells us that
consistent noncommutative gauge theories can be found in the realm of theories
without fermions or with nonchiral fermionic matter. Let us limit ourselves
to such theories. However even in these theories there are new problems (as
compared to ordinary theories) due to the overlap between IR and UV properties,
[17].

We have noticed above that nonplanar diagrams do not give rise to UV
singularities. This is the beneˇcial effect of IR/UV mixing, and it is due to the
smoothing effect of the noncommutative factors in the high momentum region.
This can be seen most clearly in the simple case of a noncommutative φ4 theory
in 4D, with mass m and coupling constant g. The two-point vertex at one-loop
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can be easily evaluated. It splits, as usual, into a planar and a nonplanar part,
which, after introducing a regulator Λ, are respectively given by

Γ(2)
planar =

g2

48π2

(
Λ2 −m2 ln

(
Λ2

m2

)
+ . . .

)
, (32)

Γ(2)
nonplanar =

g2

96π2

(
Λ2

eff −m2 ln
(
Λ2

eff

m2

)
+ . . .

)
, (33)

where

Λ2
eff =

1
1/Λ2 + p ◦ p, p ◦ p = −pµθ

µλθλ
νpν ,

the metric signature being (−1, 1, . . . , 1).
From (32) above, we see that, as long as p ◦ p �= 0, we can safely remove

the regulator Λ (Λ → ∞).
However this beneˇcial effect in the UV is compensated by an increasing

singularity pattern in the IR. To see this it is enough to look at the one-loop
1PI quadratic effective action, which takes the form (forgetting logarithms for
simplicity)

S
(2)
1PI =

∫
d4p

1
2
, φ(p)

(
p2 +M2 +

g2

96π2(1/Λ2 + p ◦ p) + . . .

)
φ(−p), (34)

where M2 = m2 + (g2Λ2)/(48π2) + . . . is the renormalized mass. From (34),
we see that besides the usual propagator pole in p2, we have another pole in p◦p.
This is not in the original spectrum of the theory.

The feature shown in this simple example is actually characteristic of all the
noncommutative ˇeld theories, including the gauge theories. These modes, which
appear dynamically in the spectrum, have been recognized as due to the lack of
decoupling between the modes of the ˇeld theory leaving on the D brane (i. e.,
the massless open string modes) and the closed string modes that live on the bulk.

3.3. Comments. The above-mentioned new modes, which are not present
in the original spectrum of the theory, represent a problem for noncommutative
ˇeld theories. They may affect renormalization and unitarity of noncommutative
ˇeld theories at higher loops. But they also raise more radical questions. In
fact it is clear that in general the noncommutative ˇeld theories represent an
intermediate species between ordinary ˇeld and string theory. They are interesting
in themselves, but they might represent a serious opportunity as a new method
to extract string theory results in a simpliˇed way, without having to resort to
full-aedged string theory. However the new modes, as well as the chiral anomaly
problem we have seen above, represent an obstruction in this direction. The
questions we would like to be able to answer are: can noncommutative ˇeld
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theories have an autonomous formulation, much in the same way ordinary ˇeld
theories do? or, at some point, do we have to resort to our knowledge of string
theory to understand otherwise incomprehensible facts about noncommutative
ˇeld theories? Some answers to these issues have already been put forward, but
the discussion is open.
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